JPS60206077A - Manufacture of amorphous semiconductor solar cell - Google Patents

Manufacture of amorphous semiconductor solar cell

Info

Publication number
JPS60206077A
JPS60206077A JP59059375A JP5937584A JPS60206077A JP S60206077 A JPS60206077 A JP S60206077A JP 59059375 A JP59059375 A JP 59059375A JP 5937584 A JP5937584 A JP 5937584A JP S60206077 A JPS60206077 A JP S60206077A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
semiconductor layer
electrodes
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59059375A
Other languages
Japanese (ja)
Inventor
Toshio Miyado
俊雄 三宿
Hideyo Iida
英世 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP59059375A priority Critical patent/JPS60206077A/en
Publication of JPS60206077A publication Critical patent/JPS60206077A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable the production of the solar cell of high conversion efficiency through simple processes by a method wherein a plurality of unit cells are connected to one another by heating superpositions of the clear electrodes of unit cells with the back electrodes of adjacent unit cells. CONSTITUTION:A plurality of light incidence side clear electrodes 2 are prepared on one surface of a photo-permeable glass substrate 1. Next, an amorphous Si semiconductor layer 3 is formed over the substrate 1. Then, the back electrode 4 of a unit cell is formed in such a manner that one edge of its long side is superposed on the clear electrode 2 of an adjacent unit cell via layer 3. A part of the metal in the electrode 4 is thermally diffused 7 to the layer 3 by irradiating the superposition 6 of the electrodes 4 and 2 with laser 5. The electrodes 2 and 4 are brought into a short circuit in such a manner, and a solar cell of plurality series connection is obtained. Thereby, the titled element of high conversion efficiency can be produced by a small number of processes.

Description

【発明の詳細な説明】 本発明は絶縁基板の一主面上に複数の単位電池を形成し
、該単位電池を相互接続する非晶質半導体太陽電池の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an amorphous semiconductor solar cell in which a plurality of unit cells are formed on one main surface of an insulating substrate and the unit cells are interconnected.

従来、前記単位電池全直列接続する方法として例えば第
1図に示すように、絶縁基板aの一主面に複数の単位電
池vI + Vt + vlの接続部すを有する第1の
t極Cを各被着し、次いで接続部すを残して複数の第1
の電極C上に連続的に連なる非晶質シリコン半導体層d
ft被着し、更に第1の電極0に対応する半導体層d上
に隣接する単位電池の第1の電極Cの接続部すに接続さ
れる接続部eを有する第2の電極fを被着する方法が知
られている。
Conventionally, as a method for connecting all of the unit cells in series, for example, as shown in FIG. each deposit, then a plurality of first
an amorphous silicon semiconductor layer d continuous on the electrode C of
ft is deposited, and further a second electrode f having a connecting portion e connected to the connecting portion of the first electrode C of the adjacent unit battery is deposited on the semiconductor layer d corresponding to the first electrode 0. There are known ways to do this.

しかしながらこの方法は、第1及び第2電極C1fの接
続部す、eがスペースの関係から細帯状に形成されるの
で、電気抵抗が高くそのため変換効率が低い不都合があ
った。
However, this method has the disadvantage that the connecting portions A and E of the first and second electrodes C1f are formed in the shape of a narrow strip due to space constraints, resulting in high electrical resistance and therefore low conversion efficiency.

また、第2図(A) (B)に示すように、絶縁基板a
のう 導体層dを穴のあいたマスク・で覆い、該半導体層dの
第1電極0の端部に対応する部分にマスクの穴を介して
金属イオンを打ち込む(第2図体))。次いで第2の電
極fを、イオンを打ち込んだ部分りと、隣接する電極0
に対向する位置に被着しく第2図(B))これを熱処理
するという複数の工程を順次行なう非晶質薄膜素子の製
造方法が知られている。
In addition, as shown in FIGS. 2(A) and 2(B), an insulating substrate a
The conductor layer d is covered with a mask having holes, and metal ions are implanted through the holes in the mask into a portion of the semiconductor layer d corresponding to the end of the first electrode 0 (second figure). Next, the second electrode f is connected to the ion-implanted area and the adjacent electrode 0.
A method of manufacturing an amorphous thin film element is known in which a plurality of steps are sequentially performed in which the thin film element is deposited at a position opposite to that shown in FIG. 2(B) and then heat treated.

この方法は、単位素子の第1電極0と隣接する単位素子
の第2の電極fとをその幅広い縁部で電気接続するので
、前記の方法に比べて電気抵抗が低く、そのため効率を
高くできるが、イオンを半導体層の所定領域に打ち込も
ためのマスク等の手段が必要であり、またイオンの打ち
込み、加熱処理の各工程を行なわなければならないから
工程が複雑でコスト高となる不都合があった。
In this method, the first electrode 0 of a unit element and the second electrode f of an adjacent unit element are electrically connected at their wide edges, so the electrical resistance is lower than in the above-mentioned methods, and therefore efficiency can be increased. However, a method such as a mask is required to implant ions into a predetermined region of the semiconductor layer, and each step of ion implantation and heat treatment must be performed, making the process complicated and costly. there were.

本発明は、前記した従来の方法の不都合を無くし、変換
効率の高い非晶質半導体太陽電池を簡単な工程で作製す
ることができる製造方法を提供することをその目的とし
たもので、絶縁基板の一主面上に複数の単位電池の第1
の電極を各形成し、該第1の電極上に連続的に連なる非
晶質半導体層を形成し、該半導体層上に単位電池の第2
の電極を隣接する単位電池の第1の電極と半導体層を介
して重なるように形成し、第1の電極と第2の電極の重
なり部分に介在する半導体層を導体化する非晶質半導体
太陽電池の製造方法において、第2の電極の前記重なり
部分を加熱して該第2の電極の一部の金属を半導体層の
前記重なり部分に拡散させることを特徴とする。
An object of the present invention is to provide a manufacturing method that eliminates the disadvantages of the conventional methods described above and can manufacture an amorphous semiconductor solar cell with high conversion efficiency through simple steps. The first of a plurality of unit batteries on one main surface of
A continuous amorphous semiconductor layer is formed on the first electrode, and a second electrode of the unit cell is formed on the semiconductor layer.
an amorphous semiconductor solar cell in which an electrode is formed so as to overlap with a first electrode of an adjacent unit cell via a semiconductor layer, and the semiconductor layer interposed in the overlapping portion of the first electrode and the second electrode is made conductive. The method for manufacturing a battery is characterized in that the overlapping portion of the second electrode is heated to diffuse some metal of the second electrode into the overlapping portion of the semiconductor layer.

以下本発明の実権例を図面につき説明する。Practical examples of the present invention will be explained below with reference to the drawings.

実施例1 従来から知られているスプレー法によって、第6図(A
) (B)に示すように、透光性カラス基板1ll(1
10酩X 60g )の−主面全面に厚さ約1.0μm
の8nO,膜を形成し、次いでこの8 n02膜を塩酸
水溶液を用いてエツチングし、間隔0.5籠で面積10
0龍×9鶴の5個の光入射側透明電極(21を作製した
。そして該基板C1lの端部に位置する1つの透明電極
(2)の端部に100闘×2間の覆いをして基板+11
を500°Cに加熱し、グロー放電法によって基板(1
1の全面罠非晶質シリコン半導体層(3)を、すなわち
そのP層はSiH4にB2H,を0.8体積算とOH4
’i 60体1a%混合したガスを用いて約1soXの
厚みに、1層は81H4カスを用いて約5oooXの厚
みに、nmUsiH4にPH8f:1体積%混合したガ
スを用いて500又の厚みに順次堆積して形成した。次
いで、単位電池の背面電極(4)(100mX 9龍)
t−1その長辺の1端縁が隣接する単位電池の透明電極
(2:と非晶質シリコン半導体層(3)を介して0,1
g重なるように、また他端縁が透明電1m 121の端
縁から0.6.、電極上にずれて透明電極(2)と重な
るようにアルミニウムを蒸着することにより形成した。
Example 1 By the conventionally known spray method, the image shown in Fig. 6 (A
) As shown in (B), 1 liter of translucent glass substrate (1
1.0μm thick on the entire main surface of 10g x 60g
8nO film was formed, and then this 8n02 film was etched using an aqueous hydrochloric acid solution, and an area of 10
Five transparent electrodes (21) on the light incident side were prepared, measuring 0 x 9. Then, the end of one transparent electrode (2) located at the edge of the substrate C1l was covered with 100 x 2. board+11
was heated to 500°C, and the substrate (1
The entire trap amorphous silicon semiconductor layer (3) of 1, that is, its P layer is SiH4, B2H, 0.8 volume calculation and OH4
'i 60 body 1a% mixed gas to a thickness of about 1 so It was formed by sequential deposition. Next, the back electrode (4) of the unit battery (100mX 9 dragons)
t-1 One edge of the long side is connected to the transparent electrode (2:) of the adjacent unit cell through the amorphous silicon semiconductor layer (3) to 0,1
g so that they overlap, and the other edge is 0.6. , was formed by vapor depositing aluminum so as to be shifted on the electrode and overlap with the transparent electrode (2).

このようにしてガラス基板(1)の−主面上に形成しf
c5個の単位電池を次のようにして直列に電気接続した
In this way, f is formed on the − main surface of the glass substrate (1).
c Five unit batteries were electrically connected in series as follows.

出力電力2,5W、パルス周波数I KHzのYAGレ
ーザ(51’eレーザービーム幅100μmとして走査
速度20++V秒で背面電極(41と光入射側透明電極
(2)との重な多部分(6)全照射して該背面電極(4
)のアルミニウムを非晶質シリコン半導体層(3)に熱
拡散(7)させ、かくて両電極(21141間を短絡状
態にし、5個直列の太lit!電池を得た(図では5個
のみを示した)。
A YAG laser (51'e) with an output power of 2.5 W and a pulse frequency of I KHz was applied at a scanning speed of 20++ V seconds with a laser beam width of 100 μm. irradiate the back electrode (4
) was thermally diffused (7) into the amorphous silicon semiconductor layer (3), thus creating a short circuit between both electrodes (21141), and obtaining 5 thick lit! batteries in series (only 5 batteries were shown in the figure). showed that).

この太陽電池を光のスペクトル強度1007W/cIi
lのソーラーシュミレータ−(AM−1)で照射して測
建した結果、その特性は短絡電流16.0−4色開放電
圧4.2V、回線因子0.62.変換効率8.3%であ
った。
This solar cell has a light spectral intensity of 1007W/cIi
As a result of irradiation and construction with a solar simulator (AM-1), the characteristics were: short circuit current 16.0, four-color open circuit voltage 4.2V, line factor 0.62. The conversion efficiency was 8.3%.

実施例2 ′iA施例1の背面電極材料であるアルミニウムに代え
てチタニウムを用い、それ以外は実施例1と同一方法、
同一条件で5個の単位電池を作成した。
Example 2 'iA The same method as in Example 1 except that titanium was used instead of aluminum as the back electrode material in Example 1.
Five unit batteries were created under the same conditions.

次いで、出力電力4.OW、パルス周波数I KH2の
YAGレーザーをレーザービーム幅100μm、走査速
度15龍/秒で背面電極と透明電極との重なり部分を照
射して5個の単位電池を直列に電気接続した太陽電池を
得た。
Next, output power 4. OW, a YAG laser with a pulse frequency of I KH2 was used to irradiate the overlapping part of the back electrode and the transparent electrode at a laser beam width of 100 μm and a scanning speed of 15 dragons/second to obtain a solar cell in which five unit cells were electrically connected in series. Ta.

これを実施例1と同じ方法9条件で測定した結果、その
特性は短絡電流15,8 、A/Cf1.開放電圧4、
Iv、回線因子0,62.変換効率8.0%であった。
As a result of measuring this under the same method and 9 conditions as in Example 1, the characteristics were as follows: short circuit current: 15.8, A/Cf: 1. open circuit voltage 4,
Iv, line factor 0,62. The conversion efficiency was 8.0%.

実施例1及び2の方法によれば、レーザービームを走査
するだけでよく、マスク等の手段を要しないで単位電池
の第2電極と隣接する単位電池の第1電極の重なり部分
間に介在する半導体層に第2を極の金JiIl!を拡散
でき、単位電池を直例接続できた。
According to the methods of Examples 1 and 2, it is only necessary to scan the laser beam, and there is no need for means such as a mask to interpose the second electrode of a unit cell and the first electrode of an adjacent unit cell between the overlapping portions. The second layer of gold is the semiconductor layer! could be diffused and unit batteries could be connected directly.

実施例5 実施例1において非晶質シリコン半導体層(3)全形成
した後に、第4図示のように、単位電池の背面電極(4
)として先ず隣接する単位電池の透明電極との重なシ部
分に、0.1w1I幅でアルミニウムをスリット状に蒸
着して第1部分電極(41) 1に形成し、次いでタン
タルを蒸着して該第1部分電極(41)と接続される第
2部分電極(4□)を形成した。
Example 5 After the amorphous silicon semiconductor layer (3) was completely formed in Example 1, the back electrode (4) of the unit battery was formed as shown in the fourth figure.
), aluminum is first vapor-deposited in the form of a slit with a width of 0.1w1I on the overlapped portion of the transparent electrode of the adjacent unit cell to form the first partial electrode (41) 1, and then tantalum is vapor-deposited to form the first partial electrode (41) 1. A second partial electrode (4□) was formed to be connected to the first partial electrode (41).

このようにして−主面上に5個の単位電池を形成したガ
ラス基板+11t−オーブンに入れて200°Cで15
分間熱処理し、アルミニウムのみを拡散(7)させ、5
個の単位電池が直列接続された太陽電池を得た。
In this way - glass substrate with 5 unit cells formed on its main surface + 11t - placed in an oven at 200°C for 15 minutes.
heat treatment for 5 minutes to diffuse only aluminum (7);
A solar cell was obtained in which several unit cells were connected in series.

この太陽電池について実施例1と同様の条件で測定した
結果、その特性は短絡電流1s、ofiA/7+開放電
圧4.2V、回線因子0.61.変換効率7.7%であ
った。
As a result of measuring this solar cell under the same conditions as in Example 1, its characteristics were: short circuit current of 1 s, ofiA/7+open circuit voltage of 4.2 V, and line factor of 0.61. The conversion efficiency was 7.7%.

との方法によれば、オーブンにより電極金属を半導体層
に熱拡散するので、量産性が高い特徴がある。
According to the method described above, since the electrode metal is thermally diffused into the semiconductor layer using an oven, it is characterized by high mass productivity.

このように本発明によると@は、絶縁基板の一生面上に
形成された単位電池の第1の電極と、隣接する単位電池
の第2の電極との重なり部分を加熱して該第2の電極の
該重なり部分の金属を半導体層に拡散させ、絶縁基板上
の複数の単位電池を相互接続するようにしたので、変換
効率の高い非晶質半導体太陽電池が少ない工程で製造で
き、コスト安である効果含有する。
As described above, according to the present invention, @ heats the overlapping portion of the first electrode of the unit battery formed on the whole surface of the insulating substrate and the second electrode of the adjacent unit battery to generate the second electrode. By diffusing the metal in the overlapping portions of the electrodes into the semiconductor layer and interconnecting multiple unit cells on an insulating substrate, amorphous semiconductor solar cells with high conversion efficiency can be manufactured in fewer steps and at lower costs. Contains certain effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の製造方法によって作製された太陽電池の
平面図、第2図(A) (B)は従来の他の製造方法に
よる各工程を示す図、第3図(A) (B)は本発明の
一実施例の一工程を示す側面図及び平面図、纂4図は本
発明の他の実権例によって作製された太陽電池の側面図
を示す。 ロト・・透光性ガラス基板 (2ト・・透明電極(3ト
・・非晶質シリコン半導体層 +47・・・背面1!極 (5)・・・し − ザ(6
)・・・東なり部分 (7)・・・拡 散 部第1図 4 第4図
Fig. 1 is a plan view of a solar cell manufactured by a conventional manufacturing method, Fig. 2 (A) (B) is a diagram showing each process by another conventional manufacturing method, and Fig. 3 (A) (B) FIG. 4 is a side view and a plan view showing one step of an embodiment of the present invention, and FIG. 4 is a side view of a solar cell manufactured according to another embodiment of the present invention. Roto... Transparent glass substrate (2 pieces... Transparent electrode (3 pieces... Amorphous silicon semiconductor layer + 47... Back side 1! pole (5)... The (6 pieces)
)...Eastward part (7)...Diffusion part Fig. 1 4 Fig. 4

Claims (1)

【特許請求の範囲】 1、 絶縁基板の一主面上に複数の単位電池の第1の電
極を各形成し、該第1の電極上に連続的に連なる非晶質
半導体層を形成し、該半導体層上に単位電池の第2の電
極を隣接する単位電池の第1の電極と半導体層を介して
重なるように形成し、第1の電極と第2の電極の重なり
部分に介在する半導体層を導体化する非晶質半導体太陽
電池の製造方法において、第2の電極の前記重なり部分
を加熱して該第2の電極の一部の金属を半導体層の前記
重なり部分に拡散させること全特徴とする非晶質半導体
太陽電池の製造方法。 2 第2の電極の前記重なシ部分をレーザービームを照
射して加熱する特許請求の範囲第1項記載の非晶質太陽
電池の製造方法。 & 第2の電極の前記重なり部分に、第2の電極のその
他の部分及び第1の電極の金属より低い温度で半導体層
に拡散する金属を被着し、該金属は拡散するが第1の電
極及び第2の電極のその他の部分の金属は拡散しない温
度で加熱することを特徴とする特許請求の範囲第1項記
載の非晶質半導体太陽電池の製造方法。
[Claims] 1. Forming first electrodes of a plurality of unit cells on one main surface of an insulating substrate, forming a continuous amorphous semiconductor layer on the first electrodes, A second electrode of a unit battery is formed on the semiconductor layer so as to overlap with a first electrode of an adjacent unit battery via the semiconductor layer, and a semiconductor interposed in the overlapping portion of the first electrode and the second electrode is formed. In the method for manufacturing an amorphous semiconductor solar cell in which the layers are made conductive, the overlapping portion of the second electrode is heated to diffuse some metal of the second electrode into the overlapping portion of the semiconductor layer. A method for manufacturing a characterized amorphous semiconductor solar cell. 2. The method of manufacturing an amorphous solar cell according to claim 1, wherein the overlapping portion of the second electrode is heated by irradiating it with a laser beam. & A metal that diffuses into the semiconductor layer at a lower temperature than the other portions of the second electrode and the metal of the first electrode is deposited on the overlapping portion of the second electrode, and the metal diffuses into the semiconductor layer at a temperature lower than that of the metal of the first electrode. 2. The method of manufacturing an amorphous semiconductor solar cell according to claim 1, wherein the metal of the electrode and other parts of the second electrode is heated at a temperature at which no diffusion occurs.
JP59059375A 1984-03-29 1984-03-29 Manufacture of amorphous semiconductor solar cell Pending JPS60206077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59059375A JPS60206077A (en) 1984-03-29 1984-03-29 Manufacture of amorphous semiconductor solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59059375A JPS60206077A (en) 1984-03-29 1984-03-29 Manufacture of amorphous semiconductor solar cell

Publications (1)

Publication Number Publication Date
JPS60206077A true JPS60206077A (en) 1985-10-17

Family

ID=13111465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59059375A Pending JPS60206077A (en) 1984-03-29 1984-03-29 Manufacture of amorphous semiconductor solar cell

Country Status (1)

Country Link
JP (1) JPS60206077A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628578A (en) * 1985-06-04 1987-01-16 シーメンス ソーラー インダストリーズ,エル.ピー. Thin film solar cell module
EP0286918A2 (en) * 1987-04-14 1988-10-19 Nukem GmbH Method of manufacturing serially switched thin-film solar cells
FR2639475A1 (en) * 1988-11-18 1990-05-25 Sanyo Electric Co METHOD FOR MANUFACTURING A PHOTOVOLTAIC DEVICE
JPH02177571A (en) * 1988-12-28 1990-07-10 Taiyo Yuden Co Ltd Manufacture of amorphous semiconductor photovoltaic element
JPH03192754A (en) * 1989-12-22 1991-08-22 Omron Corp Semiconductor device and manufacture thereof
EP1727211A1 (en) * 2005-05-27 2006-11-29 Sharp Kabushiki Kaisha Method of fabricating a thin-film solar cell, and thin-film solar cell
JP2010118693A (en) * 2010-02-22 2010-05-27 Sharp Corp Thin-film solar cell
JP2010118694A (en) * 2010-02-22 2010-05-27 Sharp Corp Thin-film solar cell and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128881A (en) * 1979-03-28 1980-10-06 Matsushita Electric Ind Co Ltd Method of fabricating semiconductor device
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array
JPS5853870A (en) * 1981-09-26 1983-03-30 Matsushita Electric Ind Co Ltd Thin film solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128881A (en) * 1979-03-28 1980-10-06 Matsushita Electric Ind Co Ltd Method of fabricating semiconductor device
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array
JPS5853870A (en) * 1981-09-26 1983-03-30 Matsushita Electric Ind Co Ltd Thin film solar battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628578A (en) * 1985-06-04 1987-01-16 シーメンス ソーラー インダストリーズ,エル.ピー. Thin film solar cell module
EP0286918A2 (en) * 1987-04-14 1988-10-19 Nukem GmbH Method of manufacturing serially switched thin-film solar cells
FR2639475A1 (en) * 1988-11-18 1990-05-25 Sanyo Electric Co METHOD FOR MANUFACTURING A PHOTOVOLTAIC DEVICE
JPH02177571A (en) * 1988-12-28 1990-07-10 Taiyo Yuden Co Ltd Manufacture of amorphous semiconductor photovoltaic element
JPH03192754A (en) * 1989-12-22 1991-08-22 Omron Corp Semiconductor device and manufacture thereof
EP1727211A1 (en) * 2005-05-27 2006-11-29 Sharp Kabushiki Kaisha Method of fabricating a thin-film solar cell, and thin-film solar cell
JP2010118693A (en) * 2010-02-22 2010-05-27 Sharp Corp Thin-film solar cell
JP2010118694A (en) * 2010-02-22 2010-05-27 Sharp Corp Thin-film solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4754544A (en) Extremely lightweight, flexible semiconductor device arrays
JPS61260683A (en) Thin film solar module and manufacture thereof
US4849029A (en) Energy conversion structures
JPH0472392B2 (en)
US20080289683A1 (en) Thin-Film Solar Cell Interconnection
JP2983684B2 (en) Method for manufacturing photovoltaic device
JPS60206077A (en) Manufacture of amorphous semiconductor solar cell
WO2019148774A1 (en) Manufacturing method of thin film solar cell
JPS62203386A (en) Manufacture of amorphous photovoltaic power generation element module
JP2586654B2 (en) Manufacturing method of thin film solar cell
JP3720254B2 (en) Thin film solar cell and manufacturing method thereof
JPS62142368A (en) Manufacture of thin film semiconductor device
JPS6265480A (en) Thin film solar battery
KR940005754B1 (en) Making method of amorphous silicon solar cell
JPS6060776A (en) Manufacture of photovoltaic device
JPS63261762A (en) Manufacture of photovoltaic device
JPS62256480A (en) Photovoltaic device
JPH0732259B2 (en) Photovoltaic device manufacturing method
JPS63164277A (en) Manufacture of solar cell
JPS63194371A (en) Manufacture of amorphous silicon solar cell
JPH067598B2 (en) Solar cell manufacturing method
JPH0671095B2 (en) Photovoltaic device manufacturing method
JPH03196679A (en) Manufacture of thin film solar battery
JPH02278865A (en) Semiconductor device and manufacture thereof
JPS61164274A (en) Manufacture of photovoltaic device