JPS60212618A - Suction device of engine - Google Patents

Suction device of engine

Info

Publication number
JPS60212618A
JPS60212618A JP59068407A JP6840784A JPS60212618A JP S60212618 A JPS60212618 A JP S60212618A JP 59068407 A JP59068407 A JP 59068407A JP 6840784 A JP6840784 A JP 6840784A JP S60212618 A JPS60212618 A JP S60212618A
Authority
JP
Japan
Prior art keywords
valve
intake
passage
throttle valve
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59068407A
Other languages
Japanese (ja)
Other versions
JPH0247574B2 (en
Inventor
Masatoshi Shoji
小路 正敏
Takashi Kadota
門田 隆
Mineo Jinushi
地主 峰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59068407A priority Critical patent/JPS60212618A/en
Publication of JPS60212618A publication Critical patent/JPS60212618A/en
Publication of JPH0247574B2 publication Critical patent/JPH0247574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M3/00Idling devices for carburettors
    • F02M3/06Increasing idling speed
    • F02M3/062Increasing idling speed by altering as a function of motor r.p.m. the throttle valve stop or the fuel conduit cross-section by means of pneumatic or hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/20SOHC [Single overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To prevent air-fuel mixture from becoming excessively dense during deceleration, by a method wherein, in a suction device comprising plural intake air passages and an on-off valve which is partially opened and closed, intake air is guided to the down stream side of a throttle valve during deceleration, and the on-off valve is opened to a given size. CONSTITUTION:During deceleration in which a throttle valve 12 is rapidly closed, a high negative pressure in generated in a main intake air passage 11 down a line from the throttle valve 12, a rod 25 of a diaphragm device 26, which the normally depressed through the force of a spring, is pulled up, and an on-off valve 18 is controlled in a closing direction. Simultaneously, a control valve 35, which is opened at higher than a given negative pressure, is opened, and thereby a negative pressure is guided to a diaphragm device 34 through a passage 36 to open the throttle valve 12 to a given opening, and intake air is increased. Opening of the valve 35 results in opening of the valve 33 by means of a negative pressure guided to a diaphragm valve 33, and the open air is guided to a passage 32 communicated with a pressure chamber 31 in the diaphragm device 26, and this causes the on-off valve 18 to be opened to a given size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃焼室に通じる複数の吸気通路と、減速時に
スロットル弁下流側の吸気通路に吸気を導入して、混合
気の過濃化を防止する機構を備えたO (従来技術) 走行中、減速のために、アク七ルペダルの踏み込みをゆ
るめると、スロットル弁が閉じ、スロットル弁下流の負
圧が急激に増大(7、こねによって、吸気通路壁面に付
着した燃料が気化l−て、吸気針の少いことと相まって
、燃焼室に導入される混合気が一時的に過#になる。こ
れKよって、失火現象が生じたり、アフターパーンや、
排ガス性状の悪化といった問題が生じる。この間順を解
決するために、減速時にスロットル弁下流側に吸気を導
入して、混合気の過濃化を防1(−する几めの様々な手
段が知られている。例えば、実開昭3J−731116
号には、スロットル弁下流の負圧に応動じて開き、吸気
マニホールドに吸気を導入するダイヤフラム装置を備え
たアンチアフターバーン弁(AAV)において、ダイヤ
フラムで仕切られる一つの室を連通ずる弁を設け、スロ
ットル弁下流の負圧あ程度に応じて、この連通弁を開閉
制御してAAVの開弁時間を変化させて適正な空燃比の
混合気を燃焼室に導入するようにしている。また、特開
昭SS−/4t937号公報には、吸気量の少い運転領
域において、燃料の壁面付着を抑制して適正濃度の混合
気を供給するようにした吸気構造が開示されている。ま
た、吸気構造には、スロットル弁下流で分岐した複数の
吸気通路を備え、低負荷時には、開閉弁により一部の吸
気通路を閉じ、通路面積を絞って、吸気を導入し、燃焼
室内で吸気のスワールを形成するようKしたものが知ら
れている。
Detailed Description of the Invention (Industrial Application Field) The present invention introduces intake air into a plurality of intake passages leading to a combustion chamber and into the intake passage downstream of a throttle valve during deceleration, thereby preventing enrichment of the air-fuel mixture. O equipped with a mechanism to prevent this (prior technology) While driving, when you release the accelerator pedal to decelerate, the throttle valve closes and the negative pressure downstream of the throttle valve increases rapidly (7. The fuel adhering to the walls of the intake passage vaporizes, and combined with the small number of intake needles, the air-fuel mixture introduced into the combustion chamber temporarily becomes overheated. Paan,
Problems such as deterioration of exhaust gas properties arise. In order to solve this problem, various methods are known for introducing intake air downstream of the throttle valve during deceleration to prevent over-enrichment of the air-fuel mixture. 3J-731116
The anti-afterburn valve (AAV) is equipped with a diaphragm device that opens in response to negative pressure downstream of the throttle valve and introduces intake air into the intake manifold. Depending on the degree of negative pressure downstream of the throttle valve, this communication valve is controlled to open or close to change the valve opening time of the AAV, so that a mixture with an appropriate air-fuel ratio is introduced into the combustion chamber. Furthermore, Japanese Patent Application Laid-Open No. 1987-1999 SS-/4T937 discloses an intake structure that suppresses fuel adhesion to the wall surface and supplies a mixture of appropriate concentration in an operating region where the amount of intake air is small. In addition, the intake structure is equipped with multiple intake passages that branch downstream of the throttle valve, and when the load is low, some of the intake passages are closed by on-off valves, the area of the passage is narrowed, and intake air is introduced into the combustion chamber. It is known that K is formed so as to form a swirl.

この形式の吸気装置においては、減速時には開閉弁が閉
じられるので、せっかくスロットル弁下流側の吸気通路
に吸気を導入するようにしても、通路面積の小さい通路
を通して吸気が導入されることになるので、通路抵抗が
大きく、ダイリューション用の空気を十分に燃焼室に送
り込めないという問題があり、この問題は従来の装置で
は解決できないものである。
In this type of intake system, the on-off valve is closed during deceleration, so even if intake air is introduced into the intake passage downstream of the throttle valve, it will be introduced through a passage with a small passage area. , there is a problem in that the passage resistance is large and sufficient air for dilution cannot be sent into the combustion chamber, and this problem cannot be solved by conventional devices.

(本発明の目的) 従って、本発明の目的は、複数の吸気通路及び、その一
部を開閉する開閉弁を備えた吸気装置において、減速時
にスロットル弁下流側に吸気な導入するように、構成す
ると同時に、上記開閉弁を開くことKより、減速時の混
合気の過濃化を防止することができるエンジンの吸気装
置を提供することである。
(Objective of the Present Invention) Therefore, an object of the present invention is to provide an intake system having a plurality of intake passages and an on-off valve that opens and closes a portion of the intake passages, so that the intake air is introduced downstream of the throttle valve during deceleration. At the same time, it is an object of the present invention to provide an intake system for an engine that can prevent over-enrichment of the air-fuel mixture during deceleration by opening the on-off valve.

(本発明の構成) 本発明は、−ト記目的を達成するために、以下のように
構成される。本発明の吸気装置は、少なくとも燃焼室近
傍において分岐する複数の吸気通路と、該吸気通路のい
ずれかに設けられ低負荷運転時には閉方向に高負荷運転
時には開方向に制御されて該吸気通路の通路面積を増減
させる開閉弁と、特定の減速時に吸気通路のスロットル
弁下流かつ上記開閉弁上流部を流れる吸気量−を増大す
る吸気量増大装置とを備えたエンジンの吸気装置におい
て、前記吸気量増大装置の作動中前記開閉弁を所定剛だ
け開く制御装置を備えたことを特徴とする。
(Configuration of the present invention) In order to achieve the above objects, the present invention is configured as follows. The intake device of the present invention has a plurality of intake passages that branch at least in the vicinity of a combustion chamber, and is provided in one of the intake passages, and is controlled in the closed direction during low-load operation and in the open direction during high-load operation. An intake system for an engine comprising an on-off valve that increases or decreases a passage area, and an intake air amount increasing device that increases the amount of intake air flowing downstream of a throttle valve and upstream of the on-off valve in an intake passage during a specific deceleration. The present invention is characterized by comprising a control device that opens the on-off valve by a predetermined amount during operation of the increasing device.

本発明によれば、減速時にアクセルペダルを解放しても
、例えばスロットル弁を全閉にしない等の手段により、
スロットル弁下流側に吸気が導入されるようになってい
るとともに、この導入機構が作動するときには、上記開
閉弁が開かれるように制御される。
According to the present invention, even if the accelerator pedal is released during deceleration, for example, the throttle valve is not fully closed.
Intake air is introduced downstream of the throttle valve, and when this introduction mechanism operates, the on-off valve is controlled to be opened.

(本発明の効果) 本発明によれば、減速時において、上述のように開閉弁
が開かれるので、通路面積が増大しスロットル弁下流に
導入された吸気に対する通路抵抗が減少し、燃焼室に十
分な量の吸気を導入することができる。従って、減速時
の混合気の過濃化な確実に防止することができる。
(Effects of the present invention) According to the present invention, during deceleration, the on-off valve is opened as described above, so the passage area increases and the passage resistance to intake air introduced downstream of the throttle valve decreases. A sufficient amount of intake air can be introduced. Therefore, over-enrichment of the air-fuel mixture during deceleration can be reliably prevented.

また、これによって、排気ガス性状の悪゛化を防止する
ことができる。
Moreover, this makes it possible to prevent deterioration of the exhaust gas properties.

(実施例の説明) 第1図および第一図を参照すると、エンジンEけシリン
ダがア1aを有するシリンダブロック1と該シリンダブ
ロック1の上部に取付けられたシリンダヘッド2を有し
、シリンダポア1a内にはピストン3が軸方向往復動自
在に配置されて、シリンダが71&内に燃焼室4を形成
する。シリンダヘッド2には第1および第一吸気)N−
15,6と排気?−ドアが形成され、第1.第2吸気ポ
ート5.6にはそれぞれ吸気弁8が、排気ポート7には
排気弁9が取付けられる。第1図を参照すると、第1.
第ユ吸気ポート5.6はほぼ同径で、シリンダブロック
1の巾方向のシリンダ中心線lに関してほぼ対称に配置
され、排気I−ドアはシリンダブロック1の長手方向中
心線mをはさんで第2吸気ポート6と対向する位置に配
置されている。
(Description of Embodiment) Referring to FIG. 1 and FIG. A piston 3 is arranged to be able to reciprocate in the axial direction, and a cylinder forms a combustion chamber 4 within the cylinder 71&. The cylinder head 2 has the first and first intake) N-
15,6 and exhaust? - a door is formed, the first. An intake valve 8 is attached to each of the second intake ports 5.6, and an exhaust valve 9 is attached to the exhaust port 7. Referring to FIG. 1, 1.
The first intake ports 5.6 have approximately the same diameter and are arranged approximately symmetrically with respect to the cylinder center line l in the width direction of the cylinder block 1, and the exhaust I-doors have approximately the same diameter and are arranged approximately symmetrically with respect to the cylinder center line l in the width direction of the cylinder block 1. 2 is arranged at a position facing the intake port 6.

吸気系は、エアクリーナ10から延びる主吸気通路11
を有し、核主吸気通路11内にはスロットル弁12が配
置されている。第1図に示すように、主吸気通路11は
、シリンダヘッド2内に延びて、吸気yJ?−ト5.6
の近傍で、シリンダブロック巾方向のシリンダ中心IR
IKはぼ沿うように形成された仕切壁14により仕切ら
れて、それぞれ@/、第コ第一7I?−ト5,6に通じ
る第1.第一分岐通路15.16を構成している。排気
デート7け、排気通路17に接続されて排気系を構成す
る。この排気系は普通の構成でよい。主吸気通路11に
は、仕切壁14の上流側に燃料噴射弁23が配置され、
エンジン運転条件に対応する信号に基づいて計量された
燃料が燃焼室4に供給される。主吸気通路11内には、
開閉弁18が設けられている。
The intake system includes a main intake passage 11 extending from the air cleaner 10.
A throttle valve 12 is disposed within the core main intake passage 11 . As shown in FIG. 1, the main intake passage 11 extends into the cylinder head 2, and the main intake passage 11 extends into the cylinder head 2. -G5.6
In the vicinity of the cylinder center IR in the cylinder block width direction
IK is partitioned by a partition wall 14 formed roughly along the line, respectively. - The first section leading to points 5 and 6. It constitutes a first branch passage 15,16. Seven exhaust dates are connected to the exhaust passage 17 to constitute an exhaust system. This exhaust system may have a normal configuration. A fuel injection valve 23 is arranged in the main intake passage 11 on the upstream side of the partition wall 14,
Fuel is supplied to the combustion chamber 4, metered based on signals corresponding to engine operating conditions. Inside the main intake passage 11,
An on-off valve 18 is provided.

この開閉弁18け作動ロッド25を介して一つのダイヤ
プラム機構を備えたダイヤフラム弁26に接続されてい
る。ダイヤフラム弁26の第7ダイヤフラム装置127
の圧力室28は、通路29により主吸気通路11のスロ
ットル弁】2の下流側に接続され、弁26の第1メイヤ
フラム装置30の圧力室31は通路32により、同様に
主吸気通路11のスロットル弁12の下流側に接続さね
ている。通路32には、ダイヤフラム弁33か配置され
ており、該ダイヤプラム弁は、圧力室31の接続状態を
スロットル弁12に下流の主吸気通路11、又はフィル
ター33eを介して大気に連通する弁33内の室33m
との連通状1/11を切替えるようになっている。
The on-off valve 18 is connected via an operating rod 25 to a diaphragm valve 26 having a single diaphragm mechanism. Seventh diaphragm device 127 of diaphragm valve 26
The pressure chamber 28 of the main intake passage 11 is connected by a passage 29 to the downstream side of the throttle valve 2 of the main intake passage 11, and the pressure chamber 31 of the first meyer flamm device 30 of the valve 26 is connected to the throttle valve 2 of the main intake passage 11 by a passage 32. It is connected to the downstream side of the valve 12. A diaphragm valve 33 is disposed in the passage 32, and the diaphragm valve communicates the connection state of the pressure chamber 31 with the throttle valve 12 to the main intake passage 11 downstream or to the atmosphere via a filter 33e. Inner room 33m
The connection letter 1/11 is switched.

また、第1ダイヤプラム27aK取伺けらh7?。Also, the first diaphragm 27aK can be obtained from h7? .

リンク部材27bと第コメイヤフラム30mに取付けら
れ九ストツ・?30bとによって一定条件下で係合し得
るようになっているので、リンク部材27bをストツノ
ぐ30bとが係台状妙にあるときには、第1ダイヤフラ
ム装置27と第一ダイヤフラム装#30とは連動する。
It is attached to the link member 27b and the 30th column frame 30m, and the 9th ? 30b, so that they can engage under certain conditions, so when the link member 27b is in a latched position, the first diaphragm device 27 and the first diaphragm device #30 are interlocked. do.

すなわち、第1ダイヤプラム装置27に導入される吸気
圧変化のみKよっても開閉弁18は閉方向に制御するこ
とができる。またスロットル弁12け、ダイヤフラム装
置+&34に接続されておシ、該ダイヤフラム装置34
は、コントロール弁35を介して通路36により、主吸
気通路11のスロットル弁12の下流側に接続されてい
る。コントロール弁35はスロットル弁12の下流の吸
気負圧が所定値以上になったとき、開かれ、時間差をも
って閉じられるよう釦なっている。通路36は、通路3
7を介してダイヤフラム弁33の負圧室33cに接続さ
れており、コントロール弁35が開かれたとき、負圧室
33cにスロットル弁】2の下流の吸気通路圧が導入さ
れ弁33は開か力1通路32には大気圧が導入さノ1、
これによって開閉弁18が開かれる。開閉弁18はスロ
ットル弁12と連動するようKなっておりスロットル弁
12か所定開度まで開かれたとき、開き始める。すなわ
ち、スロットル弁12が全閉又は開度が極めて小さい場
合忙は、ダイヤフラム弁26の第1メイヤフラム装置及
び第7ダイヤフラム装置1270の圧力室28及び31
には、主吸気通路11のスロットル弁12の下流の吸気
通路圧力は強い負圧になるので第7ダイヤフラム装置2
7及び第1メイヤフラム装#30の圧力室28及び31
には、通路29.32を介して負圧が導入され、こil
、によって、圧力室28内の第1バネ28a、圧力室3
1内の第一パネ311の力に抗して、@/ダイヤフラム
27典、及び第コメイヤフラム30mはロッド25を図
において、上方に移動した位置に保持し、開閉弁18を
閉状態に維持する。スロットル弁12の開度が所定以上
になると、吸気負圧が減少し、ダイヤフラム27m及び
30mは、第7バネ28m及び第一ノ々$31mのバネ
力により、第1図において、作動ロッド25を下方に移
動させ、開閉弁18を開き始める。また、スロットル弁
12の下流に一定値以上の負圧が発生すると、その負圧
は通路36を通じてコントロール弁35を開き、ダイヤ
フラム装置34のダイヤフラム34mを/?ネ34bの
力に抗して、移動させスロットル弁12を所定だけ開く
ようになっている。
That is, the on-off valve 18 can be controlled in the closing direction only by the change in the intake pressure introduced into the first diaphragm device 27. In addition, 12 throttle valves are connected to the diaphragm device +&34, and the diaphragm device 34
is connected to the main intake passage 11 on the downstream side of the throttle valve 12 via a control valve 35 and a passage 36 . The control valve 35 is a button that opens when the intake negative pressure downstream of the throttle valve 12 exceeds a predetermined value and closes with a time lag. The passage 36 is the passage 3
7 is connected to the negative pressure chamber 33c of the diaphragm valve 33, and when the control valve 35 is opened, the intake passage pressure downstream of the throttle valve 2 is introduced into the negative pressure chamber 33c, and the valve 33 is opened by the force Atmospheric pressure is introduced into the first passage 32;
This opens the on-off valve 18. The on-off valve 18 is designed to be interlocked with the throttle valve 12, and starts to open when the throttle valve 12 is opened to a predetermined opening degree. That is, when the throttle valve 12 is fully closed or the opening degree is extremely small, the pressure chambers 28 and 31 of the first diaphragm device and the seventh diaphragm device 1270 of the diaphragm valve 26 are closed.
Since the intake passage pressure downstream of the throttle valve 12 in the main intake passage 11 becomes a strong negative pressure, the seventh diaphragm device 2
7 and the pressure chambers 28 and 31 of the first Meyer flam unit #30
Negative pressure is introduced through passage 29.32 into the coil
, the first spring 28a in the pressure chamber 28 and the pressure chamber 3
Against the force of the first panel 311 in the first panel 1, the diaphragm 27 and the second diaphragm 30m hold the rod 25 in the upwardly moved position in the figure, and maintain the on-off valve 18 in the closed state. When the opening degree of the throttle valve 12 exceeds a predetermined value, the intake negative pressure decreases, and the diaphragms 27m and 30m move the actuating rod 25 as shown in FIG. Move it downward and start opening the on-off valve 18. Further, when a negative pressure of a certain value or more is generated downstream of the throttle valve 12, the negative pressure opens the control valve 35 through the passage 36, causing the diaphragm 34m of the diaphragm device 34 to open/? The throttle valve 12 is moved to open the throttle valve 12 by a predetermined amount against the force of the screw 34b.

通路32の上流端は、スロットル弁12の開度が小ジい
ときには、スロットル弁12の下流側になり、スロット
ル弁12が所定開度を越えて開かれたときスロットル弁
12の上流側になるような位置に開口しており、従って
、比較的負荷の低いときには、スロットル弁の開度が小
さいので、弁下流の圧力が、負荷が大きくなるとスロッ
トル開度は大きくなり、弁上流側の圧力が第コダイヤフ
ラム装置30の圧力室31に導入される。主吸気通路1
1の底部には、開閉弁18より僅か上流側に開口19が
形成され、この開口19から主吸気通路11の下側を延
びるように補助吸気通路20が形成されている。補助吸
気通路20は、主吸気通路11の下側から第7分岐通路
15の下側を通り、開口21によシ第7吸気口5に接続
されている。第一図に示すように、吸気yj?−)5は
、高負荷運転時の高充填量を確保するために、シリンダ
がア1aの軸線方向に近い角度で燃焼室4に開口してお
り、図には示していないが、第1吸気ポート5も同様な
形状である。これに対l〜、補助吸気通路20は主吸気
通路11および第7分岐通路15の下側から第1吸気ポ
ート5に開口しているので、燃焼室4に対し比較的浅角
度で向けられることになる。さらに、第1吸気ポート5
は、シリンダが71aの中心線IK対し一方に偏って配
置されているので、補助吸気通路20から浅い角度で燃
焼室4に噴出する吸気流は、燃焼室4内で水平面内の強
い旋回流すなわちスワールを発生する。
The upstream end of the passage 32 is on the downstream side of the throttle valve 12 when the opening degree of the throttle valve 12 is small, and on the upstream side of the throttle valve 12 when the throttle valve 12 is opened beyond a predetermined opening degree. Therefore, when the load is relatively low, the opening of the throttle valve is small, so the pressure downstream of the valve increases, and when the load increases, the throttle opening increases and the pressure upstream of the valve increases. It is introduced into the pressure chamber 31 of the co-diaphragm device 30 . Main intake passage 1
1, an opening 19 is formed slightly upstream of the on-off valve 18, and an auxiliary intake passage 20 is formed extending below the main intake passage 11 from this opening 19. The auxiliary intake passage 20 passes from below the main intake passage 11 to below the seventh branch passage 15 and is connected to the seventh intake port 5 through an opening 21 . As shown in Figure 1, intake yj? -) 5, in order to ensure a high filling amount during high-load operation, the cylinder opens into the combustion chamber 4 at an angle close to the axial direction of A 1a, and although it is not shown in the figure, the first intake Port 5 also has a similar shape. On the other hand, since the auxiliary intake passage 20 opens to the first intake port 5 from below the main intake passage 11 and the seventh branch passage 15, it is oriented at a relatively shallow angle with respect to the combustion chamber 4. become. Furthermore, the first intake port 5
Since the cylinder is arranged biased to one side with respect to the centerline IK of 71a, the intake air jetted into the combustion chamber 4 at a shallow angle from the auxiliary intake passage 20 is a strong swirling flow in the horizontal plane within the combustion chamber 4, i.e. Generates swirl.

走行時において、適尚なエンジン負荷がある場合にはス
ロットル弁12は、その負荷値に応じた開度を有してい
る。負荷が比較的大きい場合には、スロットル弁12の
開度は大きく、従ってスロットル弁12の下流に発生す
る負圧は、あまり大きくないので、圧力室28.31に
は比較的大きな圧力が導入され、この圧力の補助を得て
ダイヤフラム弁26はバネ力により、ロッド25を下方
に押し下げており、とわによって、開閉弁18は開状態
にある。クランキング状態では、スロットル弁12の開
度が大きいので、圧力室28.31に導入きれる圧力は
両方とも比較的大きく、従って、リンク27bとストン
/f30bとが係合するとともに開閉弁18は全開状態
になる。アイドリング状態では、スロットル弁12の開
度が小さく、吸気通路負圧が大きいので、リンク27b
及びストッパ30bとは係合せず、開閉弁18は全閉状
態に維持される。さらにEoM、モードでは、第コ圧力
室31にはスロットル弁12上流側の吸気通路圧力が導
入されるがその負圧は比較的大きい、この場合、リング
部材27bと、ストツノ?30 bとは係合状態にあ夛
、開閉弁18の開度は所定開度に保たれる◎ 減速時のように、スロットル弁12が急激に閉じられる
と、スロットル弁12の下流の主吸気通路11に強い負
圧が発生し開閉弁18は閉方向に制御される。しかし、
スロットル弁下流の負圧が所定値以上である場合には、
コントロール弁35か開かれる。このため、スロットル
弁下流の強い負圧は通路36を通じて、ダイヤフラム装
置34に導され、スロットル弁12を開いて、所定量の
吸気を導入する。まえ、通路36内に導入された負圧は
、コントロール弁35が開かれることによシ1通路37
を介してダイヤフラム弁33に導入され、該弁を開く。
When the vehicle is running, if there is an appropriate engine load, the throttle valve 12 has an opening degree that corresponds to the load value. When the load is relatively large, the opening degree of the throttle valve 12 is large, and therefore the negative pressure generated downstream of the throttle valve 12 is not very large, so a relatively large pressure is introduced into the pressure chamber 28.31. With the aid of this pressure, the diaphragm valve 26 pushes the rod 25 downward by the spring force, and the opening/closing valve 18 is in the open state due to the flap. In the cranking state, since the opening degree of the throttle valve 12 is large, the pressures that can be introduced into the pressure chambers 28 and 31 are both relatively large. Therefore, the link 27b and the stone/f30b engage, and the on-off valve 18 is fully opened. become a state. In the idling state, the opening degree of the throttle valve 12 is small and the negative pressure in the intake passage is large, so the link 27b
The on-off valve 18 is maintained in a fully closed state without engaging with the stopper 30b. Furthermore, in the EoM mode, the intake passage pressure on the upstream side of the throttle valve 12 is introduced into the No. 1 pressure chamber 31, but the negative pressure is relatively large. 30b remains in the engaged state, and the opening degree of the on-off valve 18 is maintained at a predetermined opening degree. ◎ When the throttle valve 12 is suddenly closed, such as during deceleration, the main intake air downstream of the throttle valve 12 A strong negative pressure is generated in the passage 11, and the on-off valve 18 is controlled in the closing direction. but,
If the negative pressure downstream of the throttle valve is more than a predetermined value,
Control valve 35 is opened. Therefore, the strong negative pressure downstream of the throttle valve is guided through the passage 36 to the diaphragm device 34, which opens the throttle valve 12 and introduces a predetermined amount of intake air. When the control valve 35 is opened, the negative pressure introduced into the passage 36 is transferred to the first passage 37.
is introduced into the diaphragm valve 33 to open the valve.

これKよって、通路32には、フィルター33aを介し
て大気が導入され、この大気は、さらに第コダイヤフラ
ム装置30の圧力室31に導かれる。このため、圧力室
の負圧力が弱まって、バネ力が打ち勝ち、第コパネ31
mは膨張して、ロッド25を押し下げ、開閉弁18を所
定量だけ開く。従って、スロットル弁12の下流側に導
入された吸気は、開閉弁18が開かれること釦よって、
通路抵抗が弱まるととKより、燃焼室4内での充分なダ
クシューションエアIを確保することができる。急減速
時における吸気?−ト5付近の圧力変化は、第3図に示
すように変化する。
Accordingly, atmospheric air is introduced into the passage 32 via the filter 33a, and this atmospheric air is further guided to the pressure chamber 31 of the co-diaphragm device 30. For this reason, the negative pressure in the pressure chamber weakens and the spring force overcomes it, causing the No. 31
m expands, pushes down the rod 25, and opens the on-off valve 18 by a predetermined amount. Therefore, when the on-off valve 18 is opened, the intake air introduced downstream of the throttle valve 12 is
Since the passage resistance is weakened, sufficient intake air I can be secured within the combustion chamber 4. Intake during sudden deceleration? - The pressure change near gate 5 changes as shown in FIG.

すなわち、時点Aで急減速操作を行つ九場合。That is, in the case where a sudden deceleration operation is performed at time A.

すなわち、スロットル弁12を閉方向に、操作した場合
において、開閉弁18が閉じたままである場合には、第
3図破線のように変化するのに対し、スロットル弁12
のオープン動作に合わせて、開閉弁18を開くように操
作すると、吸気負圧は実線のように変化する。すなわち
、開閉弁18を閉じた状態に維持するよりも通路抵抗が
小さくなり、これによって、急減速時における混合気の
過濃化を有効に防止することができ、排ガス性状の悪化
を防+hすることができる。
That is, when the throttle valve 12 is operated in the closing direction, if the on-off valve 18 remains closed, the throttle valve 12 changes as shown by the broken line in FIG.
When the on-off valve 18 is opened in accordance with the opening operation, the intake negative pressure changes as shown by the solid line. In other words, the passage resistance is smaller than when the on-off valve 18 is kept closed, which effectively prevents over-enrichment of the air-fuel mixture during sudden deceleration, and prevents deterioration of exhaust gas properties. be able to.

第夕図には、本発明の他の実施例が示されており、本例
では、急減速時に、スロットル弁12及び開閉弁18の
開状態を確保して十分なグイリュージョンエアを得、混
合気の過濃化を防止するために、ダッシュポット40.
41を用いている。
Another embodiment of the present invention is shown in Fig. 3. In this embodiment, during sudden deceleration, the throttle valve 12 and the on-off valve 18 are kept open to obtain sufficient illusion air and mix the air. Dashpot 40. To prevent overconcentration of Qi.
41 is used.

ダッシュポット40は、スロットル弁12の操作軸に接
続されたロッド12aに係合し得るようになっており、
急減速操作によって、スロットル弁12の閉動作が行な
われたとき、0ラド12alC係合して、一定の時間遅
れをもって、スロットル弁12が閉じら釣るように作用
する。また、ダッシュイツト41は、急減速操作によっ
て、スロットル弁12が閉じること九より、吸気負圧か
増大し、こわがダイヤフラム装置26を介して、ロッド
25に作用する際、ロッド25に形成された部材25a
K係合して、開閉弁18が急閉されるのを阻止するよう
に作用する。本例においても、前例と同様の効果を得る
ことができる。
The dashpot 40 is capable of engaging with a rod 12a connected to the operating shaft of the throttle valve 12,
When the throttle valve 12 is closed due to a sudden deceleration operation, 0 rad 12alC is engaged and the throttle valve 12 is forced to close after a certain time delay. In addition, the dash 41 is configured such that when the throttle valve 12 closes due to a sudden deceleration operation, the intake negative pressure increases, and stiffness is formed on the rod 25 when it acts on the rod 25 via the diaphragm device 26. Member 25a
K engages and acts to prevent the on-off valve 18 from being suddenly closed. In this example as well, the same effects as in the previous example can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は、本発明の一実施例を示すエンジンの概略平面
図、第2図は、本発明の一実施例に係るエンジンの垂直
断面図、第3図は、吸気負圧と時間との関係を示すグラ
フ、第を図は本発明の他の実施例を示す第一図とlff
+様の図である。 1・・・・・・・・・ シリンダブロック。 】a・・・・・・・・・ シリンダヘッド、2・・・・
・・・・・ シリンダヘッド、3・・・・・・・・・ 
ピストン、4・・・・・川・燃焼室、5.6・・・・・
・・・・吸気ン+5 )。 7・・・・・・・・・排気ポー11. 11・・・・・・・・・主吸気通路、
FIG. 7 is a schematic plan view of an engine showing an embodiment of the present invention, FIG. 2 is a vertical sectional view of the engine according to an embodiment of the present invention, and FIG. 3 is a graph showing the relationship between intake negative pressure and time. The graph showing the relationship, the second figure is the first figure showing other embodiments of the present invention,
This is a diagram of +. 1・・・・・・・・・ Cylinder block. ]a...... Cylinder head, 2...
・・・・・・ Cylinder head, 3・・・・・・・・・
Piston, 4... River/combustion chamber, 5.6...
...Intake +5). 7...Exhaust port 11. 11... Main intake passage,

Claims (1)

【特許請求の範囲】[Claims] 少なくとも燃焼室近傍において分岐する複数の吸気通路
と、該吸気通路のいずれかに設けられ低負荷運転時には
閉方向に高負荷運転時には開方向に制御されて該吸気通
路の通路面積を増減させる開閉弁と、特定の減速時に吸
気通路のスロットル弁下流かつ上記開閉弁上流部を流れ
る吸気量を増大する吸気量増大装置とを備え次エンジン
の吸気装置において、前記吸気量増大装置の作動中前記
開閉弁を所定量だけ開く制御装置を備えたことを特徴と
するエンジンの吸気装置。
A plurality of intake passages that branch at least near the combustion chamber, and an on-off valve that is provided in one of the intake passages and is controlled in the closed direction during low-load operation and in the open direction during high-load operation to increase or decrease the passage area of the intake passage. and an intake air amount increasing device that increases the amount of intake air flowing downstream of the throttle valve and upstream of the opening/closing valve in the intake passage during a specific deceleration. An engine intake device characterized by comprising a control device that opens the air intake system by a predetermined amount.
JP59068407A 1984-04-05 1984-04-05 Suction device of engine Granted JPS60212618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59068407A JPS60212618A (en) 1984-04-05 1984-04-05 Suction device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068407A JPS60212618A (en) 1984-04-05 1984-04-05 Suction device of engine

Publications (2)

Publication Number Publication Date
JPS60212618A true JPS60212618A (en) 1985-10-24
JPH0247574B2 JPH0247574B2 (en) 1990-10-22

Family

ID=13372792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068407A Granted JPS60212618A (en) 1984-04-05 1984-04-05 Suction device of engine

Country Status (1)

Country Link
JP (1) JPS60212618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219812A2 (en) * 2000-12-28 2002-07-03 Hitachi, Ltd. Fuel injection device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219812A2 (en) * 2000-12-28 2002-07-03 Hitachi, Ltd. Fuel injection device for internal combustion engine
EP1219812A3 (en) * 2000-12-28 2003-11-26 Hitachi, Ltd. Fuel injection device for internal combustion engine

Also Published As

Publication number Publication date
JPH0247574B2 (en) 1990-10-22

Similar Documents

Publication Publication Date Title
JPS6025604B2 (en) Intake control method for internal combustion engine
JPS6039863B2 (en) Internal combustion engine exhaust gas purification device
JPS6054492B2 (en) Internal combustion engine with exhaust gas recirculation device
JPH0243891B2 (en)
JPS60212618A (en) Suction device of engine
JPH0458033A (en) Air intake system for engine
JPH08312358A (en) Intake controller of engine
JPH03225044A (en) Control device for internal combustion engine
JP3042814B2 (en) Idle rotation control valve and internal combustion engine controller
JPH0433401Y2 (en)
JP2537213B2 (en) Internal combustion engine intake system
JP3327738B2 (en) Gas engine intake system
JPS6315549Y2 (en)
JPS62121851A (en) Device for controlling throttle valve for engine
JPS6023475Y2 (en) Intake system for multi-cylinder engines
JPH0238040Y2 (en)
JPH0355787Y2 (en)
JPS6339413Y2 (en)
JPH0235145B2 (en)
JPS6046254B2 (en) Control device for multiple vaporizers
JPS5941015B2 (en) Engine new automatic control device
JPS60162026A (en) Air-to-fuel ratio control device of internal-combustion engine
JPS64587B2 (en)
JPS6122134B2 (en)
JPS602494B2 (en) Internal combustion engine intake system