JPS60207489A - Rotor position detector of commutatorless motor - Google Patents

Rotor position detector of commutatorless motor

Info

Publication number
JPS60207489A
JPS60207489A JP59064026A JP6402684A JPS60207489A JP S60207489 A JPS60207489 A JP S60207489A JP 59064026 A JP59064026 A JP 59064026A JP 6402684 A JP6402684 A JP 6402684A JP S60207489 A JPS60207489 A JP S60207489A
Authority
JP
Japan
Prior art keywords
rotor position
high frequency
oscillator
resistor
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59064026A
Other languages
Japanese (ja)
Other versions
JPH0546197B2 (en
Inventor
Jiro Kataoka
二郎 片岡
Yoshihiro Ikemoto
義寛 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59064026A priority Critical patent/JPS60207489A/en
Publication of JPS60207489A publication Critical patent/JPS60207489A/en
Publication of JPH0546197B2 publication Critical patent/JPH0546197B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To detect the position of a rotor in a simple construction by detecting a high frequency voltage between the connecting point group of a resistor connected with the middle point of the phases of stator windings from one end of a high frequency oscillator and a coupling capacitor and the prescribed point. CONSTITUTION:One end of a high frequency sinusoidal voltage oscillator 10 is connected through resistors 11-13 and coupling capacitors 14-16 with the middle point of stator windings 7a-7c. The other end of the oscillator 10 is connected through a coupling condenser 17 with the neutral point O of a stator coil. The variation in the amplitude of a high frequency voltage generated between the connecting point group of the resistors 11-13 and the capacitors 14-16 and the connecting point of a coil 29 and resistors 30, 31 connected with both ends of the oscillator 10 is detected, and used as a rotor position detection signal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、2相以上の相を持つ多相式無整流子電動機の
交流磁気結合方式によるロータ位置検出器及び検出用セ
ンサに係シ、よシ簡単な検出器及び回路を提供しようと
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a rotor position detector and detection sensor using an AC magnetic coupling method for a polyphase non-commutated motor having two or more phases. It is an attempt to provide a simple detector and circuit.

従来例の構成とその問題点 従来の無整流子電動機の相電流切換用ロータ検出方法と
しては、ホトダイオードとホトトランジスタ及び光遮断
用切欠き円板より構成される光学式ロータ位置検出法や
、ホール素子やホールICを用いてロータ磁石位置を検
出する磁気式ロータ位置検出法及び、第1図に示す様な
交流磁気結合法等がある。第1図に於いて二1はロータ
シャフト、2はロータシャフト1に一体的に取付けられ
、18o0の凸部を持つ磁性材料より作られた切欠き円
板、3は前記切欠き円板2の外周上の12o0間隔に配
置された3ケのU字形コア、4a、 4b。
Conventional configurations and their problems Conventional rotor detection methods for phase current switching of non-commutator motors include an optical rotor position detection method consisting of a photodiode, a phototransistor, and a notched disk for light shielding, and a hole detection method. There is a magnetic rotor position detection method that detects the rotor magnet position using an element or a Hall IC, and an AC magnetic coupling method as shown in FIG. 1. In FIG. 1, 21 is a rotor shaft, 2 is a notched disk integrally attached to the rotor shaft 1 and made of a magnetic material and has a convex portion of 18o0, and 3 is a notched disk of the notched disk 2. Three U-shaped cores, 4a, 4b, arranged at 12o0 intervals on the outer circumference.

4Cは各々コア3a、3b、3cに巻回され、かつ高周
波電圧を印加された励磁コイル、5a、sb。
Excitation coils 5a and sb 4C are wound around the cores 3a, 3b and 3c, respectively, and to which a high frequency voltage is applied.

6Cは各々コア3a、3b、3cに巻回され、かつ前記
励磁コイル4a、4b、4cによって発生した磁束を受
信し誘起電圧を発生する受信コイルである。第2図に各
コイルの電圧波形を示す。第2図aは励磁コイル4a、
4b、4cに印加される励磁電圧波形であり、b、c、
dは各々、受信コイル5a、csb、5cに誘起する誘
起電圧v5a。
6C is a receiving coil that is wound around the cores 3a, 3b, and 3c, respectively, and receives the magnetic flux generated by the excitation coils 4a, 4b, and 4c, and generates an induced voltage. Figure 2 shows the voltage waveform of each coil. FIG. 2a shows the excitation coil 4a,
This is the excitation voltage waveform applied to 4b, 4c, and b, c,
d is an induced voltage v5a induced in the receiving coils 5a, csb, and 5c, respectively.

v6b、■6oの波形であり、切欠き円板2の凸極部に
対向している受信コイルの誘起電圧が大きく、又、■5
 B + ”51) + ”5 cハ各々、ロータシャ
フト1の回転角θに対し12o0づつ位相の異なる波形
が得られる。この”5a +v6b +v5Cの電圧波
形を整流すればロータ位置検出信号が得られるがここで
は本発明と直接関係が無いので説明を省略する。
The waveforms are v6b and ■6o, and the induced voltage in the receiving coil facing the convex pole of the notched disk 2 is large, and ■5
B + "51) + "5c) Waveforms whose phases differ by 12o0 with respect to the rotation angle θ of the rotor shaft 1 are obtained. A rotor position detection signal can be obtained by rectifying this voltage waveform of "5a +v6b +v5C, but since it is not directly related to the present invention, the explanation will be omitted here.

以上、従来方式のロータ位置検出法の構成について説明
したが、そのいずれも、ロータ位置検出を行なうだめの
センサー(例えばホトトランジス乙 ホール素子、コイ
ル等)や切欠き円板が必要であり、コスト的にも寸法的
にも組立工数的にも、無整流電動機の太き々部分を占め
る場合が多く、ロータ位置検出センサーを必要としない
電動機(例えばブラシ付直流電動機)に対して不利とな
っている。
The configurations of conventional rotor position detection methods have been explained above, but all of them require sensors (e.g., phototransistors, Hall elements, coils, etc.) and cutout disks to detect the rotor position, and are costly. In terms of space, dimensions, and assembly time, they often occupy the largest part of non-commutated motors, which is disadvantageous compared to motors that do not require rotor position detection sensors (for example, brushed DC motors). There is.

さらに、2相式無整流子電動機に限れば、ステータコイ
ルに高周波電圧を重畳し、その重畳した高周波電圧がロ
ータ磁石の有無又はロータ磁石に貼ったうすい磁性板又
は導電性非磁性板の有無により振幅が変化する事を利用
する方法(特公昭58−37790号公報)が有り、こ
の方法ではロータ位置検出センサーを必要としない効果
が有るものの従来は2相式電動機への適用に限定されて
おり、効率の良い3相以上の多相式電動機への適用は不
可能であった。
Furthermore, in the case of two-phase non-commutator motors, a high frequency voltage is superimposed on the stator coil, and the superimposed high frequency voltage is affected by the presence or absence of a rotor magnet or the presence or absence of a thin magnetic plate or conductive non-magnetic plate attached to the rotor magnet. There is a method (Japanese Patent Publication No. 58-37790) that utilizes the change in amplitude, and although this method has the effect of not requiring a rotor position detection sensor, it has been limited to application to two-phase motors. However, it was impossible to apply it to an efficient three-phase or more polyphase motor.

発明の目的 本発明は上記欠点に鑑みなされたものであり、ロータ位
置検出センサを不要とし、かつ3相以上の多相式無整流
子電動機にも適用できるロータ位置検出回路を提供しよ
うとするものである一0発明の構成 本発明は、ロータ磁石と、ロータ磁石上に貼付けられた
磁性体又は導電性非磁性体の薄板と、各相毎に中間点を
有し、かつスター結線された多相ステータ巻線と、正弦
波状高周波発振器と、カップリングコンデンサと、前記
高周波電圧を検出するためのコイル又は抵抗より構成さ
れており、ロータ位置検出センサを不要とし、かつ適用
範囲の広いロータ位置検出回路を提供できる。
Purpose of the Invention The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide a rotor position detection circuit that does not require a rotor position detection sensor and can be applied to a three-phase or more polyphase non-commutated motor. 10 Structure of the Invention The present invention comprises a rotor magnet, a thin plate made of a magnetic material or a conductive non-magnetic material pasted on the rotor magnet, and a star-connected multi-layer structure having an intermediate point for each phase. Consisting of a phase stator winding, a sinusoidal high-frequency oscillator, a coupling capacitor, and a coil or resistor for detecting the high-frequency voltage, rotor position detection eliminates the need for a rotor position detection sensor and has a wide range of applications. We can provide the circuit.

実施例の説明 以下、本発明に係る実施例を図面と共に説明する。尚、
電動機形式として3相4極タイプの電動機を例にとり以
下説明を行なう。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments according to the present invention will be described with reference to the drawings. still,
The following explanation will be given using a three-phase, four-pole type motor as an example.

第3図は3相4極タイプの電動機の一例であり、6はロ
ータ磁石、7a1.7a2はA相ステータ巻線、7a1
,7b2はB相ステータ巻線、7 C1,7C2はC相
ステータ巻線であり、0点を中性点としてスター結線を
されている。8はロータ磁石6の表面上に貼られ、かつ
機械角90°(電気角180°)の幅を有した2枚の薄
い磁性板又は導電性非磁性板であり、2枚の板は180
°位置に貼られている。
Figure 3 shows an example of a three-phase, four-pole type electric motor, where 6 is a rotor magnet, 7a1.7a2 is an A-phase stator winding, and 7a1
, 7b2 are B-phase stator windings, and 7C1 and 7C2 are C-phase stator windings, which are star-connected with the 0 point as the neutral point. Reference numeral 8 denotes two thin magnetic plates or conductive non-magnetic plates that are pasted on the surface of the rotor magnet 6 and have a width of 90 degrees mechanical angle (180 degrees electrical angle), and the two plates have a width of 180 degrees.
It is affixed at the ° position.

第4図は、本発明に係るロータ位置検出回路の一実施例
である。9は相電流切換用トランジスタであり、1oは
高周波(数10 KHz−数100 KHz )の正弦
波電圧発振器である。発振器10の一端は、抵抗11,
12.13及びカップリングコンデンサ14,15.1
6を介して、各々ステータ巻線、7a、7b、7cの中
間点(D点、E点、F点)に接続されている。発振器1
0の他の一端は、カップリングコンデンサ17を介して
ステータコイルの中性点0点に接続されている。この様
な構成に於いてカップリングコンデンサ14. 16.
16゜17の容量を十分大きくしておけば、ステータ巻
線7 a 1 、7 b 1 、7 c 1が高周波阻
止用リアクトルとして作用するため、発振器1oの発振
電圧voscは殆んど各々抵抗11,12.13とステ
ータコイル7 R2、y b2 、7 C2に印加され
る。
FIG. 4 shows an embodiment of the rotor position detection circuit according to the present invention. 9 is a phase current switching transistor, and 1o is a high frequency (several 10 KHz to several 100 KHz) sine wave voltage oscillator. One end of the oscillator 10 is connected to a resistor 11,
12.13 and coupling capacitors 14, 15.1
6 to intermediate points (points D, E, and F) of the stator windings 7a, 7b, and 7c, respectively. Oscillator 1
The other end of 0 is connected to the neutral point 0 of the stator coil via a coupling capacitor 17. In such a configuration, the coupling capacitor 14. 16.
If the capacitances of the oscillators 16 and 17 are made sufficiently large, the stator windings 7 a 1 , 7 b 1 , and 7 c 1 will act as high-frequency blocking reactors, so that the oscillation voltage vosc of the oscillator 1o will almost always be the same as that of each resistor 11. , 12.13 and the stator coils 7 R2, y b2 , 7 C2.

18は整流回路、19.20は三差動スイッチング回路
であり、トランジスタ21,22.23の内ベース電位
が最も低いトランジスタが導通し、又、トランジスタ2
4,26.26の内ベース電位が最も高いトランジスタ
が導通する。抵抗27゜28はバイアス用抵抗である。
18 is a rectifier circuit, 19.20 is a three-differential switching circuit, in which the transistor with the lowest base potential among transistors 21, 22, and 23 is conductive;
4, 26, and 26, the transistor with the highest base potential becomes conductive. Resistors 27 and 28 are bias resistors.

29,30.31は各々高周波信号の検出基準点を作る
ためのインダクタンス及び抵抗であり、各々L(ハ)、
R1(ロ)。
29, 30, and 31 are inductance and resistance for creating a detection reference point for high-frequency signals, respectively, and L (c),
R1 (b).

R2(Q)の値を持っている。It has a value of R2(Q).

第6図に、高周波の正弦波電圧のベクトル図を示す。H
G Fi発振器9の発振電圧”oscである。
FIG. 6 shows a vector diagram of a high frequency sinusoidal voltage. H
The oscillation voltage of the G Fi oscillator 9 is "osc".

ここで第4図に於いて発振器1o→抵抗11→力ツプリ
ングコンデンサ14→A相ステータ巻線7a2→カップ
リングコンデンサ17→発振器1゜のループの正弦波状
高周波電圧のベクトル図を考えて見る。カップリングコ
ンデンサ14,170容量を充分に大きくしておけば発
振器1oの発振電圧voscは殆んど抵抗11とステー
タコイル? a 2に印加される事となる。ここでステ
ータコイル7a2の抵抗分に印加される電圧を”MR+
 インダクタンス分に印加される電圧をvMLとし、さ
らに抵抗11に印加されを電圧をvRとする。この時の
高周波電圧のベクトル図は、第6図の、G点→X点→に
点→H点→G点で表わす事ができる。
Here, in FIG. 4, consider the vector diagram of the sinusoidal high frequency voltage of the loop of oscillator 1o→resistor 11→power spring capacitor 14→A phase stator winding 7a2→coupling capacitor 17→oscillator 1°. If the capacitances of the coupling capacitors 14 and 170 are made sufficiently large, the oscillation voltage VOSC of the oscillator 1o will be almost the same as that of the resistor 11 and the stator coil. It will be applied to a2. Here, the voltage applied to the resistance of the stator coil 7a2 is "MR+
The voltage applied to the inductance is vML, and the voltage applied to the resistor 11 is vR. The vector diagram of the high frequency voltage at this time can be represented by point G→point X→point→point H→point G in FIG.

今ここで第3図に於いて、薄板8は磁性体板であるとし
、ステータ巻線7a2との相対角度関係が第3図の如く
であるとすると巻線7 a 2と磁性板8が対向してい
るためステータコイル782の高周波に対するインダク
タンスが最大となり、従って前記インダクタンスに印加
される電圧vML も最大となる。(もし薄板8が導電
性非磁性体板ならばうず電流効果によりステータ巻線7
 a 2のインダクタンスは最小となシ、従って前記イ
ンダクタンスに印加される電圧vML は最小となる。
Now, in FIG. 3, if the thin plate 8 is a magnetic plate and the relative angle relationship with the stator winding 7a2 is as shown in FIG. 3, then the winding 7a2 and the magnetic plate 8 are facing each other. Therefore, the inductance of the stator coil 782 to high frequencies becomes maximum, and therefore the voltage vML applied to the inductance also becomes maximum. (If the thin plate 8 is a conductive non-magnetic plate, the stator winding 7
The inductance of a2 is minimum, so the voltage vML applied across said inductance is minimum.

)第6図に於いてKH?′ivMLが最大の場合を表示
している。
) In Figure 6, KH? The case where 'ivML is maximum is displayed.

次に第3図に於いてロータが機械角で900回転した場
合を考えて見ると、ステータコイル7a2に対向するロ
ータ上に磁性板8が対向しなくなり、従ってステータ巻
線7a2のインダクタンスは最小となりvMLも最小と
なる。(薄板8が導電性非磁性体板ならばvMLは最大
となる。)第5図に於いてに’HはvMLが最小の場合
を表示している。さらにこの場合、X点の電位は第6図
に於いてX′点に移動している。
Next, considering the case where the rotor rotates 900 mechanical angles in FIG. 3, the magnetic plate 8 no longer faces the rotor facing the stator coil 7a2, and therefore the inductance of the stator winding 7a2 becomes minimum. vML is also minimized. (If the thin plate 8 is a conductive non-magnetic material plate, vML will be maximum.) In FIG. 5, 'H' indicates the case where vML is minimum. Furthermore, in this case, the potential at point X has moved to point X' in FIG.

ここで、インダクタンス29及び抵抗30.31の値を
適当に選べば1点の電位は第6図に示す如く、X′点に
非常に近づける事ができる。従って第4図の1点からX
点を見た場合、ロータの回転に対応して高周波電圧のベ
クトルは第6図に於いてIXから、殆んどゼロの値に近
いIX’まで変化させ不事ができる。
Here, if the values of the inductance 29 and the resistance 30.31 are appropriately selected, the potential at one point can be made very close to the point X' as shown in FIG. Therefore, from one point in Figure 4,
When looking at the points, it can be seen that in response to the rotation of the rotor, the vector of the high frequency voltage changes from IX in FIG. 6 to IX', which is almost at a value of zero.

第6図aに、ロータ回転角θに対する1点とX点間の高
周波電圧波形の変化の様子を示す。
FIG. 6a shows how the high frequency voltage waveform changes between point 1 and point X with respect to the rotor rotation angle θ.

以上の説明と全く同様に、電気角で120°シフトされ
た形で1点とY点間及び1点とX点間の高周波電圧波形
が得られ、各々、第6図のb及びCに変化の様子を示す
In exactly the same way as the above explanation, high frequency voltage waveforms between point 1 and point Y and between point 1 and point X are obtained in a form shifted by 120 degrees in electrical angle, and change to b and c in Fig. 6, respectively. The situation is shown below.

この後の高周波信号の処理の方法は、抵抗27゜28に
よって1点に適当なバイアス電圧を与え、整流回路18
によって整流し、その出力電圧の大きさによって三差動
スイッチング回路19及び2゜を動作させ、最終的に相
電流切換用トランジスタ群9をスイッチングする。本実
施例に於いては、整流回路18や差動スイッチング回路
19.20をトランジスタやダイオードを用いて説明し
たが、OPアンプやディジタルICを用いても構成でき
る事は明らかである。
The subsequent method of processing the high frequency signal is to apply an appropriate bias voltage to one point using the resistor 27 and 28, and then use the rectifier circuit 18.
The three differential switching circuits 19 and 2 degrees are operated depending on the magnitude of the output voltage, and finally the phase current switching transistor group 9 is switched. In this embodiment, the rectifier circuit 18 and the differential switching circuits 19 and 20 are explained using transistors and diodes, but it is clear that they can also be constructed using an OP amplifier or a digital IC.

又、本実施例に於いては、電動機形式として3相4極式
電動機を例にとって説明したが、各相のステータコイル
の中間点(各相コイルの半分は高周波信号阻止用リアク
トルとして使用するだけであるから、巻数的に正確に中
間的である必要はない。)の引出しが可能であり、かつ
スター結線されているステータ巻線であれば、3相4極
式に限られるものでない。
In addition, in this embodiment, a 3-phase 4-pole motor was used as an example of the motor type, but the midpoint of the stator coils of each phase (half of each phase coil is only used as a reactor for blocking high frequency signals) Therefore, it is not necessary that the number of turns be precisely intermediate.) The stator winding is not limited to the three-phase four-pole type as long as it can be drawn out and is star-connected.

さらに、ロータ磁石上に貼付けられた導電性非磁性体の
薄板80代りに、薄板8と同一形状に銀やアルミ等の細
粉を含んだ導電性塗料を塗布又は印刷をしても同様の効
果が得ら・れる事も明白である。
Furthermore, the same effect can be obtained by applying or printing a conductive paint containing fine powder of silver, aluminum, etc. in the same shape as the thin plate 8 instead of the conductive non-magnetic thin plate 80 pasted on the rotor magnet. It is also clear that it can be obtained.

発明の詳細 な説明してきた様に、本発明に係るロータ位置検出回路
は、ロータ位置検出センサを必要とせず、かつ、従来例
の様に2相式電動機に限定される事なく、効率の良い両
方向通電方式の3相以上の電動機にも適用が可能である
As described in detail, the rotor position detection circuit according to the present invention does not require a rotor position detection sensor, is not limited to two-phase electric motors as in the conventional example, and is highly efficient. It can also be applied to a three-phase or more bidirectional current-carrying motor.

従って、無整流子電動機を構成する上で、ロータ位置検
出部のコスト及び寸法を大巾に低減し、かつその応用範
囲も広く、その工業的価値は非常に大きいものがある。
Therefore, when constructing a commutatorless electric motor, the cost and size of the rotor position detecting section can be greatly reduced, and its application range is wide, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

明に係る電動機の正面図、第4図は本発明に係る回路図
、第6図は第4図の各部の電圧ベクトル図、第6図は第
4同各部の電圧波形図である。 6・・・・・・ロータ磁石、7・・・・・・ステータ巻
線、8・・・・・・ロータ磁石上に貼られた磁性体又は
導電性非磁性体の薄板、10・・・・・・高周波正弦波
発振器、14゜15.16.17・・・・・・カップリ
ングコンデンサ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 cL 第2図 第4図
FIG. 4 is a circuit diagram according to the present invention, FIG. 6 is a voltage vector diagram of each part of FIG. 4, and FIG. 6 is a voltage waveform diagram of each part of FIG. 4. 6...Rotor magnet, 7...Stator winding, 8...Thin plate of magnetic material or conductive non-magnetic material pasted on the rotor magnet, 10... ...High frequency sine wave oscillator, 14゜15.16.17...Coupling capacitor. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure cL Figure 2 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)電気角で1800の幅を持つ磁性体又は導電性非
磁性体の薄板を電気角で1800間隔に貼9合わせたロ
ータ磁石と、各相コイル毎に中間点を有し、かつスター
結線された中性点を有する多相ステータ巻線と、ステー
タ巻線を付勢するだめの駆動トランジスタ群と、ロータ
位置検出用の正弦波状高周波発振器と、前記高周波発振
器の一端から前記ステータ巻線の各相の中間点に各々接
続された抵抗RとカップリングコンデンサCの直列回路
群と、前記発振器の他端から前記ステータ巻線の中性点
の間に接続されたカップリングコンデンサと、前記抵抗
RとカップリングコンデンサCの直列回路群が接続され
ている側の前記発振器の一端から、他の一端の間に、順
にコイル(インダクタンス分:L)と第1と第2の抵抗
R,,R2を直列接続した直列回路とを備え、前記第1
の抵抗R1と抵抗R2の接続点と、前記抵抗Rとカップ
リングコンデンサCとの接続点群との間に発生する高周
波電圧の振幅の変化を、ロータ位置検出信号として用い
るよう構成した無整流子電動機のロータ位置検出回路。
(1) A rotor magnet consisting of thin plates of magnetic material or conductive non-magnetic material each having a width of 1800 in electrical angle and pasted together at intervals of 1800 in electrical angle, with a midpoint for each phase coil, and a star connection. a multiphase stator winding having a neutral point, a drive transistor group for energizing the stator winding, a sinusoidal high frequency oscillator for detecting the rotor position, and a sine wave high frequency oscillator for rotor position detection; A series circuit group of a resistor R and a coupling capacitor C each connected to the midpoint of each phase, a coupling capacitor connected between the other end of the oscillator and the neutral point of the stator winding, and the resistor A coil (inductance: L) and first and second resistors R, , R2 are connected in order between one end of the oscillator to which the series circuit group of R and coupling capacitor C is connected and the other end. and a series circuit in which the first
A non-commutator configured to use, as a rotor position detection signal, a change in the amplitude of a high frequency voltage generated between a connection point between the resistor R1 and the resistor R2, and a group of connection points between the resistor R and the coupling capacitor C. Electric motor rotor position detection circuit.
(2)ロータ磁石に貼付けられた導電性非磁性体の薄板
と同じ形状に、ロータ磁石上に導電性塗料を塗布した特
許請求の範囲第1項記載の無整流子電動機のロータ位置
検出回路。
(2) The rotor position detection circuit for a commutatorless motor according to claim 1, wherein a conductive paint is applied on the rotor magnet in the same shape as the conductive non-magnetic thin plate attached to the rotor magnet.
JP59064026A 1984-03-30 1984-03-30 Rotor position detector of commutatorless motor Granted JPS60207489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59064026A JPS60207489A (en) 1984-03-30 1984-03-30 Rotor position detector of commutatorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59064026A JPS60207489A (en) 1984-03-30 1984-03-30 Rotor position detector of commutatorless motor

Publications (2)

Publication Number Publication Date
JPS60207489A true JPS60207489A (en) 1985-10-19
JPH0546197B2 JPH0546197B2 (en) 1993-07-13

Family

ID=13246216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59064026A Granted JPS60207489A (en) 1984-03-30 1984-03-30 Rotor position detector of commutatorless motor

Country Status (1)

Country Link
JP (1) JPS60207489A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251785A2 (en) * 1986-07-01 1988-01-07 Conner Peripherals, Inc. Electric motor control method and apparatus
WO1999009645A1 (en) * 1997-08-18 1999-02-25 Rolf Strothmann Separately excited electric machine
DE4090927B4 (en) * 1989-06-01 2006-09-21 Papst Licensing Gmbh & Co. Kg Incorporated position sensor for collectorless DC motor - uses evaluation of currents fed through motor inductances
EP2293430A1 (en) * 2009-09-07 2011-03-09 Technische Universität Darmstadt Device and method for rotor positioning at low speed or standstill

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251785A2 (en) * 1986-07-01 1988-01-07 Conner Peripherals, Inc. Electric motor control method and apparatus
DE4090927B4 (en) * 1989-06-01 2006-09-21 Papst Licensing Gmbh & Co. Kg Incorporated position sensor for collectorless DC motor - uses evaluation of currents fed through motor inductances
WO1999009645A1 (en) * 1997-08-18 1999-02-25 Rolf Strothmann Separately excited electric machine
US6366037B1 (en) 1997-08-18 2002-04-02 Rolf Strothmann Separately excited electric machine
EP2293430A1 (en) * 2009-09-07 2011-03-09 Technische Universität Darmstadt Device and method for rotor positioning at low speed or standstill
WO2011026988A3 (en) * 2009-09-07 2011-05-19 Technische Universität Darmstadt Device and method for determining the rotor position at a low speed or during a standstill
US20120229119A1 (en) * 2009-09-07 2012-09-13 Technische-Universitat Darmstadt Device and Method for the Detection of the Rotor Position at Low Rotational Speeds or at a Standstill

Also Published As

Publication number Publication date
JPH0546197B2 (en) 1993-07-13

Similar Documents

Publication Publication Date Title
JP2698013B2 (en) Position detection device
JP2001235307A (en) Rotary type position detecting apparatus
US11990801B2 (en) Single substrate resolver/rectifier for brushless wound field synchronous machines
US4659953A (en) Magnetic structure for synchro and tachometer
JP2677330B2 (en) Brushless electromechanical device
JPS6248480B2 (en)
JP2624747B2 (en) Resolver
JPS60207489A (en) Rotor position detector of commutatorless motor
JP3429464B2 (en) Variable reluctance angle detector
EP0234663A1 (en) Brushless d.c. motor
JPH0551087B2 (en)
JP2001272204A (en) Torsion quantity measuring apparatus
JP2556383B2 (en) Magnetic resolver
JPH0213556B2 (en)
JPS6223353A (en) Brushless motor
JPH0346515A (en) Magnetic resolver
JPS605736Y2 (en) Electronic commutator motor
JPS5927220A (en) Digital rotation detector
JPS5837790B2 (en) Rotor position detection circuit for commutatorless motor
JPH0356818A (en) Rotation angle detecting device
JPH01284713A (en) Position and speed detecting device
JPH05111284A (en) Driving circuit for brushless motor
KR0150666B1 (en) Speed generator
JP3498660B2 (en) Drive circuit for rotating electric machine
JPH06153480A (en) Speed detector for brushless motor