JPS60209820A - Holding control method of ship position - Google Patents

Holding control method of ship position

Info

Publication number
JPS60209820A
JPS60209820A JP59065853A JP6585384A JPS60209820A JP S60209820 A JPS60209820 A JP S60209820A JP 59065853 A JP59065853 A JP 59065853A JP 6585384 A JP6585384 A JP 6585384A JP S60209820 A JPS60209820 A JP S60209820A
Authority
JP
Japan
Prior art keywords
ship
thrust
ship position
estimated
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59065853A
Other languages
Japanese (ja)
Inventor
Nobuhiko Sakamoto
坂本 伸彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59065853A priority Critical patent/JPS60209820A/en
Publication of JPS60209820A publication Critical patent/JPS60209820A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To improve the transient responsiveness to improve the controllability by introducing a thrust giving device and a dynamic characteristic model of a ship body and estimating a ship position and a ship speed in accordance with this model and feeding back them. CONSTITUTION:A fix point holding controller 10 consists of a target ship position setting part 11 and a nonlinear optimum control part 12 and is so constituted that the control part 12 calculates a required thrust on the basis of a set target ship position mr from the setting part 11 and the detected ship position from a ship position detector 2 and gives it to a thrust signal distributing part 6. This optimum control part 12 is provided with three axes in the longitudinal direction, the transverse direction, and the turning direction of the ship, and individual axes are so determined that an evaluation function is minimum in accordance with a thrust giving device 7, where respective gains are preliminarily obtained by a ship speed estimator, a ship position estimator, a steady external force estimator, etc., and a ship body constant and a coefficient of weight as dynamic characteristics of the ship. Thus, variance of the ship position and unnecessary operation of the thrust giving device 7 are suppressed to perform the fix point holding control.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は船舶の船位保持制御方法に係り、特に推力付与
装置へ推力指令信号を与える制御部に推力付与i!置と
船体の動特性モデルを尋人して、安定した定点保持運転
を行なわせるようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for controlling the position of a ship, and in particular to a control unit that provides a thrust command signal to a thrust applying device. This paper relates to a system that uses a dynamic characteristic model of the ship's position and hull to perform stable fixed-point holding operation.

[発明の技術的背景1 特殊船舶及び海洋構造物にあっては特に定点保持制御が
要求される。
[Technical Background of the Invention 1 Fixed point maintenance control is particularly required for special ships and offshore structures.

第1図は、この要求に応えるために従来採用されている
制御装置を示したものである。すなわち、目標船位設定
部1と船位検出器2とがらの設定目標船位及び検出船位
(前後方向位置、左右方向位置、回顧方向位置く方位)
)の各々の偏差を、それぞれPID制御部3.C5によ
り演算して、前後方向の必要推力、左右方向の必要推力
および回頭方向の必要モーメン1−を算出してこれを推
力信号配分部6に加える。要求推力等の配分を受けた推
力付与装置7は、その配分を受けて設定目標船位に止ま
る船舶の定点保持制御をする。
FIG. 1 shows a control device conventionally employed to meet this demand. That is, the set target ship position and detected ship position (front/rear position, left/right position, retrospective position/azimuth) between the target ship position setting unit 1 and the ship position detector 2.
) are determined by the PID control unit 3. C5 to calculate the required thrust in the longitudinal direction, the required thrust in the lateral direction, and the required moment 1- in the turning direction, and apply them to the thrust signal distribution section 6. The thrust imparting device 7 receives the distribution of the required thrust, etc., and receives the distribution and performs fixed point maintenance control of the ship to stop at the set target ship position.

【背景技術の問題点] ところが、上記従来の制御装置には次のような問題があ
った。
[Problems with Background Art] However, the conventional control device described above has the following problems.

(1) 定点からずれた船位が同じでも船速が異なれば
、その地点から定点に戻る時間も同一推力を与えた場合
具なるので、本来、要求推力を巽ならけるべきであるに
も拘らず、船位さえ同一であれば船速の大小を問わず同
一の推力を出しているので、過渡的な変動を抑えること
ができず、安定した定点保持運転ができなかった。
(1) Even if the ship position is the same from the fixed point, if the ship speed is different, the time required to return from that point to the fixed point will be the same if the same thrust is applied. As long as the ship's position is the same, the same thrust is produced regardless of the ship's speed, so transient fluctuations cannot be suppressed and stable fixed-point operation cannot be achieved.

(2) 回顧方向成分があると、これに起因して他の前
後方向速曵成分又は左右方向速度成分に干渉を与えるこ
とになるが、フィードバック制御部8は前後方向、左右
方向、回顧方向に対してPIDIlilJ御を各々独立
に実施しており、上記干渉による影響を全く考慮に入れ
ていないので、大きな干渉を惹起する潮流の強い海域で
の定点保持運転の場合には安定した自動運転ができない
ことがあった。
(2) If there is a retrospective direction component, this will cause interference with other longitudinal speed components or left/right speed components, but the feedback control unit 8 In contrast, PIDIlilJ control is carried out independently, and the influence of the above-mentioned interference is not taken into account at all, so stable automatic operation cannot be achieved in the case of fixed point holding operation in sea areas with strong tidal currents that cause large interference. Something happened.

(3) また、ローパスフィルタにより検出船位から船
位の波による影響や混入する雑音を除去しているために
、フィルタリングが良好に行なわれず、推力付与装置7
に無駄な動きをさせることになり、燃費の増大をもたら
していた。
(3) In addition, since the low-pass filter removes the influence of waves from the detected ship position to the ship position and mixed noise, filtering is not performed well, and the thrust applying device 7
This results in unnecessary movement of the engine, leading to an increase in fuel consumption.

[発明の目的] 本発明は上記従来の問題点を解決すべくなされたもので
、本発明の目的は、PID制御方式に代わって推力付与
装置及び船体の動特性モデルを導入し、この動特性モデ
ルから正確な船位と船速とを推定して、これらの情報を
フィードバックさせることにより、推定付与装置の定常
時の無駄な動きを抑制するとともに船体運動に制動力を
働かせ過渡応答性を改善し、また、船体運動の速度成分
の及ぼす干渉流体力を打消すことにより潮流の強い地域
においても安定した定点保持制御を行なうことができ、
もって制御性の向上と省燃芦化をはかることができる優
れ、た船舶の船位保持制御方法を提供することである。
[Object of the Invention] The present invention has been made in order to solve the above-mentioned conventional problems.The purpose of the present invention is to introduce a thrust imparting device and a dynamic characteristic model of the hull in place of the PID control method, and to improve the dynamic characteristic model. By estimating accurate ship position and ship speed from the model and feeding back this information, wasteful movement of the estimation device in steady state can be suppressed, and a braking force can be applied to the ship's motion to improve transient response. In addition, by canceling out the interference fluid force exerted by the velocity component of the ship's motion, stable fixed point control can be performed even in areas with strong tidal currents.
An object of the present invention is to provide an excellent method for controlling the positioning of a ship, thereby improving controllability and saving fuel.

[発明の概要コ 上記目的は本発明によれば次のようにして達成される。[Summary of the invention] According to the present invention, the above object is achieved as follows.

すなわち、推力付与装置の無駄な動きを抑制するには船
体の将来の動きを予測する船速を考慮すればよいこと、
船体運動の−の速度成分に干渉を及ばず干渉流体力は回
顧速度及び他の速成成分と相関関係があること、これら
の船速【よ船イ立とともに推力付与装置及び船体の動特
性モデルh1ら正確に算出できること等の知見のもとに
、本発明は、設定船位と推定船位との偏差に応じて前後
方向・左右方向・回頭方向の三軸方向に(れぞれ推力を
付与する推力付与装置の推力配分量を調整して船位を定
点保持制御する船位制御システムにおいて、推力付与装
置及び船体の動特性を予めめ、このめた動特性と上記偏
差及び検出船位h′1ら三軸方向の推定船速・定常外力
・推定船位をそれぞれ算出し、該推定船位と設定船位と
の偏差に基いて得られるーの船速成分の方向に推力を付
与する推カイ1与装置の推力配分量を上記−の推定船速
成分と、これに干渉を与える他の推定船速成分と、上記
定常外力とで補正して必要推力を調整するように構成し
たことを特徴とする。
In other words, in order to suppress unnecessary movement of the thrust applying device, it is sufficient to consider the ship speed, which predicts the future movement of the ship.
There is no interference with the -velocity component of the ship's motion, and the interference fluid force has a correlation with the retrospective speed and other speed-generating components. Based on the knowledge that calculations can be made accurately from In a ship position control system that adjusts the thrust distribution amount of the thrust applying device to control the ship's position to be held at a fixed point, the dynamic characteristics of the thrust applying device and the hull are determined in advance, and the dynamic characteristics, the above deviation, and the detected ship position h'1 are calculated in advance. The estimated ship speed, steady external force, and estimated ship position in the direction are calculated respectively, and the thrust distribution of the thrust force is applied to the thrust force in the direction of the ship speed component obtained based on the deviation between the estimated ship position and the set ship position. The present invention is characterized in that the required thrust is adjusted by correcting the amount by the above-mentioned - estimated ship speed component, another estimated ship speed component that interferes with the above-mentioned estimated ship speed component, and the above-mentioned steady external force.

[発明の実施例] 以下に、本発明の好適一実施例を添イ1図面に従って説
明する。
[Embodiments of the Invention] A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第2図は、本発明方法を実施するための定員保持制御装
置の一例を示すブロック図である。
FIG. 2 is a block diagram showing an example of a capacity maintenance control device for implementing the method of the present invention.

同図に示す如く、定点保持制御装置10は、目標船位設
定部11と非線形最適制御部12とから成り、該非線形
最適制御部12が目標船位設定部11からの設定目標船
位mr及び船位検出器2からの検出船位mに基づいて、
船舶を設定目標船位mr に保持するに必要な推力を算
出し、この必要推力を推力信号配分部6に与えるように
構成されている。ここで、設定目標船位mr とは船舶
の定点位置をいう。推力信号配分部6に必要111力を
与える非線形最適制御部12について、第3図を6とに
、更に詳しく説明する。
As shown in the figure, the fixed point holding control device 10 consists of a target ship position setting section 11 and a nonlinear optimal control section 12, and the nonlinear optimal control section 12 detects the set target ship position mr from the target ship position setting section 11 and the ship position detector. Based on the detected ship position m from 2,
It is configured to calculate the thrust necessary to maintain the ship at the set target ship position mr and to provide this necessary thrust to the thrust signal distribution section 6. Here, the set target ship position mr refers to the fixed position of the ship. The nonlinear optimal control section 12 that provides the necessary 111 forces to the thrust signal distribution section 6 will be explained in more detail with reference to FIG.

同図において、非線形最適制御部12は破線で囲まれた
部分に該当し、船舶の前後(X軸)方向、左右(Y軸)
方向及び回頭(ψ軸)方向の三輪をそれぞれ備えている
。各軸は、比例器13と船速推定器14・船位推定器1
5・定常外力推定器16・干渉補償器17より構成され
る。
In the figure, the nonlinear optimal control unit 12 corresponds to the part surrounded by broken lines, and is located in the longitudinal (X-axis) direction and the left-right (Y-axis) direction of the ship.
It has three wheels in the direction and rotation (ψ axis) direction. Each axis includes a proportional device 13, a ship speed estimator 14, and a ship position estimator 1.
5, a steady external force estimator 16, and an interference compensator 17.

各軸は構成が共通しているので、代表してX軸について
述べる。
Since each axis has a common configuration, the X axis will be described as a representative.

比例器13XはPID制御部のP制御に相当するもので
、設定目標船位xr と後述する推定船位Xとの船位偏
差ΔXにゲインf1Xを乗じてX軸方向の要求推力FX
Rのベースとなる比例出力FX を形成する機能を有す
る。
The proportional device 13X corresponds to the P control of the PID control unit, and calculates the required thrust FX in the X-axis direction by multiplying the ship position deviation ΔX between the set target ship position xr and the estimated ship position X, which will be described later, by a gain f1X.
It has the function of forming the proportional output FX which is the base of R.

船速推定器14xは、後述する制動力fX で上記比例
出力Fx をマイナス補正して得た補正出力に船体定数
KX を乗じたものと、同じく後述する船位誤差hx 
にゲインに2xを乗じたものとの和をとって船体加速度
をめ、これを積分して推定船速成分uX を算出すると
ともに、この推定船速成分ux にゲインf2Xを乗じ
て上記比例器13xの出ノj側にローカルフィードバッ
クする制動力fxを生成するように構成される。この船
速推定器14X はPID制御部のD制御に相当する。
The ship speed estimator 14x outputs a correction output obtained by negatively correcting the proportional output Fx by a braking force fX, which will be described later, multiplied by a hull constant KX, and a ship position error hx, which will also be described later.
and the gain multiplied by 2x to determine the hull acceleration, integrate this to calculate the estimated ship speed component uX, and multiply this estimated ship speed component ux by the gain f2X to calculate the hull acceleration. The braking force fx is configured to be locally fed back to the output side of the brake. This ship speed estimator 14X corresponds to D control of the PID control section.

比例器13xの入力側に推定船位Xをメインフィードバ
ックする船位推定器15Xは、船位誤差hX にゲイン
に1Xを乗じたものと推定船速成分uxとの和を積分し
て上記推定船位Xを算出するように構成され、この推定
船位XとX位置検出器2Xの検出船位XOとの偏差を上
記船位誤差hX としている。この船位推定器15Xが
ローパスフィルタの機能を有する。
The ship position estimator 15X, which mainly feeds back the estimated ship position X to the input side of the proportional device 13x, calculates the above estimated ship position The deviation between the estimated ship position X and the ship position XO detected by the X position detector 2X is defined as the ship position error hX. This ship position estimator 15X has a low-pass filter function.

定常外力推定器16Xは、船位誤差hX にゲインに3
xを乗じたものを積分して定常外力eX を算出するよ
うに構成される。この定常外力推定器16xは、PID
llilJI11部のl1lIIIIIlに相当し、船
位の定常偏差を除く働きをする。
The steady external force estimator 16X has a gain of 3 for the ship position error hX.
It is configured to calculate the steady external force eX by integrating the product multiplied by x. This steady external force estimator 16x uses PID
It corresponds to l1lIIIIIIl of lilJI11, and functions to remove the steady deviation of the ship's position.

干渉補償器17Xは、ψ軸方向及びY@方向の推定速度
成分Uψ 、uy を掛は合わせ、これに船体定数α8
 を乗じてX軸方向に働く干渉流体万人を算出するよう
に構成される。φ軸方向の推定速度成分UψをY軸方向
のそれに掛は合わせているのは、ψ軸方向の推定速度成
分の存在が干渉流体力発生の起因をなすからである。
The interference compensator 17X multiplies and combines the estimated velocity components Uψ and uy in the ψ-axis direction and the Y@ direction, and adds a hull constant α8 to this.
is configured to calculate the interference fluid acting in the X-axis direction by multiplying by . The reason why the estimated velocity component Uψ in the φ-axis direction is multiplied by that in the Y-axis direction is that the presence of the estimated velocity component in the ψ-axis direction causes the generation of interference fluid force.

そして、定常外力推定器16X 及び干渉補償器17 
の両出力を比例器13 の出力側に共にローカルフィー
ドバックさせるように構成して、定常外力推定器16x
の定常外力ex と干渉補償器17x の干渉流体力g
え とで、制動力fX で既に補正された補正出力を更
にマイナス補正し、X軸方向の要求推力F を得ている
Then, a steady external force estimator 16X and an interference compensator 17
The steady external force estimator 16
The steady external force ex and the interference fluid force g of the interference compensator 17x
Now, the correction output already corrected by the braking force fX is further negatively corrected to obtain the required thrust F in the X-axis direction.

R このようにX軸の非線形最適制御部12は、船速推定器
14x と船位推定器15x ・定常外力推定器16χ
 ・干渉補償器17X から成るが、これらの各ゲイン
fIX−f2X−kIX−に2X−に3Xは予めめた推
力付与装置7及び船舶の動特性である船体定数α8 ・
K と次に示す評価関数Jの重み係数ρとから、評価関
数Jが最小となるよう決定する。
R In this way, the X-axis nonlinear optimal control unit 12 includes a ship speed estimator 14x, a ship position estimator 15x, and a steady external force estimator 16χ.
・It consists of an interference compensator 17X, and each of these gains fIX-f2X-kIX-, 2X-, and 3X are the thrust imparting device 7 and the hull constant α8 which is the dynamic characteristic of the ship.
The evaluation function J is determined to be the minimum value from K and the weighting coefficient ρ of the evaluation function J shown below.

及び J=(船位、船速、定常外力の推定誤差の分散)非線形
最適IIJII112をPIDIIJ御部と比較した場
合大きく異なる点は、P制御・I制御・D制御に相当す
る比例器13X ・定常外力推定器16X・船速推定器
14xをそれぞれ分離独立させ、各々に固有の機関定数
を決定した点であり、更にローパスフィルタに相当する
船位推定器15X をも動特性モデルとして把握した点
に意義があり、これ゛によりPID制御では考慮に入れ
ていなかった船体運動の特性を十分考鑵した精度の高い
演粋が可能となっている。
and J = (variance of estimation error of ship position, ship speed, and steady external force) When comparing the nonlinear optimal IIJII112 with the PIDIIJ control section, the major difference is that the proportional device 13X corresponding to P control, I control, and D control - Steady external force The significance lies in the fact that the estimator 16X and ship speed estimator 14x were separated and independent, and unique engine constants were determined for each, and that the ship position estimator 15X, which corresponds to a low-pass filter, was also understood as a dynamic characteristic model. This makes it possible to perform highly accurate calculations that fully take into account the characteristics of the ship's motion, which were not taken into account in PID control.

Y軸とψ軸とについてもX軸と同様な構成であり、符号
にX軸と区別するサフィックスyどψとをそれぞれ付す
ことで説明を省略する。但し、ψ軸については他軸に干
渉流体力を与える大木なので干渉補償器は不要であり、
したがって除い−(゛ある。
The Y-axis and the ψ-axis have the same configuration as the X-axis, and the explanation thereof will be omitted by adding a suffix y or ψ to the reference numerals to distinguish them from the X-axis. However, since the ψ axis is a large tree that exerts interference fluid force on other axes, an interference compensator is not necessary.
Therefore, except for -(゛There is.

なお、第3図中、Sはラプラス演粋子、Xは乗算器、(
Xr 、 yr 、ψ、)は設定目標船位mrの各軸方
向成分を示している。
In addition, in Fig. 3, S is the Laplace operator, X is the multiplier, (
Xr, yr, ψ,) indicate each axial direction component of the set target ship position mr.

次に、以上の構成よりなる本実施例の作用を説明する。Next, the operation of this embodiment having the above configuration will be explained.

船舶が定点である設定目標船位mr(Xr* V。Set target ship position mr (Xr*V) where the ship is a fixed point.

ψ )からずれると、設定目標船位mr と推定器位m
(x、y、ψ)との偏差に応じて船舶を定点に戻すべく
非線形最適制御部12が推力付与装置7に要求推力・要
求モーメントを付与する。この場合において、推定船速
に基づく制動力で上記要求推力の適正化を行なうととも
に、干渉流体力・定常外力でも補正して波などの影響に
よる船位の変動や推力付与装置の無駄な動きを抑制し定
点保持制御が行なわれるのである。
ψ), the set target ship position mr and estimated ship position m
(x, y, ψ) The nonlinear optimal control unit 12 applies a required thrust/required moment to the thrust applying device 7 in order to return the ship to a fixed point. In this case, in addition to optimizing the required thrust using the braking force based on the estimated ship speed, the system also corrects for interfering fluid force and steady external force to suppress fluctuations in the ship's position due to the influence of waves and unnecessary movements of the thrust applying device. Fixed point holding control is then performed.

この定点保持制御をX軸方向に着目して説明する。This fixed point holding control will be explained focusing on the X-axis direction.

X位置検出器2X で得られた検出船位xOは船位推定
器15X を通り推定船位Xとして比例器13x の入
力側にメインフィードバックする。X位置検出器2x 
で得られる検出船位XOは雑音成分を含んでいるので、
そのままでは精度が悪く設定目標船位Xr との船位偏
差ΔXをとることができず、雑音成分を除去する必要が
ある。ローパスフィルタに通すと高域の真値までも除去
してしまうが、メインフィードバックループにおいて動
特性モデルから成る精度の^い船位推定N 15x を
通しているので、雑音成分のみが除去された真値に近い
推定船位Xが得られる。
The detected ship position xO obtained by the X position detector 2X passes through the ship position estimator 15X and is fed back as the estimated ship position X to the input side of the proportional device 13x. X position detector 2x
Since the detected ship position XO obtained by contains noise components,
As it is, the accuracy is poor and the ship position deviation ΔX from the set target ship position Xr cannot be determined, so it is necessary to remove the noise component. If it is passed through a low-pass filter, even the high-frequency true values will be removed, but since it is passed through the highly accurate ship position estimation N 15x made from a dynamic characteristic model in the main feedback loop, it is close to the true value with only noise components removed. Estimated ship position X is obtained.

この真値に近い推定船位Xと設定目標船位Xrとの船位
偏差ΔXに基づきその偏差を解消するに必要な推力を比
例器13. が算出し、比例出力rxとして出力する。
Based on the ship position deviation ΔX between the estimated ship position X, which is close to the true value, and the set target ship position Xr, the proportional device 13 calculates the thrust necessary to eliminate the deviation. is calculated and output as a proportional output rx.

この出力は3つの力によって補正される。This output is corrected by three forces.

まず、比例出力FX は、船速推定器14x からロー
カルフィードバックされる推定船速成分Llxに応じた
制動力fx で補正される。船位偏差ΔXに応じて要求
推力をめるには、応答の行き過ぎを抑えて応答を早め、
制御系を安定させなければならないが、メインフィード
バックでは遅れがあり、しかもPI制御後にD制御する
という方式を採ると不要な情報までD制御されて精度が
悪くなる。また、制御系安定化のためには推力付与装置
7の特性を考慮していないPID制御では精度が悪く十
分ではない。定点からのずれを戻づためには正確な予知
動作を行なうとともに遅れを解消しなければならず、船
速の大きさに合わせて要求推力を与えてやる必要がある
。しかるところ、上記補正では動特性モデルから成る精
度の高い船速推定器1/IXを採用するとともにこれの
制動力fxを、メインフィードバックループを通すこと
なくローカルフィードバックさせて直接上記比例出力1
3x に与え5ているので、精!哀の高い補正が速比的
になされる。
First, the proportional output FX is corrected by the braking force fx according to the estimated ship speed component Llx that is locally fed back from the ship speed estimator 14x. In order to increase the required thrust according to the ship position deviation ΔX, it is necessary to suppress excessive response and quicken the response.
The control system must be stabilized, but there is a delay in the main feedback, and if a method is adopted in which D control is performed after PI control, unnecessary information will also be D controlled, resulting in poor accuracy. Furthermore, PID control, which does not take into consideration the characteristics of the thrust applying device 7, has poor accuracy and is not sufficient for stabilizing the control system. In order to correct the deviation from the fixed point, it is necessary to perform accurate predictive action and eliminate the delay, and it is necessary to provide the required thrust according to the magnitude of the ship's speed. However, in the above correction, a highly accurate ship speed estimator 1/IX consisting of a dynamic characteristic model is adopted, and its braking force fx is fed back locally without passing through the main feedback loop, and is directly calculated as the proportional output 1.
I'm giving 5 to 3x, so I'm fine! The correction with a high degree of sadness is made in terms of speed ratio.

すなわち、同一船位偏差ΔXであっても、船速推定器1
4xで算出された推定船速成分ux がプラス方向に大
きいと、比例器13xの比例出力へは制動ノrt’ に
より大き(減少補正され、船位偏〜 差ΔXのみに応じて得られる比例器13x の比例出力
Fx よりも大幅に小さくなったX軸方向の要求推力F
XRとなって推力信号配分部6に入力する。
In other words, even if the ship position deviation ΔX is the same, the ship speed estimator 1
When the estimated ship speed component ux calculated in step 4x is large in the positive direction, the proportional output of the proportional device 13x is increased (corrected to decrease) by the braking node rt', and the proportional output of the proportional device 13x obtained according to only the ship position deviation ΔX is The required thrust F in the X-axis direction is significantly smaller than the proportional output Fx of
The signal becomes XR and is input to the thrust signal distribution unit 6.

逆に推定船速成分ux がマイナス方向に大きいと、比
例出力Fx は制動力fx により大きく増加補正され
、船位偏差ΔXのみに応じて得られる比例出力FX よ
りも大幅に大きくなった要求推力FXRとなって推力信
号配分部6に入力する。したがって、船舶が定点xr 
に高速で向かっているときは、必要推力FXRが大き過
ぎないようにし、推ツノ付与装置7の出力の増大を抑制
して定点から行き過ぎるのを防止し、逆に船舶が低速で
定点xr に向かっているときは、もしくは定点xr 
から離反J−る方向に動いているときは、大きな要求推
力FXRを出して推力付与装置7の出力を増大させ速や
かに定点xr に到達することができる。
On the other hand, when the estimated ship speed component ux is large in the negative direction, the proportional output Fx is greatly increased by the braking force fx, resulting in a required thrust FXR that is significantly larger than the proportional output FX obtained only according to the ship position deviation ΔX. The signal is then input to the thrust signal distribution section 6. Therefore, if the ship is at a fixed point xr
When the ship is heading towards the fixed point xr at high speed, the required thrust FXR should not be too large, suppressing the increase in the output of the thrust horn applying device 7 to prevent it from going too far from the fixed point, and conversely, if the ship is heading at low speed towards the fixed point or fixed point xr
When moving in a direction away from J-, a large required thrust FXR is generated to increase the output of the thrust applying device 7, so that the fixed point xr can be quickly reached.

次に、比例器13Xからの比例出力FX は干渉流体力
gえにより補正される。ψ軸方向の船速成分があるとき
は、干渉流体力が発生してψ軸方向以外の他軸方向の推
力に影響を与えるので、船舶を定点位置に保持するため
には、潮流などの影響によって船舶にY軸方向の運動及
びψ軸方向の運動が起った場合には、この運動による影
響を解消しなければならず、ψ軸方向とY軸方向の船速
成分の大きさに合わせてX軸方向の推力を変えてやる必
要がある。しかるところ、Y軸方向とψ軸方向とのいき
わたり情報に基づいて干渉補償器17xで算出された干
渉流体力− により、X軸方向の比例器13xからの出
力が補正されるので、潮流等によって船舶が太き(変動
して定点Xr からずれようとしても、その変動に逆ら
うに必要な推力の補正がなされる。すなわち、ψ軸方向
とY軸方向との推定船速成分Uψ、uy の積がプラス
方向に大きいと、比例器13x からの出力は減少補正
されて必要推力を大幅に減少させ、潮流などのエネルギ
ーを有効利用して行き過ぎることなく船舶を定点位置に
復帰Jる。逆に、上記船速成分の積がマイナス方向に大
きいと比例器13x がらの比例出力Fx を大幅に増
大させ、潮流などのエネルギーに抗して船舶を定点位置
に戻すようにする。
Next, the proportional output FX from the proportional device 13X is corrected by the interference fluid force. When there is a ship speed component in the ψ-axis direction, interference fluid force is generated and affects thrust in other axes other than the ψ-axis direction. Therefore, in order to hold the ship in a fixed position, it is necessary to reduce the influence of tidal currents etc. When a movement occurs on the ship in the Y-axis direction and the ψ-axis direction, the influence of this movement must be eliminated, and the speed must be adjusted to match the magnitude of the ship speed components in the ψ-axis direction and the Y-axis direction. It is necessary to change the thrust in the X-axis direction. However, since the output from the proportional device 13x in the X-axis direction is corrected by the interference fluid force calculated by the interference compensator 17x based on the distribution information in the Y-axis direction and the ψ-axis direction, the output from the proportional device 13x in the X-axis direction is Even if the ship becomes thick (fluctuations and tries to deviate from the fixed point When is large in the positive direction, the output from the proportional regulator 13x is corrected to decrease, greatly reducing the required thrust, and effectively utilizing energy such as tidal currents to return the ship to a fixed position without going too far.On the contrary, When the product of the ship speed components is large in the negative direction, the proportional output Fx of the proportional device 13x is significantly increased to return the ship to a fixed position against energy such as tidal currents.

したがって、波や潮流の影響による船位の大きな変動を
有効に抑制できる。
Therefore, large fluctuations in the ship's position due to the effects of waves and currents can be effectively suppressed.

更に、比例器13xの比例出力FX は定常外力推定器
16x の定常外力ex によって補正される。
Furthermore, the proportional output FX of the proportional device 13x is corrected by the steady external force ex of the steady external force estimator 16x.

定常外力推定器16xは船位誤差hX と船体運動の動
特性とから定常外力成分を常時算出しているが、この定
常外力成分は定常風や潮流力などの定常外力に外ならな
い。したがって、船体運動の動特性からめられた精度の
良い定常外力aX が比例器13Xの比例出力Fx に
常時加えられることにより、船位の定常偏差を除くこと
ができ、定常運転時推力付与装置7に無駄な動きをさせ
るのを有効に防止することができる。
The steady external force estimator 16x constantly calculates a steady external force component from the ship position error hX and the dynamic characteristics of the ship's motion, and this steady external force component is nothing other than a steady external force such as a steady wind or a tidal current force. Therefore, by constantly applying a steady external force aX with high precision determined from the dynamic characteristics of the ship's motion to the proportional output Fx of the proportional device 13X, the steady deviation of the ship's position can be removed, and the thrust applying device 7 is wasted during steady operation. This can effectively prevent undesirable movements.

以上の補正は、ψ軸方向の干渉流体力を除いて、Y軸方
向・ψ軸方向についても全く同様に行われる。
The above correction is performed in exactly the same manner in the Y-axis direction and the ψ-axis direction, except for the interference fluid force in the ψ-axis direction.

このように上記実施例では、制御部の全てに動特性モデ
ルを採用することによって、P I l)制御に代って
正確な船位と船速とを推定するとともに従来のローパス
フィルタでは除去できながった波などの影響を除いた真
値に近い船位を推定し、これらをフィードバックさせる
という最適制御理論を適用したので、推力信号配分部6
に入力されるX−Y・ψ軸方向の要求推力FXR−FY
R及び要求モーメントFψ、は適正化され、船舶は安定
して定点位置に自動的に保持制御される。
In this way, in the above embodiment, by adopting a dynamic characteristic model in all of the control parts, accurate ship position and ship speed can be estimated instead of P I l) control, and the problem that cannot be removed by conventional low-pass filters can be estimated. Since we applied the optimal control theory of estimating the ship's position close to the true value excluding the effects of sloping waves, etc., and feeding these back, the thrust signal distribution unit 6
Required thrust force in the X-Y/ψ axis direction input to FXR-FY
R and the required moment Fψ are optimized, and the ship is controlled to be stably maintained at a fixed point automatically.

なお、上記制御方法を実施するにあたり、特別に開発し
なければならない検出器等が不要のため経済性の高い構
造とすることができる。また、要部となる非線形最適制
御部12を実施例の如く個別的に構成することも、或い
はマイクロコンピュータ相当の演算機能を右する一つの
演算装置で構成することも可能である。
Note that in carrying out the above control method, there is no need for a specially developed detector or the like, so a highly economical structure can be achieved. Furthermore, the nonlinear optimum control section 12, which is the main part, can be configured individually as in the embodiment, or it can be configured as a single arithmetic device that has arithmetic functions equivalent to a microcomputer.

E発明の効果] 以上、要するに本発明によれば次のような優れた効果を
発揮する。
E Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1) 船位情報のみのフィードバックに基づいてい 
・た従来のものと異なり、船体運動の速度をローカルフ
ィードバックしているため、船体の将来の動きを的確に
予測することができ、船位の過渡的な変動を有効に抑制
することができる。
(1) Based on feedback of ship position information only.
・Unlike conventional systems, the system provides local feedback on the speed of the ship's motion, making it possible to accurately predict the ship's future movement and effectively suppress transient fluctuations in the ship's position.

(2) 船体の前後方向速度・左右方向速度・回顧方向
速度に起因する干渉流体力を打消しているため、潮流の
強い海域においても安定した定点保持制御が可能である
(2) Since the interfering fluid force caused by the longitudinal speed, lateral speed, and backward speed of the ship is canceled, stable fixed point maintenance control is possible even in areas with strong tidal currents.

(3) 船位検出器により検出し/j検出船位から波の
影響等による雑音成分を動特性モデルにより除去して真
値に近い推定速度を得るとともに、定常外力をローカル
フィードバックして要求推力を補正しているので、雑音
による要求推力の変動と定常偏差とを抑えることができ
、無駄な推力がなくなり省燃費化を達成することができ
る。
(3) Detected by the ship position detector /j Removes noise components due to the influence of waves from the detected ship position using a dynamic characteristic model to obtain an estimated speed close to the true value, and corrects the required thrust by locally feeding back steady external forces Therefore, fluctuations and steady-state deviations in the required thrust due to noise can be suppressed, unnecessary thrust is eliminated, and fuel efficiency can be achieved.

(4)その結果、無駄な動きが可及的に抑制され、制御
性の向上と省エネルギー化をはかることができる。
(4) As a result, unnecessary movements are suppressed as much as possible, improving controllability and saving energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の船位制御装置を示すブロック図、第2図
は本発明方法を実施する1=めの船位保持制御装置の一
例を示すブロック図、第3図は第2図の要部詳細ブロッ
ク図である。 尚、図中2は検出船位を検出する船位検出器、6は推力
信号配分部、7は船体部を含む推力付与装置、10は定
点保持制御装置、11は設定目標船位を設定する目標船
位設定部、14は推定船速を算出する船速推定器、15
は推定船位を算出する船速推定器、16は定常外力を算
出する定常外力推定器、17は干渉流体ツノを算出する
干渉補償器、(FXR、FYR、FψR)及び(uX。 Uy、 Uψ)はそれぞれ前後方向、左右方向、回顧方
向の必要推力及び推定船速成分である。 特許出願人 石川島播磨重工業株式会社代理人弁理士 
絹 谷 信 雄
Fig. 1 is a block diagram showing a conventional ship position control device, Fig. 2 is a block diagram showing an example of a first ship position maintenance control device implementing the method of the present invention, and Fig. 3 is a detailed view of the main parts of Fig. 2. It is a block diagram. In the figure, 2 is a ship position detector that detects the detected ship position, 6 is a thrust signal distribution section, 7 is a thrust applying device including the hull section, 10 is a fixed point holding control device, and 11 is a target ship position setting that sets a set target ship position. Part 14 is a ship speed estimator for calculating estimated ship speed, 15
is a ship speed estimator that calculates the estimated ship position, 16 is a steady external force estimator that calculates a steady external force, and 17 is an interference compensator that calculates an interfering fluid horn, (FXR, FYR, FψR) and (uX. Uy, Uψ). are the required thrust and estimated ship speed components in the longitudinal direction, lateral direction, and retrospective direction, respectively. Patent applicant: Patent attorney representing Ishikawajima-Harima Heavy Industries Co., Ltd.
Nobuo Kinuya

Claims (1)

【特許請求の範囲】[Claims] 設定船位と推定船位との偏差に応じて前後方向・左右方
向・回顧方向の三輪方向にそれぞれ推力を付与する推力
付与装置の推力配分量を調整して船位を定点保持制御す
る船位制御システムにおいて、推力付与装置及び船体の
動特性を予めめ、このめた動特性と上記偏差及び検出船
位から三輪方向の推定船速・定常外力・推定船位をそれ
ぞれ紳出し、該推定船位と設定船位との偏差に基づいて
得られるーの船速成分の方向に推力を(=I与する推力
付与装置の推力配分量を上記−の推定船速成分と、これ
に干渉を与える他の推定船速成分と、上記定常外力とで
補正して必要推力を調整するように構成したことを特徴
とする船舶の船位保持制御方法。
In a ship position control system that controls the ship position to be maintained at a fixed point by adjusting the thrust distribution amount of a thrust applying device that applies thrust in three wheel directions in the longitudinal direction, left and right direction, and retrospective direction according to the deviation between the set ship position and the estimated ship position. The dynamic characteristics of the thrust applying device and the hull are determined in advance, and the estimated ship speed, steady external force, and estimated ship position in the three-wheel direction are calculated from the dynamic characteristics, the above deviation, and the detected ship position, respectively, and the deviation between the estimated ship position and the set ship position is determined. The thrust distribution amount of the thrust applying device that gives thrust (=I) in the direction of the ship speed component of - obtained based on the estimated ship speed component of - and other estimated ship speed components that interfere with this, A ship position maintenance control method for a ship, characterized in that the necessary thrust is adjusted by correcting it with the above-mentioned steady external force.
JP59065853A 1984-04-04 1984-04-04 Holding control method of ship position Pending JPS60209820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59065853A JPS60209820A (en) 1984-04-04 1984-04-04 Holding control method of ship position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065853A JPS60209820A (en) 1984-04-04 1984-04-04 Holding control method of ship position

Publications (1)

Publication Number Publication Date
JPS60209820A true JPS60209820A (en) 1985-10-22

Family

ID=13298982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065853A Pending JPS60209820A (en) 1984-04-04 1984-04-04 Holding control method of ship position

Country Status (1)

Country Link
JP (1) JPS60209820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196456A (en) * 2008-02-20 2009-09-03 Mitsui Eng & Shipbuild Co Ltd Linear structure position control system, linear structure position control method, and moving structure control system
CN103823372A (en) * 2014-02-24 2014-05-28 中国船舶重工集团公司第七○二研究所 Method for distributing thrust of multiple thrusters of ocean engineering equipment dynamic positioning system
CN104155043A (en) * 2014-08-07 2014-11-19 上海交通大学 Method for measuring external environmental force of power positioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196456A (en) * 2008-02-20 2009-09-03 Mitsui Eng & Shipbuild Co Ltd Linear structure position control system, linear structure position control method, and moving structure control system
CN103823372A (en) * 2014-02-24 2014-05-28 中国船舶重工集团公司第七○二研究所 Method for distributing thrust of multiple thrusters of ocean engineering equipment dynamic positioning system
CN104155043A (en) * 2014-08-07 2014-11-19 上海交通大学 Method for measuring external environmental force of power positioning system
CN104155043B (en) * 2014-08-07 2016-08-24 上海交通大学 A kind of dynamic positioning system external environment force measuring method

Similar Documents

Publication Publication Date Title
US6804594B1 (en) Active steering for handling/stability enhancement
US5577812A (en) Braking force control system for motor vehicle
CN108563113B (en) Multi-loop model-free adaptive heading control method for ship
US20100127132A1 (en) Actuator force equalization controller
JPH0353510B2 (en)
US11787403B2 (en) Braking/driving force control system
CN103226326A (en) Frequency domain analysis method for ship autopilot system
JPS60209820A (en) Holding control method of ship position
JPS6311451A (en) Continuously variable transmission control device
GB2399425A (en) Feedback control system with variable gain
US5660066A (en) Interstand tension controller for a continuous rolling mill
CN101276204B (en) Driving amount controller
JPH09207889A (en) Automatically steering device for ship
JP2001082701A (en) Boiler/turbine generator control system
CN209795457U (en) Vehicle emergency steering control system
CN111546329B (en) Multi-joint robot servo gain consistency control method
JPS59220496A (en) Automatic steering system for vessel
JPS6121505A (en) Process controller
JPS60195356A (en) Method of controlling speed of main diesel-engine
CN112147898B (en) Rigid system anti-interference control method and system only depending on control direction information
JPS60199796A (en) Ship-position holding control for vessel
JPS60204944A (en) Speed control method for diesel main engine
JP2910961B2 (en) Method for controlling tension and looper angle of material to be rolled in continuous rolling mill
Li et al. A robust nonlinear control design for path following of a marine surface vessel
JPH0764261B2 (en) Actual steering angle control device for vehicle