JPS6020940A - Grafting onto polyfluoroolefin molding - Google Patents

Grafting onto polyfluoroolefin molding

Info

Publication number
JPS6020940A
JPS6020940A JP13005283A JP13005283A JPS6020940A JP S6020940 A JPS6020940 A JP S6020940A JP 13005283 A JP13005283 A JP 13005283A JP 13005283 A JP13005283 A JP 13005283A JP S6020940 A JPS6020940 A JP S6020940A
Authority
JP
Japan
Prior art keywords
molding
corona discharge
polyfluorinated
monomer
polyfluoroolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13005283A
Other languages
Japanese (ja)
Inventor
Shohei Tamura
田村 正平
Sadamitsu Sasaki
佐々木 貞光
Shunichi Shimatani
俊一 島谷
Minoru Ezoe
實 江副
Hiroshi Miyatake
宮武 宏
Takashi Ichinose
一瀬 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP13005283A priority Critical patent/JPS6020940A/en
Publication of JPS6020940A publication Critical patent/JPS6020940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To graft a monomer without causing the breakage of the polymer chain, by subjecting the surface of a polyfluoroolefin molding to a corona discharge treatment, irradiating the molding with a low-dose ionizing radiation and contacting it with a polymerizable monomer. CONSTITUTION:A pair of insulators 3, 4 are opposed to each other through a spacer 5 at a given distance therebetween. A polyfluoroolefin molding 10 is placed on the lower insulator 4. After a treating gas is introduced into a container 7, a high-frequency high-voltage (20-100kHz, 5-20kV is applied between electrodes 1, 2 to subject the molding 10 to a corona discharge treatment. The molding is irradiated with a relatively low-dose ionizing radiation at a dose of 0.1-50Mrad, and contacted with a polymerizable monomer (e.g. acrylic acid or styrene) to graft-polymerize the monomer onto the surface of the molding.

Description

【発明の詳細な説明】 本発明はポリフッ化オレフィン成形物へのグラフト重合
方法に関し、詳しくは、ポリフッ化オレフィン成形物に
比較的低線量の電離性放射線を態形物に重合性単量体を
グラフト重合させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of graft polymerization to a polyfluorinated olefin molded article, and more particularly, the present invention relates to a method for graft polymerizing a polyfluorinated olefin molded article, in which a relatively low dose of ionizing radiation is applied to the polyfluorinated olefin molded article. This invention relates to a method for graft polymerization.

ポリフッ化オレフィンにおけるC−F結合エネルギーは
441 J1モルであって、C−C結合エネルギ−34
8J1モルよりも大きいために、従来、ポリフッ化オレ
フィンに電離性放射線、特に電子線を照射したとき、一
部にはフッ素置換炭素に架橋性ラジカルが生じて、これ
に重合性単量体が有効にグラフト重合するとしても、電
子線の大部分は重合体鎖を切断するように作用し、重合
体を低分子量物に変性する。即ち、従来、ポリフッ化オ
レフィン成形物、特に、ポリテトラフルオロエチレン成
形物に電離性放射線を照射し、これに重合性単量体を接
触させても、単量体の有効なグラフト重合が起こり難い
と共に、ポリフッ化オレフィンが低分子量化するのを避
けることができず、成形物の所要の物性を損なう等の問
題があった。
The C-F bond energy in polyfluorinated olefin is 441 J1 mole, and the C-C bond energy is -34
Conventionally, when polyfluorinated olefins are irradiated with ionizing radiation, especially electron beams, because the 8J is larger than 1 mole, crosslinking radicals are generated in some of the fluorine-substituted carbons, and polymerizable monomers are effective against these radicals. Even if graft polymerization occurs, most of the electron beam acts to cleave the polymer chains, modifying the polymer into a low molecular weight product. That is, conventionally, even when a polyfluorinated olefin molded article, particularly a polytetrafluoroethylene molded article, is irradiated with ionizing radiation and brought into contact with a polymerizable monomer, effective graft polymerization of the monomers is difficult to occur. At the same time, it is impossible to avoid the polyfluorinated olefin having a lower molecular weight, which causes problems such as deterioration of the desired physical properties of the molded product.

一方、ポリフッ化オレフィン成形物における上記のよう
な重合体鎖の切断を避けるために低線量の電子線を照射
すると、架橋性ラジカルの生成量が重合性単量体のグラ
フト重合には不十分であつたり、或いは電子線の透過量
が少なしへためムこ、重合体成形物の極く表面にのみ架
橋性ラジカル力(発生し、直ちに雰囲気中の酸素等と反
応して活性を失ない、重合性単量体を有効にグラフト重
合体させることが困難であった。
On the other hand, when irradiating a polyfluorinated olefin molded article with a low dose of electron beam to avoid the above-mentioned scission of polymer chains, the amount of crosslinking radicals produced is insufficient for graft polymerization of polymerizable monomers. The crosslinking radical force (generated only on the very surface of the polymer molded product) does not lose its activity by immediately reacting with oxygen, etc. in the atmosphere. It has been difficult to effectively graft polymerize polymerizable monomers.

また、よく知られているように、ポリフッ化オレフィン
成形物はその表面エネルギーが極めて小さいために、濡
れ性に乏しい。かかるポリフッ化オレフィン成形物の表
面の濡れ性を改善するために、従来より成形物表面をグ
ロー放電やスノマ・ンタ工゛ンチング処理する方法、テ
)−ラヒドロフラン中でナトリウムーナフクレン錯体を
形成させ、これにより処理する方法等が知られているが
、前者の方法は真空装置系を必要とし、設備が大型化す
ると共に操作も煩雑である。また、後者の方法は、ナト
リウムを用いるため、処理中に火災を誘発する危険性が
あるほか、処理後の錯体溶液の取り扱いに多大の注意を
払う必要がある。
Furthermore, as is well known, polyfluorinated olefin molded products have extremely low surface energy and therefore have poor wettability. In order to improve the wettability of the surface of such polyfluorinated olefin molded products, conventional methods include treating the surface of the molded product with glow discharge or snoman coating, and (1) forming a sodium naphcrene complex in lahydrofuran. Although there are known methods of processing using this method, the former method requires a vacuum system, which increases the size of the equipment and is complicated to operate. Furthermore, since the latter method uses sodium, there is a risk of inducing a fire during the treatment, and it is necessary to pay great attention to the handling of the complex solution after treatment.

一方、ポリエチレン、ポリプロピレン等のポリオレフィ
ン系樹脂成形物の表面処理方法として、が、ポリフッ化
オレフィンは一般に耐コロナ性が良好でなく、特に、成
形物がシートやフィルムの場合、処理によってこれらに
ピンボールや絶縁破壊が生じたりするため、従来、ポリ
フッ化オレフィン成形物の表面処理にはコロナ放電はむ
しろ9JJ果がないとされていた。
On the other hand, as a surface treatment method for molded polyolefin resins such as polyethylene and polypropylene, polyfluorinated olefins generally do not have good corona resistance, and in particular, when the molded product is a sheet or film, the treatment can cause pinballs. Conventionally, corona discharge was considered to be rather ineffective in surface treatment of polyfluorinated olefin molded articles because of the occurrence of dielectric breakdown and dielectric breakdown.

本発明者らは上記したポリフッ化オレフィン成形物への
グラフト重合における問題を解決するために、グラフト
重合に先立つポリフッ化オレフィン成形物の表面処理に
ついて鋭意研究した結果、平行な平板電極間でポリフッ
化オレフィン成形物をコロナ放電処理することにより、
上記したような問題の発生なしに良好な濡れ性を付与し
得ると共に、このようにコロナ放電処理されたポリフッ
化オレフィン成形物は、比較的低線量の電離性放射線の
照射によって、実質的に重合体鎖の切断を伴うことなし
に有効量の架橋性ラジカルを生じ、かくして、これを重
合性単量体に接触させることにより、重合性単量体を効
果的に成形物にグラフト重合させ得ることを見出して本
発明に至ったものである。
In order to solve the above-mentioned problems in graft polymerization to polyfluorinated olefin molded products, the present inventors conducted intensive research on the surface treatment of polyfluorinated olefin molded products prior to graft polymerization. By subjecting the olefin molded product to corona discharge treatment,
In addition to being able to impart good wettability without causing the problems described above, polyfluorinated olefin moldings treated with corona discharge can be substantially dehydrated by irradiation with relatively low doses of ionizing radiation. Producing an effective amount of cross-linking radicals without cutting the combined chain, and thus, by contacting the cross-linking radicals with the polymerizable monomer, the polymerizable monomer can be effectively graft-polymerized onto the molded article. This discovery led to the present invention.

本発明によるポリフッ化オレフィン成形物へのグラフト
重合方法は、一対の平行な平板電極間に一対の絶縁体を
その間に間隙を有するように平行に配設し、下方の絶縁
体上にポリフッ化オレフィン成形物を載置し、上記平板
電極間に高電圧を印加して、ポリフッ化オレフィン成形
物表面をコロナ放電処理した後、電離性放射線を照射し
、次いで、重合性単量体と接触させることを特徴とする
In the graft polymerization method for a polyfluorinated olefin molded article according to the present invention, a pair of insulators are arranged in parallel between a pair of parallel flat plate electrodes with a gap therebetween, and the polyfluorinated olefin is placed on the lower insulator. Place the molded product and apply a high voltage between the flat electrodes to subject the surface of the polyfluorinated olefin molded product to corona discharge treatment, irradiate it with ionizing radiation, and then bring it into contact with the polymerizable monomer. It is characterized by

本発明において、ポリフッ化オレフィンは、ポリフッ化
ビニル、ポリフッ化ビニリデン、フッ化ビニル−フッ化
ビニリデン共市合体、ホIJ りLl 1:]トトリリ
フルオロエチレンポリテトラフルオロエチレン、テ1〜
ラフルオロエチレシーヘキナフルオロプロピレン共重合
体、フッ化ビニルーテ1−ラフルオロエチレン共重合体
、フッ化ビニリデン−テトラフルオロエチレン共重合体
、フッ化ビニリデン−へキザフルオlコプロピレン共重
合体等を含むものとし、また、その成形物は、多孔性若
しくは無孔性のフィルムやシート、不織布等を含むもの
とする。
In the present invention, polyfluorinated olefins include polyvinyl fluoride, polyvinylidene fluoride, vinyl fluoride-vinylidene fluoride co-merchandising, trifluoroethylene, polytetrafluoroethylene,
Contains lafluoroethylene copolymer, hexafluoropropylene copolymer, vinyl fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, etc. The molded product may include porous or non-porous films, sheets, nonwoven fabrics, etc.

図面は本発明の方法に従って、ポリフッ化オレフィン成
形物をコロナ放電゛処理するのに好適な装置の一例を示
し、一対の平行な平板電極1及び2が配設され、その間
に間隙を有するように一対の絶縁体3及び4が適宜のス
ペーサ5を介して平行に配設され、上側電極1には高電
圧電源6が接続され、下側電極2は接地される。これら
電極構造は、容器7内に収容され、この容器は容器内を
排気し、又は所要の処理雰囲気ガスを導入するだめのガ
ス人口8と出口9とを有している。表面処理すべきポリ
フッ化オレフィン成形物成形物10は下側絶縁体4]二
に載置される。尚、上記電極としては、例えばアルミニ
ウム箔が用いられ、」二部絶縁体としては、例えばガラ
スが用いられ、絶縁体間の間隙は、通常、0.5〜21
程度が好適である。
The drawing shows an example of an apparatus suitable for corona discharge treatment of polyfluorinated olefin molded articles according to the method of the present invention, in which a pair of parallel flat plate electrodes 1 and 2 are arranged with a gap between them. A pair of insulators 3 and 4 are arranged in parallel with a suitable spacer 5 in between, a high voltage power source 6 is connected to the upper electrode 1, and the lower electrode 2 is grounded. These electrode structures are housed in a container 7, which has a gas port 8 and an outlet 9 for evacuating the container or introducing the required process atmosphere gas. The polyfluorinated olefin molded product 10 to be surface-treated is placed on the lower insulator 4]. As the electrode, for example, aluminum foil is used, and as the two-part insulator, for example, glass is used, and the gap between the insulators is usually 0.5 to 21 mm.
degree is suitable.

成形物がシートやフィルムの場合、この間隙は、通常、
1fl程度でよい。
If the molded product is a sheet or film, this gap is usually
About 1 fl is enough.

高電圧電源の周波数は50 fiz〜100KIIzの
範囲にわたってよいが、高周波数であるほど効率がよい
ので、好ましくは20〜100KHzの電源が使用され
る。また、一般にコロナ放電が開始される電圧は2〜3
KVであるから、この電圧以上から沿面放電電圧までの
範囲で電圧を印加することができる。通常、5〜20K
Vの範囲の高電圧が好適である。コロナ放電の雰囲気は
特に制限されないが、通常、空気中や水蒸気中でよい。
The frequency of the high voltage power supply may range from 50 fiz to 100 KIIz, but preferably a power supply of 20 to 100 KHz is used since higher frequencies are more efficient. Also, generally the voltage at which corona discharge starts is 2 to 3
Since the voltage is KV, a voltage can be applied in a range from this voltage or higher to creeping discharge voltage. Usually 5-20K
High voltages in the range of V are preferred. The atmosphere for corona discharge is not particularly limited, but usually air or water vapor may be used.

また、処理時間は、通品、数十分乃至数時間が好適であ
るが、特にこの範囲に限定されるものではない。
Further, the processing time is preferably from several tens of minutes to several hours, but is not particularly limited to this range.

このようにしてコロナ放電処理された成形物表面は、絶
縁破壊等を生じることなく活性化され、ESCAによる
観察の結果、原子状酸素のほか、C−O結合、C=O結
合、C0OH結合等や、フッ素が水素置換されて生成し
たC−H結合の生成が認められ、水や有機溶剤に対する
濡れ性が著しく改善されると共に、このような基を有す
るポリフッ化オレフィン成形物は、低線量の電離性放射
線の照射により、重合体鎖の切断を実質的に伴うことな
しに、重合性単量体のグラフト重合に必要な量の架橋性
ラジカルを生じる。
The surface of the molded product treated with corona discharge in this way is activated without causing dielectric breakdown, and as a result of observation by ESCA, in addition to atomic oxygen, C-O bonds, C=O bonds, C0OH bonds, etc. In addition, the formation of C-H bonds generated by hydrogen substitution of fluorine was observed, and the wettability to water and organic solvents was significantly improved, and polyfluorinated olefin molded products having such groups were Irradiation with ionizing radiation generates the amount of crosslinking radicals necessary for graft polymerization of the polymerizable monomers without substantially cutting the polymer chains.

本発明において、電離性放射線としては、例えば、α線
、β線、γ線、中性子線、X線、電子線等が用いられる
が、好ましくは電子線が用いられる。また、ポリフッ化
オレフィン成形物への電子線照射の照射量は0.1〜5
0メガラツド、好ましくは0.5〜20メガラツドの範
囲である。
In the present invention, as the ionizing radiation, for example, α rays, β rays, γ rays, neutron beams, X rays, electron beams, etc. are used, and preferably electron beams are used. In addition, the irradiation dose of electron beam irradiation to the polyfluorinated olefin molded product is 0.1 to 5
0 megarads, preferably in the range of 0.5 to 20 megarads.

また、重合性単量体としては、ビニル重合性単量体が用
いられ、特に、アクリル酸、メタクリル酸、これらのエ
ステル、スチレン、ビニルピリジン、ビニルピロリドン
、アクリロニトリル、メタクリロニトリル等のビニル単
量体が好ましく用いられる。このような重合性単量体を
電離性放射線を照射後のポリフッ化オレフィン成形物に
接触させるには、その単量体に応じて車量体重体中に、
又は単量体の水溶液若しくは有機溶液とし、この中に成
形物を浸漬してもよく、或いは重合性単量体の蒸気を接
触させてもよい。
In addition, vinyl polymerizable monomers are used as the polymerizable monomer, and in particular, vinyl monomers such as acrylic acid, methacrylic acid, esters thereof, styrene, vinylpyridine, vinylpyrrolidone, acrylonitrile, and methacrylonitrile are used. The body is preferably used. In order to bring such a polymerizable monomer into contact with the polyfluorinated olefin molded product after irradiation with ionizing radiation, depending on the monomer, in the vehicle weight body,
Alternatively, the molded article may be immersed in an aqueous or organic solution of the monomer, or the vapor of the polymerizable monomer may be brought into contact with the solution.

以上のように、従来はポリフッ化オレフィン成形物のコ
ロナ放電による表面処理は、成形物の絶縁破壊等を招く
ために好ましくないとされて、いたが、本発明の方法に
従って、一対の平行な平板電極間を用い、均一な電界下
にポリフッ化オレフィン成形物をコロナ放電することに
より、成形物における絶縁破壊等の発生を防止しつつ、
その表面の濡れ性を顕著に改善することができ、しかも
、かかる表面処理されたポリフッ化オレフィン成形物は
、前記したように、種々の活性基やC−H結合を有する
ので、これに電子線を低線量で照射しても、重合性単量
体のグラフト重合に必要な量の架橋性ラジカルが発生し
、かくして、ビニル重合性単量体を有効にグラフト重合
させることができる。
As described above, surface treatment of polyfluorinated olefin molded products by corona discharge was previously thought to be undesirable because it would lead to dielectric breakdown of the molded products, but according to the method of the present invention, surface treatment of a pair of parallel flat By applying corona discharge to the polyfluorinated olefin molded product under a uniform electric field between electrodes, we can prevent dielectric breakdown in the molded product while
The wettability of the surface can be significantly improved, and since the surface-treated polyfluorinated olefin molded product has various active groups and C-H bonds as described above, it is possible to improve the wettability of the surface by electron beams. Even when irradiated at a low dose, crosslinking radicals are generated in an amount necessary for graft polymerization of the polymerizable monomer, and thus the vinyl polymerizable monomer can be effectively graft polymerized.

以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限一定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例I FjllOOμのポリテトラフルオロエチレン切削シー
トをアセ1−ンで十分に洗滌した後、図示したように、
絶縁体として厚み1禦謡の[バイレックス」 (商標名
)ガラスをスペーサーにより1鶴の間隔をおいて配設し
たコロナ放電処理装置の下側ガラス上に載置した。容器
内を品温で減圧にした後、水蒸気を導入し、上側電極に
60)1z、6KVの電圧を印加し、下側電極をアース
し、6時間コロナ放電処理した。処理後のシートをアセ
トンに浸漬し、引き上げたところ全面が濡れた。
Example I After thoroughly washing a polytetrafluoroethylene cutting sheet of FjllOOμ with acetone, as shown in the figure,
As an insulator, [Virex] (trade name) glass having a thickness of 1 inch was placed on the lower glass of the corona discharge treatment apparatus, which was placed at intervals of 1 inch using spacers. After reducing the pressure inside the container at the product temperature, water vapor was introduced, a voltage of 60)1z and 6 KV was applied to the upper electrode, the lower electrode was grounded, and corona discharge treatment was performed for 6 hours. When the treated sheet was dipped in acetone and pulled out, the entire surface was wet.

このシートにエレクトロンカーテンビーム(ソニートレ
ーディング社製CB−150型)を用いて、酸素濃度5
00 ppmの窒素気流中、165に■、5mAの条件
下に15メガラツドの電子線を照射した後、直ちにアク
リル酸単量体を注入したガラス管に入れ、窒素置換した
後、封止し、60℃で14時間静置して、−、グラフト
重合させた。
Using an electron curtain beam (CB-150 model manufactured by Sony Trading Co., Ltd.) on this sheet, an oxygen concentration of 5
After irradiating the tube with a 15 megarad electron beam under the conditions of 165 mm and 5 mA in a nitrogen stream of 0.00 ppm, the tube was immediately placed in a glass tube injected with acrylic acid monomer, replaced with nitrogen, and sealed. The mixture was allowed to stand at ℃ for 14 hours to carry out graft polymerization.

このようにして得られたグラフト重合後のシートからソ
ックスレー抽出器によりアクリル酸のホモ重合体と残存
未反応単量体を抽出した。
The acrylic acid homopolymer and remaining unreacted monomers were extracted from the graft-polymerized sheet thus obtained using a Soxhlet extractor.

実施例2 孔径40μの微孔を多数有し、厚みが500μであるポ
リテトラフルオロエチレン多孔性シート(ダイキン工業
(掬製ポリフロンペーパー)を実施例1と同し条件下で
コロナ放電処理し、所定線量の電子線を照射した後、ア
クリル酸又はその水溶液に浸漬してグラフト重合させた
Example 2 A polytetrafluoroethylene porous sheet (Daikin Industries, Ltd. (Kiki-made Polyflon Paper)) having many micropores with a pore diameter of 40 μm and a thickness of 500 μm was subjected to corona discharge treatment under the same conditions as in Example 1. After being irradiated with a predetermined dose of electron beam, it was immersed in acrylic acid or an aqueous solution thereof to carry out graft polymerization.

実施例3 実施例2と同しシートをI 80 ’Cの温度で厚み5
0μに圧延すると共に、その微孔孔径を小さくし、この
シー1−について実施例1と同様にコロナ放電処理した
後、アクリル酸をグラフト重合させた。
Example 3 The same sheet as in Example 2 was heated to a thickness of 5 at a temperature of I 80'C.
After rolling to 0μ and reducing the micropore diameter, this sheet 1- was subjected to corona discharge treatment in the same manner as in Example 1, and then acrylic acid was graft-polymerized.

比較例 実施例2と同じシートをコロナ放電処理することなく、
実施例1と同じ条件下で電子線を照射し、アクリル酸を
グラフト重合させた。
Comparative Example The same sheet as in Example 2 was used without corona discharge treatment.
Electron beam irradiation was performed under the same conditions as in Example 1 to graft-polymerize acrylic acid.

以」−のようにして得られた各シートについて、グラフ
1−化率及び水膨潤度を測定した。結果を第1表に示す
。但し、グラフト化率は、〔(グラフ1〜重合後のシー
ト重量−グラフト前のシーI・重量)/グラフト前のシ
ーl−重量)X100(%)で定義され、また、水膨潤
度C,l、グラフ1〜重合後のシートについて、〔(水
に浸漬後のノート重量−乾燥シートの重量)/乾燥シー
ト重量)xlOO(%)で定義される。
For each sheet obtained as described below, the graph 1 conversion rate and water swelling degree were measured. The results are shown in Table 1. However, the grafting rate is defined as [(Graph 1 ~ Sheet weight after polymerization - Sea I weight before grafting)/Seal I weight before grafting) x 100 (%), and water swelling degree C, 1, Graph 1 - For the sheet after polymerization, it is defined as [(note weight after immersion in water - weight of dry sheet)/weight of dry sheet) x lOO (%).

第 1 表 (注)アクリル酸の20%水/8液を用いた。Table 1 (Note) 20% water/8 solution of acrylic acid was used.

実施例4 第2表に示すように、ボリテ1−ラフルオロエチレン成
形物として、[ポリフロンペーパー]、切削シート又は
孔径3μの微孔を多数有する延伸ボリテ1−ラフルオロ
エチレン多孔性シー1−を用い、実施例1と同様にして
コロナ放電処理した後、所定線量の電子線を照射し、次
いで、表に示す単量体又はその溶液に浸漬して、グラフ
ト重合させた。
Example 4 As shown in Table 2, as a bolite 1-lafluoroethylene molded product, [Polyflon paper], a cutting sheet, or a stretched bolite 1-lafluoroethylene porous sheet 1- having a large number of micropores with a pore diameter of 3 μm was used. After corona discharge treatment in the same manner as in Example 1, the specimens were irradiated with a predetermined dose of electron beam, and then immersed in the monomers shown in the table or their solutions for graft polymerization.

得られたシートにおけるグラフト化率を第2表に示す。Table 2 shows the grafting rate in the obtained sheet.

第2表 (注)成形物において、Aはポリフロンペーパー、Bは
切削シート、Cは延伸多孔性シートを示し、また、*は
50%ベンゼン溶液を示す。
Table 2 (Note) In the molded products, A indicates polyflon paper, B indicates cutting sheet, C indicates stretched porous sheet, and * indicates 50% benzene solution.

実施例5 実施例1においてコロナ放電処理後のボリテ[・ラフル
オロエチレン切削シートにコハルl−60r線を5メガ
ラツト照射した以外は、実施例1と同様にして単量体を
シー1−にグラフト重合させた。グラフト化率は、単量
体がメタクリル酸のとき22%、スチレンのとき9%で
あった。
Example 5 A monomer was grafted onto the sheet 1- in the same manner as in Example 1, except that the cut sheet of Bolite [-Lafluoroethylene after the corona discharge treatment in Example 1 was irradiated with 5 megarats of Kohal l-60r radiation. Polymerized. The grafting rate was 22% when the monomer was methacrylic acid and 9% when the monomer was styrene.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法において、ポリフッ化オレフィン成
形物をコロナ放電処理するのに好適に用いることができ
る装置の一例を示す断面図である。 j、2・・・電極、3.4・・・絶縁体、6・・・高電
圧電源、7・・・容器、1o・・・ポリフッ化オレフィ
ン成形物。
The drawing is a sectional view showing an example of an apparatus that can be suitably used for corona discharge treatment of a polyfluorinated olefin molded article in the method of the present invention. j, 2... Electrode, 3.4... Insulator, 6... High voltage power supply, 7... Container, 1o... Polyfluorinated olefin molded product.

Claims (1)

【特許請求の範囲】[Claims] +11 一対の平行な平板電極間に一対の絶縁体をその
間に間隙を有するように平行に配設し、下方の絶縁体上
にポリフッ化オレフィン成形物を載置し、上記平板電極
間に高電圧を印加して、ポリフッ化オレフィン成形物表
面をコロナ放電処理した後、電離性放射線を照射し、次
いで、重合性単量体と接触させることを特徴とするポリ
フッ化オレフィン成形物へのグラフト重合方法。
+11 A pair of insulators are arranged in parallel between a pair of parallel flat plate electrodes with a gap between them, a polyfluorinated olefin molded product is placed on the lower insulator, and a high voltage is applied between the flat plate electrodes. A method for graft polymerization to a polyfluorinated olefin molded article, which comprises applying corona discharge treatment to the surface of the polyfluorinated olefin molded article, irradiating it with ionizing radiation, and then bringing it into contact with a polymerizable monomer. .
JP13005283A 1983-07-15 1983-07-15 Grafting onto polyfluoroolefin molding Pending JPS6020940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13005283A JPS6020940A (en) 1983-07-15 1983-07-15 Grafting onto polyfluoroolefin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13005283A JPS6020940A (en) 1983-07-15 1983-07-15 Grafting onto polyfluoroolefin molding

Publications (1)

Publication Number Publication Date
JPS6020940A true JPS6020940A (en) 1985-02-02

Family

ID=15024902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13005283A Pending JPS6020940A (en) 1983-07-15 1983-07-15 Grafting onto polyfluoroolefin molding

Country Status (1)

Country Link
JP (1) JPS6020940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661383A (en) * 1986-05-04 1987-04-28 Allied Corporation Method for grafting polymers to polytetrafluoroethylene, and grafted composites thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661383A (en) * 1986-05-04 1987-04-28 Allied Corporation Method for grafting polymers to polytetrafluoroethylene, and grafted composites thereof

Similar Documents

Publication Publication Date Title
Iwata et al. Oxidation of polyethylene surface by corona discharge and the subsequent graft polymerization
US5069926A (en) Method for modifying the surface of a polymer article
US3275540A (en) Surface treatment of shaped organic polymeric structures
US3955014A (en) Method of making alkali battery separators
US3107206A (en) Production of graft polymers
US3137674A (en) Polyethylene modified with a vinyl compound
US3353988A (en) Graft polymerization on polymeric substrates
JPH01275639A (en) Surface modification
Kuwabara et al. Polymer surface treatment by atmospheric pressure low temperature surface discharge plasma: Its characteristics and comparison with low pressure oxygen plasma treatment
JPS6020940A (en) Grafting onto polyfluoroolefin molding
JPH06184334A (en) Method for using amino group which is formed on polymer material by electrically treating it in nitrogen atmosphere and is used for accelerating graft reaction
JPS62235339A (en) Modification of plastic surface
JPS6020941A (en) Grafting onto polyfluoroolefin molding
US3431137A (en) Electric field polymerization
CN108722201A (en) The method of modifying of PVDF hollow-fibre membranes
JP3463099B2 (en) Polymer surface treatment method
JPS6020939A (en) Grafting onto polyfluoroolefin molding
US4379200A (en) Novel method of producing ion exchange membrane
JPH03139534A (en) Surface modification of polymeric structure
JPH06206951A (en) Hydrophilized film
JPH06306199A (en) Surface treatment of polymeric material
Zubair et al. Surface Modification of Teflonated Carbon Fabric by Ultrasound-Assisted Radiation Induced Grafting Copolymerization
JP3721261B2 (en) Surface modification method
JPS63229123A (en) Membrane for gas separation
JPS59152913A (en) Surface modification of polymeric material