JPS60211908A - Manufacture of cylindrical permanent magnet - Google Patents

Manufacture of cylindrical permanent magnet

Info

Publication number
JPS60211908A
JPS60211908A JP6864684A JP6864684A JPS60211908A JP S60211908 A JPS60211908 A JP S60211908A JP 6864684 A JP6864684 A JP 6864684A JP 6864684 A JP6864684 A JP 6864684A JP S60211908 A JPS60211908 A JP S60211908A
Authority
JP
Japan
Prior art keywords
magnet
anisotropic
space
magnetic field
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6864684A
Other languages
Japanese (ja)
Inventor
Itaru Okonogi
格 小此木
Seiji Miyazawa
宮沢 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP6864684A priority Critical patent/JPS60211908A/en
Publication of JPS60211908A publication Critical patent/JPS60211908A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To manufacture a pole-anisotropic magnet of high performance which is cylindrical and anisotropic in the radial direction and has a plurality of opposite poles, by a method wherein a composition composed of a rare-earth intermetallic compound magnet powder and a resin binder is passed through a space formed by an extrusion mold having a pole-anisotropic magnetic field. CONSTITUTION:A ferromagnetic powder 12 is sent forward in a barrel 11 by a screw 10. Then, the compound passes through a space 15 formed by a shaft 13 and a molding die 19. This space 15 has a magnetic field of 6-25kOe applied. The magnetic field makes anisotropic the compound magnet powder flowing through the space. A cylindrical magnet 22 thus made anisotropic is cooled and hardened to be complete by a cooling die denoted by 21 and a water-cooled coil denoted by 20.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は希土類金属間化合物樹脂ボンド磁石でなかでも
、多極着磁して用いる円筒状磁石の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a cylindrical magnet that is used with multipolar magnetization, particularly among rare earth intermetallic compound resin bonded magnets.

〔従来技術〕[Prior art]

永久磁石材料の用途は、モーター、スピーカー各種磁気
センサー、アクチュエーターなど広汎である。
Permanent magnetic materials have a wide range of applications, including motors, speakers, various magnetic sensors, and actuators.

永久磁石材料としては、フェライト磁石、アルニコ磁石
、希土類コバルト磁石などがあり、磁気特性は、この順
に大きいことが知られている。近時、希土類コバルト磁
石は、保磁力が高く且つエネルギー積も10MGOe〜
30 M G Oe級まで巾広く対応できる工業材料に
なった。本材料の用途の主流は、ステッピングモーター
である。ステッピングモーターに使用される磁石の形状
は、円筒状のものが多い。なかでもPM型ステツビング
モ−ターにはほとんど円筒、円柱状磁石を多極着磁して
用いられる。径方向に多極着磁するためには、磁石は次
の程類を用いる。 、 ■ 等方性、磁石 ■ ラジアル異方性磁石 ■ 極異方性磁石 ■は、磁気性能が低い、エネルギー積で2〜5GOe0 ■は、形状の制限があり、内径101以下は配向磁場が
低い欠点がある。また量産性に乏しい。
Permanent magnet materials include ferrite magnets, alnico magnets, rare earth cobalt magnets, and the like, and it is known that the magnetic properties are greatest in this order. Recently, rare earth cobalt magnets have a high coercive force and an energy product of 10 MGOe ~
It has become an industrial material that can be widely used up to 30 M G Oe class. The main application of this material is stepping motors. The magnets used in stepping motors are often cylindrical in shape. Among these, most PM type stepping motors use cylindrical or cylindrical magnets magnetized with multiple poles. In order to magnetize the magnet with multiple poles in the radial direction, the following equations are used for the magnet. , ■ Isotropic magnets ■ Radial anisotropic magnets ■ Polar anisotropic magnets ■ have low magnetic performance, energy product of 2 to 5 GOe0 ■ have shape restrictions, and inner diameters of 101 or less have a low orientation magnetic field. There are drawbacks. Also, it is not suitable for mass production.

■は、例えば特開昭57−128909号にあるが、焼
結磁石の製造方法に用いるもので、焼結時の収縮率の差
による欠は割れ防止を目的とするものである。このため
連続量産性に欠ける。
Item (2) is disclosed in, for example, Japanese Patent Application Laid-Open No. 57-128909, and is used in a method for manufacturing sintered magnets, and is intended to prevent cracking due to the difference in shrinkage rate during sintering. Therefore, it lacks continuous mass production.

〔目的〕〔the purpose〕

本発明は、この様な問題点を解決するもので、樹脂ボン
ド型磁石の新しい製造方法を提供するものである。本発
明の目的は、円筒状磁石で径方向に異方性を与えかつ複
数対極を有する高性能極異方性磁石ケつくることにある
。また第2の目的は量産性を高め大変コストパフォーマ
ンスの高い円筒状磁石をつくる。また最後VCは、欠は
割れの少ない肉厚t=t5χ〜01χで、どんな長さの
磁石でも提供することにある。
The present invention solves these problems and provides a new method for manufacturing resin-bonded magnets. An object of the present invention is to produce a high-performance polar anisotropic magnet which is a cylindrical magnet and has anisotropy in the radial direction and has a plurality of opposite poles. The second purpose is to improve mass productivity and produce cylindrical magnets with very high cost performance. Furthermore, the last VC is to provide a magnet of any length with a wall thickness t=t5χ~01χ with few cracks.

〔概要〕〔overview〕

以下本発明の具体的構成について説明する。 The specific configuration of the present invention will be explained below.

本発明の異方性円筒状磁石は、第2図−Aに示した、押
出成形装置によって製造される。
The anisotropic cylindrical magnet of the present invention is manufactured by an extrusion molding apparatus shown in FIG. 2-A.

強磁性粉末12はバレル11の中でスクリュー10によ
って、前方に送り込まれる。次に13の軸(スピンドル
)と金型ダイス19によって形成される空間部15を、
コンパウンドは通過する。
Ferromagnetic powder 12 is fed forward in barrel 11 by screw 10. Next, the space 15 formed by the 13 shafts (spindles) and the mold die 19,
The compound passes through.

この空間部は磁場全6〜25KOe加えである。磁場は
この空間を流動するコンパウンドの磁石粉末を異方性化
するため(粉末配向)に必要である。
This space has a total magnetic field of 6 to 25 KOe. A magnetic field is necessary to anisotropize (powder orientation) the magnetic powder of the compound flowing in this space.

この時の磁場は6KOθ以下では、配向度が落ちるため
で、25 KOe以上では消費電力に比べ、磁気性能向
上度合は少ない。また電磁石コイル電源が大型となり生
産に支障?来たし易いためである。
At this time, if the magnetic field is less than 6 KOe, the degree of orientation decreases, and if it is more than 25 KOe, the degree of improvement in magnetic performance is small compared to the power consumption. Also, will the electromagnetic coil power supply become large and hinder production? This is because it is easy to come.

異方性全付与された円筒状磁石22は、21の冷却ダイ
ス及び20の水冷コイルによって、冷却固化されて、つ
くられる。
A fully anisotropic cylindrical magnet 22 is produced by being cooled and solidified using a cooling die 21 and a water cooling coil 20.

〔比較例〕[Comparative example]

第1図−Aは従来法のラジアルプレス装置の断面図であ
る。第2図−Bはこのプレス装置によってつくられたラ
ジアル異方性円筒磁石である。
FIG. 1-A is a sectional view of a conventional radial press apparatus. FIG. 2-B shows a radially anisotropic cylindrical magnet produced by this press device.

捷ず原料の磁石粉末は、S m (Cobol cli
o−0!l Feo、22zr0.02M )8.s組
成で2−17系希土類金属間化合物を用いた。その粒度
は2μm〜100μmであった。
The raw material magnet powder without crushing is S m (Cobol cli
o-0! l Feo, 22zr0.02M)8. A 2-17 rare earth intermetallic compound with a composition of s was used. Its particle size was 2 μm to 100 μm.

この粉末に2.2wt%のエポキシ樹In混合し原料と
した。この混合粉末全第1図に示すプレス装置で加圧成
形した。該粉末は5の型内に装入され、磁場コイル6−
a、bに通電し発生した磁場はヨーク7およびコア1,
2の強磁性材料で導かれ、8でラジアル配向され力から
、非磁性のバンチ6゜4を介して、zton/mに加圧
され成形した。ガお9は油圧プレスシリンダーである。
This powder was mixed with 2.2 wt% of epoxy tree In and used as a raw material. The entire mixed powder was press-molded using a press apparatus shown in FIG. The powder is charged into a mold 5, and a magnetic field coil 6-
The magnetic field generated by energizing a and b causes the yoke 7 and the core 1,
The material was guided by a ferromagnetic material No. 2, radially oriented at No. 8, and was pressurized to zton/m through a non-magnetic bunch 6°4. Gao 9 is a hydraulic press cylinder.

磁場配向の強さは、約10KOθ加え々から加圧成形し
、次に脱磁して、磁石を金型より取り出し、恒温槽で1
50℃×1時間加熱キュアーした。得られたラジアル異
方性磁石の外形寸法は、φ20×φ17×5t1であっ
た。
The strength of the magnetic field orientation is approximately 10 KOθ. Pressure molding is performed, then demagnetized, the magnet is removed from the mold, and placed in a constant temperature bath for 1 hour.
It was heated and cured at 50°C for 1 hour. The outer dimensions of the obtained radial anisotropic magnet were φ20×φ17×5t1.

次に本磁石の磁気性能は以下の通りである。Next, the magnetic performance of this magnet is as follows.

また本磁石の生産性は、以下に示す。The productivity of this magnet is shown below.

〔実施例−1〕 比較例と同じ磁石粉末を用い、結合剤として、ナイロン
12i35Vo1%加え、押出混練機で、300℃に加
熱しながら予備混合した。このコンパウンドをペレット
状とし、第2図−八に示す、押出成形装置で円筒状異方
性磁石を製造した。
[Example-1] Using the same magnet powder as in the comparative example, 1% of nylon 12i35Vo was added as a binder, and premixed with an extrusion kneader while heating at 300°C. This compound was formed into pellets, and cylindrical anisotropic magnets were manufactured using an extrusion molding apparatus shown in FIG. 2-8.

本実施例の製造条件は、仄の通りである。The manufacturing conditions of this example are as shown below.

Oダイス空間磁場強さ・・・10KOeO加熱温度・パ
・・・・・・・・・・・・・・・・・・・270℃0加
圧力・・・・・・・・・・・・・・・・・・・・・・・
・800Kv/crA第2図−Bは、第2図−A、A−
A’の断面図で特に磁場かけと成形兼用金型ダイスの構
造を示す。
O-dice space magnetic field strength...10KOeO Heating temperature/Pa......270℃0 Pressure......・・・・・・・・・・・・
・800Kv/crA Figure 2-B is Figure 2-A, A-
The cross-sectional view A' particularly shows the structure of the die for both magnetic field application and molding.

本例は、8極異方性成形の、コイル16.磁極17.1
7−a磁極先端により磁場かけ法は構成される。第3図
は、本発明方法によって得らi″した円筒状極異方性磁
石で、8極成形したものの消磁パターンを示す。本発明
磁石の磁気性能は次の通りである。
In this example, the coil 16 is made of 8-pole anisotropic molding. magnetic pole 17.1
7-a The magnetic field application method is configured by the magnetic pole tip. FIG. 3 shows the demagnetization pattern of an 8-pole cylindrical polar anisotropic magnet obtained by the method of the present invention. The magnetic performance of the magnet of the present invention is as follows.

また生産性は以下の通りであった。The productivity was as follows.

・金 型・・・・・・・・・・・・1個取り、但し押出
成形なので連続生産される。
・Mold・・・・・・・・・・・・Make one piece, but since it is extrusion molding, it is produced continuously.

0成形加工速度・・・250%/分 したがって磁石形状φ20×φ17×tzは、50コ/
分でできることになる。
0 Molding processing speed...250%/min Therefore, the magnet shape φ20 x φ17 x tz is 50 pieces/min.
You can do it in minutes.

比較例の2コ/分の生産速度の約2.5倍という大変量
産性にすぐれたものであることが判明した。
It was found that the production rate was approximately 2.5 times the production rate of 2 pieces/min of the comparative example, which was extremely excellent in mass productivity.

仄に8極着磁した円筒状磁石の表面磁束密度をガウスメ
ーターを用いて測定し以下の結果を得た。
The surface magnetic flux density of a cylindrical magnet slightly magnetized with eight poles was measured using a Gauss meter, and the following results were obtained.

O本発明法・・・2030G〜2050G(R=20(
))O比較例・・・1900G〜2000G(R=10
0.OG)〔効果〕 以上詳記したように本発明法によれば、希土類金属間化
合物磁石粉末と樹脂バインダーからなる組成物を極異方
性磁場押出成形金型空間全通過させてつくる方法である
。その結果従来法にはない次のようなすぐれた効果を得
た。
O Inventive method...2030G to 2050G (R=20(
)) O Comparative example...1900G to 2000G (R=10
0. OG) [Effects] As detailed above, according to the method of the present invention, a composition consisting of rare earth intermetallic compound magnet powder and a resin binder is made by passing through the entire space of a polar anisotropic magnetic field extrusion mold. . As a result, the following excellent effects not found in conventional methods were obtained.

(1)量産性は格段にすぐれ、低コスト円筒状磁石を提
供できる。
(1) Mass production is much better, and low-cost cylindrical magnets can be provided.

(2)磁石の厚さが1.5%以下で且つ長尺物が自由′
にできる。
(2) The thickness of the magnet is 1.5% or less and long objects are free.
Can be done.

(3)磁気性能を高められる。(3) Magnetic performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、Bは従来法の磁場成形及び得られた磁石。 第2図A、B、第6図は本発明方法の押出成形機、極異
方性金型、およ、び円筒状磁石を示す。 1・・・上コア−2・・・下コア− 3・・・上ハンチ 4・・・下ハンチ 5・・・磁石粉末 6−a、’b・・・コイル7・・・
ヨーク兼ダイ 8・・・磁束の流れ?・・・油圧シリン
ダー 10・・・スクリュー 11・・・バレル12・・・コ
ンパウンド 13・・・軸棒14・・・ヒーター 15
・・・ダイス空間16・・・コイル 17・・・ポール
ピース17−a・・・ポールピース先端 18・・・ヨ
ーク↑9・・・ダイス 20・・・水冷コイル21・・
・冷却ダイス 22・・・極異方性円筒状磁石以 上 出願人 株式会社諏訪精工舎 第1図 A 第2図 ζζ2図 第3図
Figures 1A and 1B show conventional magnetic field forming and the resulting magnets. FIGS. 2A and 2B and FIG. 6 show an extrusion molding machine, a polar anisotropic mold, and a cylindrical magnet according to the method of the present invention. 1... Upper core - 2... Lower core - 3... Upper haunch 4... Lower haunch 5... Magnet powder 6-a,'b... Coil 7...
Yoke and die 8...Flow of magnetic flux? ... Hydraulic cylinder 10 ... Screw 11 ... Barrel 12 ... Compound 13 ... Shaft rod 14 ... Heater 15
...Dice space 16...Coil 17...Pole piece 17-a...Pole piece tip 18...Yoke ↑9...Dice 20...Water cooling coil 21...
・Cooling die 22... Polar anisotropic cylindrical magnet or more Applicant Suwa Seikosha Co., Ltd. Figure 1A Figure 2 ζζ2 Figure 3

Claims (1)

【特許請求の範囲】 強磁性粉末と樹脂バインダーのコノバウンドを用いて、
極異方性円筒状磁石を次の工程によりつくることを特徴
とする円筒状永久磁石の製造方法。 (1)押出成形装置によりつくる (2) 強磁性粉末は、イツトリウムおよびラントナイ
ド系希土類金属間化合物である (3)樹脂バインダーは、熱可塑性樹脂を用いる(4)
 押出時の金型ダイの外周に沿って、N極とS極を交互
に配設してなる多極電磁石を配し金型ダイス空間に、6
 K Oe〜25KOeの磁場ケ加える。 (5)金型空間全通過する時の混合物は100℃〜35
0℃に加熱され流堂状を形成する。 (6) 押出成形された、円筒状磁石は、冷却固化され
、脱磁されて、ダイスより外部に排出される。
[Claims] Using Conobound of ferromagnetic powder and resin binder,
A method for producing a cylindrical permanent magnet, characterized by producing a polar anisotropic cylindrical magnet through the following steps. (1) Produced using an extrusion molding device (2) The ferromagnetic powder is a yttrium and lantnide rare earth intermetallic compound (3) The resin binder is a thermoplastic resin (4)
Multi-pole electromagnets with N and S poles alternately arranged along the outer periphery of the mold die during extrusion are arranged in the mold die space.
A magnetic field of KOe to 25KOe is applied. (5) The mixture when passing through the mold space is 100℃~35
It is heated to 0°C and forms a stream shape. (6) The extruded cylindrical magnet is cooled, solidified, demagnetized, and discharged from the die.
JP6864684A 1984-04-06 1984-04-06 Manufacture of cylindrical permanent magnet Pending JPS60211908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6864684A JPS60211908A (en) 1984-04-06 1984-04-06 Manufacture of cylindrical permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6864684A JPS60211908A (en) 1984-04-06 1984-04-06 Manufacture of cylindrical permanent magnet

Publications (1)

Publication Number Publication Date
JPS60211908A true JPS60211908A (en) 1985-10-24

Family

ID=13379680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6864684A Pending JPS60211908A (en) 1984-04-06 1984-04-06 Manufacture of cylindrical permanent magnet

Country Status (1)

Country Link
JP (1) JPS60211908A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426348A (en) * 1987-06-16 1989-01-27 Kinetoron Bv Multipole rotor
EP0548952A2 (en) * 1991-12-25 1993-06-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method for producing a magnet roll
US5888416A (en) * 1992-05-12 1999-03-30 Seiko Epson Corporation Rare-earth bonded magnet composition, rare-earth bonded magnet and process for producing said rare-earth bonded magnet
US6451221B1 (en) 2000-12-28 2002-09-17 Xerox Corporation Extrudable magnet compound with improved flow properties

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120196A (en) * 1973-03-23 1974-11-16
JPS5214440A (en) * 1975-06-13 1977-02-03 Finike Italiana Marposs Apparatus for measuring geometric dimensions and errors of machine parts
JPS5326993A (en) * 1976-08-24 1978-03-13 Kanegafuchi Chemical Ind Plastic magnet and method of manufactre thereof
JPS5623711A (en) * 1979-08-02 1981-03-06 Seiko Epson Corp Production of intermetallic compound magnet
JPS57170502A (en) * 1981-04-15 1982-10-20 Fuji Xerox Co Ltd Production of magneto roll
JPS58219705A (en) * 1982-06-14 1983-12-21 Maguetsukusu:Kk Anisotropic ring polymer magnet and apparatus for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120196A (en) * 1973-03-23 1974-11-16
JPS5214440A (en) * 1975-06-13 1977-02-03 Finike Italiana Marposs Apparatus for measuring geometric dimensions and errors of machine parts
JPS5326993A (en) * 1976-08-24 1978-03-13 Kanegafuchi Chemical Ind Plastic magnet and method of manufactre thereof
JPS5623711A (en) * 1979-08-02 1981-03-06 Seiko Epson Corp Production of intermetallic compound magnet
JPS57170502A (en) * 1981-04-15 1982-10-20 Fuji Xerox Co Ltd Production of magneto roll
JPS58219705A (en) * 1982-06-14 1983-12-21 Maguetsukusu:Kk Anisotropic ring polymer magnet and apparatus for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426348A (en) * 1987-06-16 1989-01-27 Kinetoron Bv Multipole rotor
EP0548952A2 (en) * 1991-12-25 1993-06-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Method for producing a magnet roll
US5888416A (en) * 1992-05-12 1999-03-30 Seiko Epson Corporation Rare-earth bonded magnet composition, rare-earth bonded magnet and process for producing said rare-earth bonded magnet
US6451221B1 (en) 2000-12-28 2002-09-17 Xerox Corporation Extrudable magnet compound with improved flow properties

Similar Documents

Publication Publication Date Title
US7626300B2 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
JPS6359243B2 (en)
TW200407919A (en) Radial anisotropic ring magnet and its manufacturing method
US11183908B2 (en) Method for producing radially anisotropic multipolar solid magnet adapted to different waveform widths
CS213750B1 (en) Method of making the anizotropic permanent magnets
JPS60211908A (en) Manufacture of cylindrical permanent magnet
JPH08111337A (en) Method and apparatus for forming field of permanent magnet
JP2001167963A (en) Method of manufacturing magnet and mold for molding magnet
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JPH0559572B2 (en)
JPS61154118A (en) Molding method in magnetic field of rare earth magnet and device thereof
JP3182979B2 (en) Anisotropic magnet, manufacturing method and manufacturing apparatus
JPS62224916A (en) Manufacture of rare-earth magnet
KR20070023644A (en) Methods of producing radial anisotropic cylinder sintered magnet and permanet magnet motor-use cylinder multi-pole magnet
JPS62229817A (en) Manufacture of polar anisotropic long molded product
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPH0654742B2 (en) Method for manufacturing multipolar anisotropic resin magnet
JPH0471205A (en) Manufacture of bond magnet
CN115101319A (en) Radial multi-pole magnetic ring preparation device and preparation method
JPS62224915A (en) Manufacture of rare-earth magnet
JPH09115754A (en) Method and device for forming magnetic field for anisotropic polarity rare-earth bond magnet
JPS59148302A (en) Manufacture of cylindrical permanent magnet
JPS63310356A (en) Cylindrical permanent magnet
JPH0612728B2 (en) Manufacturing method of cylindrical radial anisotropic permanent magnet