JPS60212902A - Organic semiconductor composition - Google Patents

Organic semiconductor composition

Info

Publication number
JPS60212902A
JPS60212902A JP6933884A JP6933884A JPS60212902A JP S60212902 A JPS60212902 A JP S60212902A JP 6933884 A JP6933884 A JP 6933884A JP 6933884 A JP6933884 A JP 6933884A JP S60212902 A JPS60212902 A JP S60212902A
Authority
JP
Japan
Prior art keywords
organic semiconductor
amount
hcn
semiconductor composition
tcnq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6933884A
Other languages
Japanese (ja)
Inventor
吉村 進
高橋 庄三
尾崎 潤二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6933884A priority Critical patent/JPS60212902A/en
Priority to US06/720,304 priority patent/US4590541A/en
Publication of JPS60212902A publication Critical patent/JPS60212902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新しい有機半導体組成物に関し、特に、7、了
、8,8−テトラシアノキノジメタン化合物を主成分と
する有機半導体において、熱分解あるいは燃焼時の有毒
ガスの発生が抑制された有機半導体組成物に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a new organic semiconductor composition, and particularly to an organic semiconductor containing a 7, 8, 8-tetracyanoquinodimethane compound as a main component. The present invention relates to an organic semiconductor composition in which the generation of toxic gas during combustion is suppressed.

従来例の構成とその問題点 ?、7,8.8−テトラシアノキノジメタン(以下TC
NQと略す)は、分子中vc4コの二) IJ#(−C
二N)基を有する強力な電子親和性分子(アクセプター
)であるので、多くのイオン化ポテンシャルの低い分子
(ドナー)と分子間化合物あるいは塩を形成し、電気抵
抗の低い有機半導体を与える。また、低抵抗の有機半導
体としては比較的熱安定性が高いという利点を有するた
め、多くの電子素子への応用が提案されている。たとえ
ば、その抵抗の温度変化を利用した温度センサー。
What is the conventional configuration and its problems? , 7,8.8-tetracyanoquinodimethane (hereinafter referred to as TC
(abbreviated as NQ) is vc4(2) in the molecule) IJ#(-C
Since it is a molecule (acceptor) with strong electron affinity and has a (2N) group, it forms intermolecular compounds or salts with many molecules (donors) with low ionization potential, providing an organic semiconductor with low electrical resistance. Furthermore, since it has the advantage of relatively high thermal stability as a low-resistance organic semiconductor, its application to many electronic devices has been proposed. For example, a temperature sensor that uses temperature changes in that resistance.

低抵抗性および電気化学的活性全利用した固体電解コン
デンサ用固体電解質、抵抗の電場あるいけ光によるスイ
ッチ性を利用した論理°素子、記憶。
Solid electrolyte for solid electrolytic capacitors that fully utilizes low resistance and electrochemical activity, logic elements and memory that utilize the switching properties of resistors using electric fields and illumination.

記録媒体あるいは酸化還元反応における色の変化を利用
した表示素子などがある0こnらの電子素子は通常の使
用状態においては 、安全上式問題を生じることはない
が、一度火災あるいは伺らか過電流による発熱が生じた
場合、有毒ガスを発生することが十分考えられる。たと
えば、TCNQの分子(分子量=204)中には4個の
(−基があり、CとNの結合は非常に強いので、熱分解
が起った場合はシアン化水素(HCN、分子量−27)
が生ずる可能性がある。4個のCNが全てHCNに変換
した場合、TCNQCN0分子り5291a9のHCN
が発生することになる。また、TCNQ分子そのものは
昇華性を有するため、加熱時には分解前に空気中に飛散
するが、各種ドナーと反応させて得らnる有機半導体は
約250″C以上の高温に放置すると必ず熱分解を起こ
す。加えて、この熱分解は発熱反応であるため、分解時
1C有機半導体の温度上昇が生じ、分解温度は開始の温
度に関係なくfまは300〜600′Cの範囲に入って
し甘う。一方、この温度範囲は、窒素を含む有機化合物
の燃焼において最もシアン化水素の発生し易い条件であ
ることが知らnている0このように、TCNQからなる
有機半導体を用いる場合、何らかの原因による加熱が起
った場合、人体にとって極めて有毒なシアン化水系ガス
が発生すること全前提として考える必要がある。事実、
低抵抗で知らnるキノリニウム(TCNQ)21=30
0°Cで、空気中で熱分解したところ、シアン化水素と
アセトニトリル(CH3CN)が主に発生することがガ
ス質量分析から確認され、特にシアン化水素ViJ I
 S KOl 09に基づく定量分析(ピリジン−ピラ
ゾロン吸光光度法)により2重it%発生していること
が判明した。この値は理論的な発生量(53%)よりは
遥かに低く、例えば100■のTCNQ塩ヲ1771J
の空間で熱分解した場合、約4 ppmの濃度に対応す
るので、作業環境等の安全基準からは許容できる値であ
る。しかしながら、場合しよっては局所濃度が著しく高
くなることも考えらnるので、TCNQ塩の熱分解時の
シアン化水素の発生はできるだけ抑制しておく必要があ
る0 発明の目的 本発明は従来技術の持つ以上のような欠点を解消するも
ので、TCNQ塩から成る有機半導体に鉄、コバルト、
ニッケルのうちの少なくとも1種の金属の微粉末を添加
することにより、熱分解時のシアン化水素の発生が抑制
された有機半導体組成物を提供するものである。
These electronic devices, which include recording media and display devices that utilize color changes during oxidation-reduction reactions, do not pose any safety problems during normal use, but once exposed to fire or damage. If heat generation occurs due to overcurrent, it is highly likely that toxic gas will be generated. For example, there are four (- groups in the molecule of TCNQ (molecular weight = 204), and the bond between C and N is very strong, so if thermal decomposition occurs, hydrogen cyanide (HCN, molecular weight -27)
may occur. If all 4 CNs are converted to HCN, HCN of TCNQCN0 molecules is 5291a9
will occur. In addition, since the TCNQ molecule itself has sublimation properties, it scatters into the air before being decomposed when heated, but organic semiconductors obtained by reacting with various donors are always thermally decomposed if left at high temperatures of approximately 250"C or higher. In addition, since this thermal decomposition is an exothermic reaction, the temperature of the 1C organic semiconductor increases during decomposition, and the decomposition temperature f is in the range of 300 to 600'C regardless of the starting temperature. On the other hand, it is known that this temperature range is the condition where hydrogen cyanide is most likely to be generated during the combustion of organic compounds containing nitrogen.In this way, when using an organic semiconductor made of TCNQ, It must be assumed that if heating occurs, cyanide water-based gas, which is extremely toxic to the human body, will be generated.In fact,
Quinolinium (TCNQ) known for its low resistance 21=30
When thermally decomposed in air at 0°C, gas mass spectrometry confirmed that hydrogen cyanide and acetonitrile (CH3CN) were mainly generated.
Quantitative analysis (pyridine-pyrazolone spectrophotometry) based on S KOl 09 revealed that double it% was generated. This value is much lower than the theoretical generation amount (53%), for example, 1771J of 100μ TCNQ salt
When thermally decomposed in a space of However, in some cases, the local concentration may become extremely high, so it is necessary to suppress the generation of hydrogen cyanide during thermal decomposition of TCNQ salt as much as possible. This solution solves the above-mentioned drawbacks, and it combines iron, cobalt, and organic semiconductors made of TCNQ salt.
The present invention provides an organic semiconductor composition in which generation of hydrogen cyanide during thermal decomposition is suppressed by adding fine powder of at least one metal among nickel.

発明の構成 本発明による有機半導体組成物の基本構成は、公知の方
法で得らnるTCNQ塩を粉砕し、添加剤として鉄、コ
バルト、ニッケルの微粉末の少なくとも1種を均一に混
合したものである。本発明が適用さnる有機半導体は主
にTCNQi一方の成分(アクセプター)とするもので
、他の成分とシ しては、金属イオン(例えばLi”、Na+、 K”、
 Ctz”。
Structure of the Invention The basic structure of the organic semiconductor composition according to the present invention is that TCNQ salt obtained by a known method is pulverized and at least one of fine powders of iron, cobalt, and nickel is uniformly mixed as an additive. It is. The organic semiconductor to which the present invention is applied mainly has one component (acceptor) of TCNQi, and other components include metal ions (for example, Li", Na+, K",
Ctz”.

リジニウム、フェノチアジニウム、テトラチアフルバレ
ニウム、テトラセレナフルバレニウムオヨびこれらの置
換体であるが、その他の二) IJル基を有するアクセ
プターから成る有機半導体、例えばジシアノジクロロパ
ラキノン、テトラシアノエチレン、テトラシアノナフト
キノンなど、を用いることも可能である。本発明で開示
される有機半導体組成物は上記の有機半導体と鉄、コバ
ルト。
lysinium, phenothiazinium, tetrathiafulvalenium, tetraselenafulvalenium and their substituted substances, but also other organic semiconductors consisting of an acceptor having an IJ group, such as dicyanodichloroparaquinone, tetracyanoethylene, tetra It is also possible to use cyanonaphthoquinone and the like. The organic semiconductor composition disclosed in the present invention comprises the above organic semiconductor, iron, and cobalt.

ニッケルのうちの少なくとも1種を含む微粉末からなる
混合系であるが、後者の添加剤が有機半導体の熱分解時
のシアン化水素の発生を抑制するという効果は、多くの
熱分解実験および発生ガスの分析より明らかにされた。
The latter additive is a mixed system consisting of fine powder containing at least one type of nickel, and the effect of the latter additive on suppressing the generation of hydrogen cyanide during thermal decomposition of organic semiconductors has been demonstrated through numerous thermal decomposition experiments and the generation of gas. This was revealed through analysis.

このように、経験的な手法により材料が選択さjしたの
であるが、これらの添加物のシアン化水素発生抑制効果
は次のいくつかの理由によるものと予想さnる。まず、
これらの金属の微粉末は発生し7’cHCNに対する強
い吸着能を有している。また、とnらの金属はシアン化
物を形成し、そのシアン化物は比較的安定な化合物であ
る。更に、酸素、水素あるいは水が存在する場合は、こ
れらの金属はHCNの酸化、還元あるいは加水分解触媒
として有効に働くことが推察される。
As described above, the materials were selected based on an empirical method, and the effect of these additives on suppressing hydrogen cyanide generation is expected to be due to the following several reasons. first,
Fine powders of these metals are generated and have strong adsorption ability for 7'cHCN. Further, the metals of and et al. form cyanide, and the cyanide is a relatively stable compound. Furthermore, when oxygen, hydrogen, or water is present, these metals are presumed to work effectively as catalysts for oxidation, reduction, or hydrolysis of HCN.

本発明において添加される金属の粉末はその活性を十分
に発揮させるために、粒径ができるだけ小さいことが望
まれる。事実、異なる粒径を持つ多くの金属粉末の)(
CN抑制の効果を検討した結果、鉄、コバルト、ニッケ
ルの平均粒径が500オングストローム以下の超微粒子
を用いることにより、6重量パーセント以上の添加で著
しい効果があることが判明した。これらの金属の添加量
は、HCNの抑制のみを考えれば、多けnば多い程良い
。しかしながら、添加量が多くなると、金属同志の接触
が生じ、有機半導体の有する種々の特性が全く消失して
しまう。そのような金属同志の接触は、TCNQのイオ
ンラジカル塩の場合、金属の重置が20パーセントを越
えるときに急激に起った。以下の実施例において、本発
明の有機半導体組成物が、低いHCN発生率を有し、い
くつかの電子素子に適用した場合に、その電子素子の安
全性を著しく向上させ得ることを示す。
In order to fully exhibit the activity of the metal powder added in the present invention, it is desired that the particle size is as small as possible. In fact, many metal powders with different particle sizes) (
As a result of examining the effect of suppressing CN, it was found that by using ultrafine particles of iron, cobalt, and nickel with an average particle size of 500 angstroms or less, a remarkable effect can be obtained when added in an amount of 6% by weight or more. Considering only the suppression of HCN, the larger the amount of these metals added, the better. However, when the amount added is large, metals come into contact with each other, and various properties of the organic semiconductor are completely lost. Such metal-to-metal contact occurred rapidly in the case of the ionic radical salt of TCNQ when the metal overlap exceeded 20%. In the following examples, it is shown that the organic semiconductor compositions of the present invention have a low HCN generation rate and, when applied to some electronic devices, can significantly improve the safety of the electronic devices.

実施例の説明 以下に本発明の実施例について述べる。Description of examples Examples of the present invention will be described below.

〔実施例1〕 TCNQのイオンラジカル塩としてキノリニウム(rc
NQ)2に用い、鉄、コバルトまたはニッケルの微粉末
を混合し、空気中s o o ’Cにて10分間熱分解
させた。HCNの発生は先ず乳用式検知量にて検知し、
次にガス・クロマトグラフィおよびJ I 5KO10
9に基づく分析法により定量した。第1表にTCNQ塩
1〜当りのHCNガスの発生量を示す。
[Example 1] Quinolinium (rc
NQ) 2, fine powders of iron, cobalt or nickel were mixed and thermally decomposed in air at SO'C for 10 minutes. The occurrence of HCN is first detected using a milk detection method,
Then gas chromatography and J I 5KO10
It was quantified by an analytical method based on 9. Table 1 shows the amount of HCN gas generated per TCNQ salt.

第 1 表 鉄、ニッケルの添加から分る様に2あるいは4重量%の
添加量では無添加時と較べHCN発生量に大きな変化は
見、られないが、5重量%の添加によって著しく減少す
ることが確認できる。
As can be seen from the addition of iron and nickel in Table 1, there is no significant change in the amount of HCN generated when 2 or 4% by weight is added compared to when no addition is made, but it is significantly reduced by adding 5% by weight. can be confirmed.

またコバルトについても5重量%以上の添加によりHC
N発生量は非常に小さな値を示した。
Also, with regard to cobalt, by adding 5% by weight or more, HC
The amount of N generated showed a very small value.

このように添加量の増加につれ緩急ではあるがHCN発
生量の減少することが分る。
It can thus be seen that as the amount added increases, the amount of HCN generated decreases, albeit slowly.

これら金属の添加量は、HCNの抑制のみを考えれば多
い程良いが、添加量が多くなると有機半導体の特性が消
失してくるため、20重量%以下が適当である。
The amount of these metals to be added is preferably as high as possible if only the suppression of HCN is considered, but if the amount added is too large, the characteristics of the organic semiconductor will disappear, so 20% by weight or less is appropriate.

〔実施例2〕 実施例1と同様の方法で、アルミナに担持させたニッケ
ルにソケル含有量50%)を6からω部添加して、HC
Nの発生量を測定した。第2表に結果を示す。この場合
、有機半導体はN −n −プロピルキノリニウム(T
CNQ)2である。
[Example 2] In the same manner as in Example 1, 6 to ω parts of Sokel (50% Sokel content) were added to nickel supported on alumina to produce HC.
The amount of N generated was measured. Table 2 shows the results. In this case, the organic semiconductor is N-n-propylquinolinium (T
CNQ)2.

添加量が増加するにつnてHCNの発生量は急激に減少
する傾向を示すが、添加量10%にブチル含有量6%)
で%以下という顕著な効果を現す。
The amount of HCN generated tends to decrease rapidly as the amount added increases, but the amount of HCN added is 10% and the butyl content is 6%).
It shows a remarkable effect of less than %.

第 2 表 〔実施例3〕 N −n−ブチルイソキノリニウム(TCNQ)2を有
機半導体とし、これに20パーセントのニッケル粉末(
粒径200人、600人、3μm)i添加し、260’
C以上の温度で捲回型アルミニウム電解コンデンサに含
浸し、アルミケースの中にエポキシ樹脂で封入した。こ
の電解コンデンサを400 ’Cで約20分加熱した所
、エポキシ樹脂が破壊して、中の有機半導体の分解物が
あふれ出て来た。この時のHCNガスの発生量を測定し
た結果を第3表に示す。無添加の場合(1ooppm)
及び3μmの場合(50ppm )と較べて500Å以
下の微粉末がHCNガス発生量抑制に効果の大きいこと
が分る。
Table 2 [Example 3] N-n-butylisoquinolinium (TCNQ) 2 was used as an organic semiconductor, and 20% nickel powder (
Particle size 200, 600, 3μm) i added, 260'
A wound aluminum electrolytic capacitor was impregnated at a temperature of C or higher and sealed in an aluminum case with epoxy resin. When this electrolytic capacitor was heated at 400'C for about 20 minutes, the epoxy resin broke down and the decomposition products of the organic semiconductor inside overflowed. Table 3 shows the results of measuring the amount of HCN gas generated at this time. Without additives (1ooppm)
It can be seen that fine powder of 500 Å or less is more effective in suppressing the amount of HCN gas generated than in the case of 3 μm (50 ppm).

第 3 表 〔実施例4〕 N−n−プロピルキノリニウム(TCNQ)2をエチレ
ン酸 樹脂をバインダーとして平板上に印刷した温度セ
ンサーを試作した。このセンサーに、ケイソウ土に担持
させたコバルト(コバルト含有量45%)を10パーセ
ント添加し、300°Cにて約10分加熱した。HCN
の発生量は上記有機半導体100■当り1■以下で、無
添加の場合の20■に比して著しく減少した。
Table 3 [Example 4] A temperature sensor was prototyped by printing Nn-propylquinolinium (TCNQ) 2 on a flat plate using ethylene acid resin as a binder. To this sensor, 10 percent of cobalt supported on diatomaceous earth (cobalt content: 45%) was added and heated at 300° C. for about 10 minutes. HCN
The amount of generated was less than 1 sq. per 100 sq. of the organic semiconductor, which was significantly reduced compared to 20 sq. when no additive was used.

なお本発明の有機半導体組成物において添加する微粉末
金属は、鉄、ニッケル、コバルトのうちの1種を少なく
とも含むものであnば良く、それぞれ単体で用いても、
他の金属と一緒に用いても、こnらの金属を混合して用
いても良い。いずれにしてもこのときの添加量Fis重
量重量%以上5置またこの微粉末金属の平均粒径は、5
00Å以下であることがHCNガス発生量抑制の面から
好適である。
The fine powder metal added in the organic semiconductor composition of the present invention only needs to contain at least one of iron, nickel, and cobalt, and even if each is used alone,
It may be used together with other metals or in a mixture of these metals. In any case, the addition amount Fis at this time is 5% by weight or more, and the average particle size of this fine powder metal is 5% by weight.
00 Å or less is preferable from the viewpoint of suppressing the amount of HCN gas generated.

発明の効果 以上のように本発明は、TCNQのイオンラジカル塩に
鉄,コバルト、ニッケルのうちの少なくとも1種の金属
の微粉末を6から20パーセント添加することにより、
熱分解あるいは燃焼時の有毒ガス、特にシアン化水素の
発生を抑えようとするもので、本発明により温度センサ
ー、電解コンデンサなどTCNQイオンラジカル塩を用
いた電子デバイスの安全性が著しく向上することになる
Effects of the Invention As described above, the present invention has the following advantages: By adding 6 to 20 percent of fine powder of at least one metal among iron, cobalt, and nickel to the ionic radical salt of TCNQ,
The present invention aims to suppress the generation of toxic gases, particularly hydrogen cyanide, during thermal decomposition or combustion, and the present invention significantly improves the safety of electronic devices using TCNQ ion radical salts, such as temperature sensors and electrolytic capacitors.

Claims (2)

【特許請求の範囲】[Claims] (1)7,7,8.8−テトラシアノキノジメタンのイ
オンラジカル塩に添加物として鉄°、コバルトニッケル
のうちの少なくとも1種げ金属の微粉宋音6から2o重
量パーセント含むことを特徴とする有機半導体組成物〇
(1) The ionic radical salt of 7,7,8.8-tetracyanoquinodimethane is characterized by containing 6 to 2 percent by weight of fine powder of at least one of iron, cobalt and nickel as an additive. Organic semiconductor composition 〇
(2)微粉末の平均粒径が600Å以下であることを特
徴とする特許請求の範囲第1項記載の有機半導体組成物
。 明
(2) The organic semiconductor composition according to claim 1, wherein the average particle size of the fine powder is 600 Å or less. Akira
JP6933884A 1984-04-06 1984-04-06 Organic semiconductor composition Pending JPS60212902A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6933884A JPS60212902A (en) 1984-04-06 1984-04-06 Organic semiconductor composition
US06/720,304 US4590541A (en) 1984-04-06 1985-04-05 Organic semiconductor compositions and solid electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6933884A JPS60212902A (en) 1984-04-06 1984-04-06 Organic semiconductor composition

Publications (1)

Publication Number Publication Date
JPS60212902A true JPS60212902A (en) 1985-10-25

Family

ID=13399662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6933884A Pending JPS60212902A (en) 1984-04-06 1984-04-06 Organic semiconductor composition

Country Status (1)

Country Link
JP (1) JPS60212902A (en)

Similar Documents

Publication Publication Date Title
Amiri et al. Physicochemical and Electrochemical Properties of Water‐in‐Salt Electrolytes
Ali et al. Hydrothermal synthesis of cerium‐doped Co3O4 nanoflakes as electrode for supercapacitor application
Mikami et al. Kinetics of adsorption-desorption of chromate on. gamma.-alumina surface using the pressure-jump technique
US20130068994A1 (en) Nanoparticle enhanced ionic liquid heat transfer fluids
US4590541A (en) Organic semiconductor compositions and solid electrolytic capacitor using the same
JPS60212902A (en) Organic semiconductor composition
JP2011166044A (en) Accumulation device
Mojović et al. Oxygen reduction reaction on palladium-modified zeolite 13X
Prithi et al. Experimental and theoretical study on SO2 tolerance of Pt electrocatalysts: Role of carbon support
JPS60257005A (en) Organic semiconductor composition
JPS61163983A (en) Organic semiconductor composition
JP6315613B2 (en) Carbon material, fuel cell, electric double layer capacitor, carbon dioxide adsorption device, and method for producing carbon material
JP2014017475A (en) Electrode for electric double-layer capacitor and electric double-layer capacitor using the same
Zain et al. The effects of MgO nanofiller to the physicochemical and ionic liquid retention properties of PEMA‐MgTf2‐EMITFSI nanocomposite polymer electrolytes
JPS60212903A (en) Organic semiconductor composition
Kim et al. Preparation and electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in hydrous ruthenium oxide dispersed aqueous solution
Wilk et al. Structure and the electronic properties of a Jahn-Teller distorted tetrahedral nickel (II) complex with sulfur ligands
Li et al. The Effect of N‐Doping in Activated Carbon‐Supported Au‐Sr Catalysts for Acetylene Hydrochlorination to Vinyl Chloride
JPS60212901A (en) Organic semiconductor composition
JPS60212904A (en) Organic semiconductor composition
JPS60257006A (en) Organic semiconductor composition
JP2019507958A (en) How to reduce supercapacitor outgassing
JP2023140343A (en) Zeolite-containing nitrocellulose composition
JPS62111415A (en) Solid electrolytic capacitor
JPWO2022209928A5 (en)