JPS60206448A - Catalyst carrier for purifying exhaust gas - Google Patents

Catalyst carrier for purifying exhaust gas

Info

Publication number
JPS60206448A
JPS60206448A JP59061827A JP6182784A JPS60206448A JP S60206448 A JPS60206448 A JP S60206448A JP 59061827 A JP59061827 A JP 59061827A JP 6182784 A JP6182784 A JP 6182784A JP S60206448 A JPS60206448 A JP S60206448A
Authority
JP
Japan
Prior art keywords
oxide
rare earth
ln2o3
alumina
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59061827A
Other languages
Japanese (ja)
Inventor
Hiroshi Tabata
洋 田畑
Hidenori Yasuda
安田 秀則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59061827A priority Critical patent/JPS60206448A/en
Publication of JPS60206448A publication Critical patent/JPS60206448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance purification efficiency, by using a catalyst carrier formed by providing an activated alumina layer, which contains oxide based on Ln2O3 (Ln: an elememt of a La-series) wherein carbon dioxide is penetrated between rare earth element ions showing 7-coordination, to the surface of refractory oxide. CONSTITUTION:Carbonate such as ammonium carbonate and oxide or hydroxide of a rare earth element are mixed and baked at 250-650 deg.C to obtain Ln2O3 having CO2 penetrated thereinto. This Ln2O3 is applied to oxide such as gamma- alumina having a specific surface area of 20m<2>/g or more so as to coat the surface thereof. Ln2O3 is pref. contained in the coating layer in an amount of 0.07mol or more as Lanthanum. By this method, catalytic activity at a low temp. can be enhanced.

Description

【発明の詳細な説明】 (発明の関連する分野) この発明は、特に排ガス浄化用触媒に用いる触媒の担体
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Related Field of the Invention) The present invention particularly relates to a catalyst carrier used in an exhaust gas purifying catalyst.

(従来技術) 車両の排ガス用触媒は排ガス中の炭酸ガスや未燃焼炭化
水素に対する酸化触媒および酸化窒素浄化のための還元
触媒が開発され、その後、これらの排ガスを同時浄化す
る三元触媒へと進んでいる0、触媒の担体も活性アルミ
ナからなるペムット担体からコープイライトをキ巨体と
する一体構造担体一また金属コルゲートなど多くの試み
が行なわれて来た。しかし現在セラミックスによる一体
構造担体が゛主流を占め、これに活性アルミナ層を設け
、それに触媒金属としで白金、パラジウム、ロジウムな
どの貴金属を担持させ実用に供している。近年この貴金
属の資源やコストなどの問題からと釆る民”+7担持量
を少な(する努力がなされ、例えば、特開昭48−14
600号公報に記載されているように、希土類元素が単
純な酸化物の形で助触媒成分として使われるようになっ
てきている。特にセリウムの酸化物は、触媒担体の耐熱
性向上、窒素酸化物の分解促進、或いは酸紫ストレージ
効果などの効果を期待され、ランタンの酸化物は耐熱性
向上や、酸化触媒としての性能向上などが期待されてい
る。
(Prior art) Vehicle exhaust gas catalysts were developed as oxidation catalysts for carbon dioxide and unburned hydrocarbons in exhaust gases, and reduction catalysts for purifying nitrogen oxides, and later developed into three-way catalysts that simultaneously purify these exhaust gases. Many attempts have been made to support the catalyst, ranging from a pemmet support made of activated alumina to a monolithic support made of copierite and metal corrugates. However, at present, monolithic carriers made of ceramics are the mainstream, and they are provided with an activated alumina layer and supported with noble metals such as platinum, palladium, and rhodium as catalytic metals for practical use. In recent years, due to problems such as resource and cost of precious metals, efforts have been made to reduce the amount of precious metals supported.
As described in Japanese Patent No. 600, rare earth elements are increasingly being used as promoter components in the form of simple oxides. In particular, cerium oxide is expected to improve the heat resistance of the catalyst carrier, promote the decomposition of nitrogen oxides, and have an acid purple storage effect, while lanthanum oxide is expected to improve heat resistance and performance as an oxidation catalyst. is expected.

しかしながらこうした助触媒成分が担持されているとは
言え、通常担体の発熱性が弱いため、よシ低温での触媒
活性、即ち、有害ガスの浄化率を向上させようとした場
合には、触媒金属の担持量を増やしたシ、触媒反応有効
面積、即ち、触媒担体の比表面積を大巾に多(する手段
がとられている0しかし通常の活性アルミナを被覆層の
ペースにした場合、大巾に比表面積を増加させるには、
大量の活性アルミナを一体構造担体に被覆する必要があ
るが、現実的には非常に困難である。また貴金属墓の増
加も前述した様に資源やコストなどの面から困難である
2という問題点がある。
However, even though these co-catalyst components are supported, the exothermic property of the support is usually weak, so when trying to improve the catalytic activity at a much lower temperature, that is, the purification rate of harmful gases, it is difficult to use the catalytic metal. Measures have been taken to greatly increase the effective area for catalytic reaction, that is, the specific surface area of the catalyst carrier.However, when ordinary activated alumina is used as the coating layer, To increase the specific surface area,
Although it is necessary to coat a monolithic support with a large amount of activated alumina, this is extremely difficult in practice. Furthermore, as mentioned above, it is difficult to increase the number of precious metal graves due to resource and cost considerations2.

(発明の開示) この発8Aは、かかる問題点に着目してなされたもので
、通常、触媒反応は、触媒担体、触媒金属、あるいは助
触媒成分等が著しい熱劣化を呈しない温度範囲であれば
、触媒上での温度が高い種活性が高く有害ガスの浄化率
も高(なる。つまシ、比較的低温でも助触媒層を含む担
体が発熱性金もっていれば触媒反応・\寄与し、少ない
貴金属担持量でも十分所定の浄化率を得ることが出来る
ことを利用し、耐火性酸化物の表面に、希±iの単純酸
化物の形体ではなく、特に六方晶系構造をもつ希土類酸
化物、つまシLn、0. (Ln :特にI、a系列の
元素を示す)tベースに7配位を示す希土類元素イオン
の間に二酸化炭素を侵入させた酸化物を含む活性アルミ
ナ層を設けた担体とすることによシ、該酸化物が、単純
酸化物では得られなかった発熱性を持たせ、浄化率?向
上させることによシ、上記問題点塗解決すること全目的
としている0本発明において担体上の温度が排ガスの触
媒入口での温度よシ高くなる理由をランタンを例にとっ
て説明する。
(Disclosure of the Invention) This invention 8A was made with a focus on this problem, and the catalytic reaction is normally carried out within a temperature range in which the catalyst carrier, catalyst metal, co-catalyst component, etc. do not exhibit significant thermal deterioration. For example, if the temperature on the catalyst is high, the activity will be high and the purification rate of harmful gas will be high.Even at a relatively low temperature, if the carrier including the co-catalyst layer has exothermic gold, it will contribute to the catalytic reaction. Taking advantage of the fact that it is possible to obtain a sufficient purification rate even with a small amount of precious metals supported, we apply a rare earth oxide with a hexagonal structure, rather than a rare simple oxide, to the surface of the refractory oxide. , Tsumashi Ln, 0. (Ln: particularly indicates an I, a series element) An activated alumina layer containing an oxide in which carbon dioxide has penetrated between rare earth element ions exhibiting seven coordinations is provided on the t base. By using it as a carrier, the oxide has exothermic properties that cannot be obtained with simple oxides, and by improving the purification rate, the entire purpose is to solve the above problems. The reason why the temperature on the carrier in the invention is higher than the temperature of the exhaust gas at the catalyst inlet will be explained using lanthanum as an example.

水酸化ランタンに炭酸アンモニウムを空気雰囲気中15
0℃および350’C,750℃で反応させると次式、
2 I、a (0H)s +(NH4)2 Cus →
Lambs HCO2十2NHa+ ル0によシ、二敵
化戻素侵入温の酸化ランタンが得られる。この粉末の炉
気雰囲気に於ける示差熱曲線を測定してみると第1図に
示す様にγ−アルミナや通常の酸化ランタンと異な91
00℃付近から発熱性を示すことが判明した。但し、8
00〜850℃で長時間加熱すると分解し、通常の酸化
う〜り〜になる。測定条件は、突気流量 i4 Q r
d / −1昇温速度10 C7mである。これは炭酸
ランタンを空気雰囲気中で焼成した場合も同様である。
Add ammonium carbonate to lanthanum hydroxide in an air atmosphere for 15 minutes.
When reacted at 0℃, 350'C, and 750℃, the following formula,
2 I, a (0H)s + (NH4)2 Cus →
Lambs HCO2 + NHa + 20% yields lanthanum oxide with a divalent return element penetration temperature. When we measured the differential thermal curve of this powder in the furnace atmosphere, we found that it was 91% different from that of γ-alumina and ordinary lanthanum oxide, as shown in Figure 1.
It was found that it exhibits exothermic properties from around 00°C. However, 8
When heated at 00 to 850°C for a long time, it decomposes and becomes a normal oxidized liquid. The measurement conditions are: gust flow rate i4 Q r
d/-1 heating rate is 10C7m. This also applies when lanthanum carbonate is fired in an air atmosphere.

一方一体型構造担体に、前述のような助触媒成分すなわ
ち、co、’e侵入させたLntOs k含む層を被覆
し触媒担体とする場合、発熱性質のある担体だけでよい
と言う訳には行かない、即ち自動車排ガスのようにガス
の空間速度(SV)が非常に大きい場合触媒反応をより
高めるには、被覆層には一定以上の比表面積が必要とな
る。したがって、希土類の二酸化炭素侵入型酸化物およ
び通常の酸化物とγ−アルミナのような、比表面積の大
きな活□性酸化物との併用が好ましい。希土類の二酸化
炭素侵入型酸化物とr−アルミナの混合割合を変えて比
表面積を測定した結果を第2図に示す。触媒としての比
表面積は高温耐久試験後でも20 tr?/f程度以上
は必要であり、その場合二酸化炭素侵入型のランタン酸
化物の例で示せば被覆層中ランタン換算で0.58モル
即ち約40重量パーセント以上は比表IfIj積の低下
が著しく、避けた方が良い。
On the other hand, when a monolithic structural support is coated with a layer containing cocatalyst components, ie, LntOsk infiltrated with cocatalyst components as described above, to form a catalyst support, it cannot be said that only a support with exothermic properties is sufficient. In other words, in cases where the gas space velocity (SV) is very high, such as in automobile exhaust gas, the coating layer must have a specific surface area of a certain level or more in order to further enhance the catalytic reaction. Therefore, it is preferable to use rare earth carbon dioxide interstitial oxides and ordinary oxides in combination with active oxides having a large specific surface area, such as γ-alumina. Figure 2 shows the results of measuring the specific surface area by varying the mixing ratio of rare earth carbon dioxide interstitial oxide and r-alumina. The specific surface area as a catalyst is 20 tr even after high temperature durability test? /f or more is necessary, and in that case, taking the example of carbon dioxide interstitial lanthanum oxide, if it is 0.58 mole or about 40 weight percent or more in terms of lanthanum in the coating layer, the product IfIj of the specific table will decrease significantly; Better to avoid.

また、同様に発熱現象を計測した結果第3図に示すよう
に、ランタン換算で0.07モル既も、5重量%以上の
含有量全必要とする。尚、測定条件は、空気流量40ゴ
/Nh1雰囲気温度350℃である。
Moreover, as shown in FIG. 3 as a result of similarly measuring the exothermic phenomenon, a total content of 5% by weight or more is required even if it is 0.07 mol in terms of lanthanum. The measurement conditions were an air flow rate of 40g/Nh1 and an ambient temperature of 350°C.

希土類元素の二酸化炭水侵入型酸化物を作成する方法は
、炭酸アンモニウム等の炭酸塩と希土類元素の酸化物又
は水酸化物とを混ぜて250℃〜65.0℃で空気中で
焼成する。この場合、前述の反応式では、水酸化ランタ
ン2モルに対して炭酸アンモニウム1モルで反応するこ
とになっているが、案顔には、炭酸アンモニウムを倍の
2モル位加えた方が、収率が高くなる。これは炭酸アン
モニウムが分解して発生した炭酸ガスが、酸化ランタン
の格子内に入らず、大気中に逃げる分が有る為と思われ
る。
A method for producing a carbon dioxide interstitial oxide of a rare earth element is to mix a carbonate such as ammonium carbonate with an oxide or hydroxide of a rare earth element and sinter the mixture at 250°C to 65.0°C in air. In this case, according to the above reaction formula, 2 moles of lanthanum hydroxide are to be reacted with 1 mole of ammonium carbonate, but it is possible to increase the yield by adding about 2 moles of ammonium carbonate. rate becomes higher. This is thought to be because the carbon dioxide gas generated by the decomposition of ammonium carbonate does not enter the lattice of the lanthanum oxide and escapes into the atmosphere.

他の方法としては、活性アルミナ粉末、例えばr−アル
ミナ粉末とアルミナゾルと炭酸ランタンとのスラリを作
成し、このスラリをコーディエライト等の耐火性酸化物
からなる一体型担体に塗布あるいはコーティングし、空
気中で600℃で焼成することにより、一体型担体表面
上でアルミナと混合した状態で二酸化炭素侵入型希土類
酸化物全作成することができる。
Another method is to prepare a slurry of activated alumina powder, such as r-alumina powder, alumina sol, and lanthanum carbonate, and apply or coat this slurry onto a monolithic support made of a refractory oxide such as cordierite. By firing at 600° C. in air, a carbon dioxide interstitial rare earth oxide can be entirely produced on the surface of an integral carrier in a state mixed with alumina.

尚、炭酸アンモニウムと酸化う/タンt−等モル比で混
合したものと、rアルミナ粉末10111にアルミナゾ
ル(デイスビューラル:米国コノコ社製、商品名)24
70f’t刀口え、さらに炭酸ランタン20ξf’に7
10えて得たスラリ全コーディエライト製一体構造型担
体に被覆した上、空気中で温度を変えながら1時間焼成
して、二酸化炭素侵入型希土類酸化物の収率全測定した
。この結果全第4図に示す。この結果から、スラリを用
いる方法でに、収率80%以上會得るには、370℃〜
650℃が好ましいことがわかる。
In addition, a mixture of ammonium carbonate and nitric oxide/tanium oxide in an equimolar ratio, r-alumina powder 10111, and alumina sol (Disbural: manufactured by Conoco, USA, trade name) 24
70f't Katuguchie, and 7 to lanthanum carbonate 20ξf'
The obtained slurry was coated on a carrier having an integral structure made entirely of cordierite, and then calcined in air for 1 hour while changing the temperature, and the total yield of carbon dioxide interstitial rare earth oxide was measured. The results are shown in Figure 4. From this result, in order to obtain a yield of 80% or more using the method using slurry, it is necessary to
It can be seen that 650°C is preferable.

更にセリア(CeOg)の添加は前述の発熱現象を助長
させる傾向にあるが活性アルミナ、および二酸化炭素侵
入型の希土類酸化物に対しあまシ多量になると比表面積
の低下をきたすため3〜30重量パ重量パーセン上程る
Furthermore, the addition of ceria (CeOg) tends to promote the above-mentioned exothermic phenomenon, but it is too much for activated alumina and carbon dioxide interstitial rare earth oxides to reduce the specific surface area. Weight percentage increases.

セリウム換算で3重量パーセントのヤリア會添刃口して
も発熱パターンに差はあまり出ず、35重量パーセント
添加すると単純な希土類酸化物と同様になシ発熱現象に
特異性がなくなる。また図−2に示すように比表面積の
低下が着るしくなる。
Even if 3% by weight of Yaria Aizoe in terms of cerium is added, there is not much of a difference in the heat generation pattern, and when 35% by weight is added, there is no specificity in the heat generation phenomenon as with simple rare earth oxides. In addition, as shown in Figure 2, the specific surface area decreases.

(本発明の実施例) 実施例1゜ 酸化ランタンと炭酸アンモニウム七当量づつ混合し、6
00Cで1時間空気中で焼成して二酸化炭素侵入型のラ
ンタン醒化物La、0.・C0tk得た。
(Example of the present invention) Example 1゜ Seven equivalents of lanthanum oxide and ammonium carbonate were mixed, and 6
By firing in air at 00C for 1 hour, a carbon dioxide interstitial lanthanum atomized product La, 0.・I got C0tk.

γ−アルミナ粉末1010f’にアルミナゾル(デスピ
ューラル)2470? (ゾル濃度10%)に入れ、さ
らに前述のようにして作成したLa、03・CO2を8
22入れ、これらをボールミルに入れて15時間攪拌し
てスラリを得た。このスラリ七一体構造型担体に、被覆
して乾燥した後、600℃で空気中1時間焼成した。得
られた担体Aは担体1を当、9160fの被覆層が形成
されていた。形成された被覆層全分析した結果を付表に
示す。
Alumina sol (Despural) 2470 in γ-alumina powder 1010f'? (sol concentration 10%), and further added La,03・CO2 prepared as described above to 8
22, and these were placed in a ball mill and stirred for 15 hours to obtain a slurry. This slurry was coated on a monolithic structure carrier, dried, and then fired in air at 600° C. for 1 hour. The obtained carrier A was coated with carrier 1, and a coating layer of 9160f was formed. The results of the complete analysis of the formed coating layer are shown in the attached table.

同様にして、La、0s−CO,ヲ加える量を912と
した以外は同様にして担体B’に作成した。
In the same manner, carrier B' was prepared in the same manner except that the amounts of La, 0s-CO, and wo added were changed to 912.

実施例2゜ γアルミナ粉末1010f’にアルミナゾル24709
を加えた液に、La2(COs )s k各々1092
F 、1456f 、1638f’t−混合し、ボール
ミルで15時間攪拌して3種類のスラリを作成した。こ
のスラリを実施例1と同様に一体構造型担体に被覆して
3種類の担体C,D、E’に作成した。被覆層の分析結
果を付表に示す。
Example 2 Alumina sol 24709 in γ alumina powder 1010f'
La2(COs)s k 1092 each
F, 1456f, and 1638f't were mixed and stirred in a ball mill for 15 hours to create three types of slurry. This slurry was coated on a monolithic carrier in the same manner as in Example 1 to produce three types of carriers C, D, and E'. The analysis results of the coating layer are shown in the attached table.

実施例3゜ γアルミナ101(lと前記アルミナゾル24702と
実施例1で作成しrc LatC03・CO291yと
からなる液に、さらにセリアを329.44.r、41
1r、483f”k刃口えそボールミルにより15時間
攪拌して4種類のスラリ七作成した。実施例と同様にこ
れらスラリ金円いて4種類の担体F、G。
Example 3 To a solution consisting of γ alumina 101 (l), the alumina sol 24702, and rc LatC03/CO291y prepared in Example 1, ceria was further added at 329.44.r, 41
1r, 483f''k blade mill, and stirred for 15 hours to prepare four types of slurries.Similarly to the examples, these slurries were mixed to form four types of carriers F and G.

H,It−作成した。各担体の被覆層の分析結果を付表
に示す。
H, It- created. The analysis results of the coating layer of each carrier are shown in the attached table.

実施例4゜ γアルミナ101(lと前自己アルミナゾル24702
と:[、a、 (COs )a l 180 fとセリ
ア292からなる液をボールミルに入れ15時間攪拌し
てスラリを得、このスラリ金円いて実施例1と同様に担
体を作成した。得られた担体Jの被覆層の分析結果を付
表に示す。
Example 4゜γ alumina 101 (l and preself-alumina sol 24702
A solution consisting of (COs)al 180f and ceria 292 was placed in a ball mill and stirred for 15 hours to obtain a slurry, and this slurry was used to prepare a carrier in the same manner as in Example 1. The analysis results of the coating layer of the obtained carrier J are shown in the attached table.

実施例5゜ γアルミナ101(lと前記アルミナゾル2470fと
Lat(COs)s1274Fとからなる液にセリアを
各に47f、424’/、529f’1JIJえてボー
ルミルで15時間攪拌し、3種類のスラリを作成し、実
施例1と同様にして3種類の担体K 、 L 、 M’
t−作成した0/I!r担体の被覆層の分析結果を付表
に示す0 比較例1゜ γアルミナ101(lと前記アルミナゾル24702と
を含む液に、酸化ランタンLatOsk各々69t、5
30f入れてボールミルで15時間攪拌し、2種類のス
ラリ全作成し、実施例1と同様に2種類の担体N、Ot
−作成した、これらの担体の被覆層全分析した結果を付
表に示す0 比較例2゜ γアルミナ6060Fと前l己アルミナゾル14820
t(!:に混ぜた液を6つに分け、各液に、La、 0
□69とセ’J 7 (Cent) 62 t 、 I
、a10375 fとCe Ot526 f 、 La
、03525 fとCe0.83 f 、 La20゜
5152とCeO,384y * CeO,のみ235
9゜ceo、のみ345F加えてボールミルで各15時
間攪拌し、6a類のスラリ全作成し、実施例1と同様に
6種類の担体P、Q、R,S、T、U會作成した。被覆
層を分析した結果全付表に示す。
Example 5 47f, 424'/, and 529f'1JIJ of ceria were added to a liquid consisting of γ alumina 101 (l), the alumina sol 2470f, and Lat(COs)s1274F, and the mixture was stirred in a ball mill for 15 hours to form three types of slurries. Three types of carriers K, L, M' were prepared in the same manner as in Example 1.
t-Created 0/I! The analysis results of the coating layer of the r carrier are shown in the attached table.
30f and stirred in a ball mill for 15 hours to prepare two types of slurry.Similarly to Example 1, two types of carriers N and Ot were added.
- The results of the analysis of all the coating layers of these carriers prepared are shown in the attached table.
Divide the solution mixed with t(!: into 6 parts, and add La, 0 to each part.
□69 and Ce'J 7 (Cent) 62 t, I
, a10375 f and Ce Ot526 f, La
, 03525 f and Ce0.83 f , La20°5152 and CeO, 384y * CeO, only 235
9°ceo and 345F were added and stirred in a ball mill for 15 hours each to prepare a slurry of type 6a, and in the same manner as in Example 1, six types of carriers P, Q, R, S, T, and U were prepared. The results of analyzing the coating layer are shown in the attached tables.

試験例 実施例1〜5および比較例1,2で作成した担体21種
類を塩化白金酸と塩化ロジウムの混合溶液に含浸し、乾
燥した後空気中で550’Cで1時間焼成して21ケの
触媒t゛作成た。付着した白金とロジウムの合計量は、
担体1 cf当、1Q15Fで、白金とロジウムとの比
は重量比で15:1であった0 これらの触媒全空気中で750℃に24時間保ち、熱耐
久試験を行った。次いで、かかる触媒(寸法36φx 
60 m ) Co 1.10% ル 0.367チ HC14801)pm ′ 02 0.93チ COz 14.11% No 500 ppm HsO10% 心残 からなるガス全通してHC、Co 、 NOxの転換率
を測定した。ガス流量は27.5t/mで空間速度(S
V ) 27,500H、カスノ入口温度U200℃で
ある。測定した結果を付表に示す。
Test Examples 21 types of carriers prepared in Examples 1 to 5 and Comparative Examples 1 and 2 were impregnated with a mixed solution of chloroplatinic acid and rhodium chloride, dried, and then calcined in air at 550'C for 1 hour to obtain 21 types of carriers. A catalyst T was prepared. The total amount of platinum and rhodium deposited is
The ratio of platinum to rhodium was 15:1 by weight using 1 cf of support and 1 Q15F. These catalysts were kept at 750° C. for 24 hours in total air to perform a thermal durability test. Next, such a catalyst (size 36φx
60 m) Co 1.10% Le 0.367 Ch HC14801) pm ' 02 0.93 Ch COz 14.11% No 500 ppm HsO 10% Measure the conversion rate of HC, Co, and NOx through the entire gas consisting of residual gas. did. The gas flow rate is 27.5t/m and the space velocity (S
V) 27,500H, Kasuno inlet temperature U200°C. The measurement results are shown in the attached table.

尚、試験条件は、触媒の性能の差が明確になるように、
実際とは掛は離れた条件で熱耐久試験を行なった上で、
かつガスの評価温度200℃という格別低い温度で測定
している。したがって測定結果が低いようにみえるが、
実際の使用条件では一般に現在市販されている触媒と同
じ組成の触媒、比較例の担体T、Ut−用いた触媒でも
一応に排気 1規制を満足する触媒となっている。
In addition, the test conditions were set so that the difference in catalyst performance could be clearly seen.
After conducting thermal durability tests under conditions far different from actual conditions,
Moreover, the measurement was performed at an extremely low gas evaluation temperature of 200°C. Therefore, although the measurement results seem to be low,
Under actual usage conditions, even catalysts with the same composition as currently commercially available catalysts, catalysts using carriers T and Ut- in the comparative examples, are catalysts that at least satisfy the Emission Regulation 1.

付表かられかるように、本発明の担体音用いた触媒は、
従来の担体を用いた触媒より排ガス転換性能が良<、シ
たがって、実際の使用条件にお込ても、特に低温活性が
優れていることがわかる0尚、希土類元素としてl、a
で説明したが、酸化物として六方晶系構造rとる希土類
元素は、同様に二酸化炭素侵入型酸化物の構造が得られ
、同様の効果が得られる。
As can be seen from the attached table, the catalyst using carrier sound of the present invention is
It has better exhaust gas conversion performance than catalysts using conventional carriers. Therefore, even under actual usage conditions, it can be seen that low-temperature activity is especially excellent. Furthermore, as rare earth elements, l, a
As explained above, rare earth elements having a hexagonal crystal structure r as oxides similarly have a structure of a carbon dioxide interstitial oxide, and the same effects can be obtained.

(発明の効果) 以上説明したように、本発明はその構成を、耐火性酸化
物の表面に、六方晶系構造を示す希土類元素の酸化物に
二酸化炭X’に結晶格子間に侵入させてなる酸化物を含
む活性アルミナ層を設けた触媒用担体としたことによシ
、触媒とした場合に触媒活性、特に低温における触媒活
性を向上させ得るという効果がある。
(Effects of the Invention) As explained above, the present invention has a structure in which carbon dioxide The use of a catalyst carrier provided with an activated alumina layer containing an oxide has the effect of improving catalytic activity, especially catalytic activity at low temperatures, when used as a catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因は、I、a、 co、 Hco! l La20
gおよびA40gの各温度における発熱量の相対値を示
すグラフ、第2図tic La、 Os ” Cot 
ト’ A40g (!: )混合割合と比N面積との関
係を示す図、第3図はLa、O,・CO,とAt、 0
.との混合割合と発熱量との関係を示す図、第4因は焼
成温度と:[、a、003・C02の収率との関係を示
す図である。 特許飲屋1人 日慶角勅卑株へ登社 ;〜毘人升理1 人命 鮎永 第1図 第2図
The first cause is I, a, co, Hco! l La20
Graph showing the relative value of the calorific value at each temperature of g and A40g, Figure 2.
A40g (!: ) A diagram showing the relationship between the mixing ratio and the specific N area. Figure 3 shows La, O, ・CO, and At, 0
.. The fourth factor is a diagram showing the relationship between the mixing ratio and the calorific value, and the fourth factor is the relationship between the firing temperature and the yield of: [, a, 003・C02. 1 person at a patent bar joins Nikkei Kakuchokuhibu; ~ Bijin Masuri 1 Human Life Ayu Naga Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1) 耐火性酸化物の表面に、六方晶系構造を示す希
土類元素の酸化物に二酸化炭素全結晶格子間に侵入させ
てなる酸化物を含む活性アルミナ層を設けたことを特徴
とする排ガス浄化用触媒担体
(1) An exhaust gas characterized by providing on the surface of a refractory oxide an activated alumina layer containing an oxide formed by intercalating a carbon dioxide total crystal lattice into a rare earth element oxide exhibiting a hexagonal crystal structure. Purification catalyst carrier
JP59061827A 1984-03-29 1984-03-29 Catalyst carrier for purifying exhaust gas Pending JPS60206448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59061827A JPS60206448A (en) 1984-03-29 1984-03-29 Catalyst carrier for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59061827A JPS60206448A (en) 1984-03-29 1984-03-29 Catalyst carrier for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS60206448A true JPS60206448A (en) 1985-10-18

Family

ID=13182311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59061827A Pending JPS60206448A (en) 1984-03-29 1984-03-29 Catalyst carrier for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS60206448A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658370A1 (en) * 1993-12-17 1995-06-21 Toyota Jidosha Kabushiki Kaisha Process for producing exhaust-gases-purifying catalyst
US8715603B2 (en) 2002-05-24 2014-05-06 Spectrum Pharmaceuticals, Inc. Rare earth metal compounds, methods of making, and methods of using the same
US8961917B2 (en) 2010-05-12 2015-02-24 Spectrum Pharmaceuticals, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658370A1 (en) * 1993-12-17 1995-06-21 Toyota Jidosha Kabushiki Kaisha Process for producing exhaust-gases-purifying catalyst
US5547913A (en) * 1993-12-17 1996-08-20 Toyota Jidosha Kabushiki Kaisha Process for producing exhaust-gases-purifying catalyst
US8715603B2 (en) 2002-05-24 2014-05-06 Spectrum Pharmaceuticals, Inc. Rare earth metal compounds, methods of making, and methods of using the same
US8852543B2 (en) 2002-05-24 2014-10-07 Spectrum Pharmaceuticals, Inc. Rare earth metal compounds, methods of making, and methods of using the same
US9511091B2 (en) 2002-05-24 2016-12-06 Spectrum Pharmaceuticals, Inc. Rare earth metal compounds, methods of making, and methods of using the same
US8961917B2 (en) 2010-05-12 2015-02-24 Spectrum Pharmaceuticals, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
US10350240B2 (en) 2010-05-12 2019-07-16 Spectrum Pharmaceuticals, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
US11406663B2 (en) 2010-05-12 2022-08-09 Unicycive Therapeutics, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use

Similar Documents

Publication Publication Date Title
EP0320243B1 (en) Method of treating gaseous effluents with a catalyst containing cerium and copper oxides
CN103402629B (en) Exhaust gas purification catalyst and manufacture method thereof
JPH03161052A (en) Exhaust gas cleaning catalyst and its preparation
JPH0649146B2 (en) Oxidation catalyst
US6540968B1 (en) Low-precious metal/high-rare earth oxide catalysts
EP2493594B1 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
JPH03154635A (en) Three-way conversion catalyst comprising ceria containing zirconium carrier
JP5827567B2 (en) Method for producing catalyst carrier or catalyst
JP3264697B2 (en) Exhaust gas purification catalyst and purification system using the same
JP4859100B2 (en) Exhaust gas purification catalyst
JPH09313938A (en) Catalyst for cleaning exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP3624277B2 (en) Exhaust gas purification catalyst
JPS60206448A (en) Catalyst carrier for purifying exhaust gas
JPS63178847A (en) Catalyst for purifying exhaust gas
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JPS63116744A (en) Catalyst for purifying exhaust gas and its preparation
JP3826476B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH06210174A (en) Catalyst for purification of exhaust gas and its production
JP2001009271A (en) Nitrogen oxides absorbent material and catalyst for purification of exhaust gas using the same
JP3379125B2 (en) Exhaust gas purification catalyst
JP3219815B2 (en) Exhaust gas purification catalyst
JPH0549940A (en) Exhaust gas purifying device
JPH09253491A (en) Catalyst for clarification of exhaust gas and its preparation
JPH11294150A (en) Exhaust emission control device and its use