JPS60205338A - Radiation tomographic inspecting device - Google Patents

Radiation tomographic inspecting device

Info

Publication number
JPS60205338A
JPS60205338A JP59062762A JP6276284A JPS60205338A JP S60205338 A JPS60205338 A JP S60205338A JP 59062762 A JP59062762 A JP 59062762A JP 6276284 A JP6276284 A JP 6276284A JP S60205338 A JPS60205338 A JP S60205338A
Authority
JP
Japan
Prior art keywords
data
image
radiation
inspected
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59062762A
Other languages
Japanese (ja)
Other versions
JPH0345764B2 (en
Inventor
Akihiko Nishide
明彦 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59062762A priority Critical patent/JPS60205338A/en
Publication of JPS60205338A publication Critical patent/JPS60205338A/en
Publication of JPH0345764B2 publication Critical patent/JPH0345764B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make a tomographic image from recostitution easy to see by varying the data correction of a density value of each picture element of the tomographic image according to the radiation absorptivity of an object. CONSTITUTION:Fan-beam X rays FB from an X-ray source 2 are exposed to pulsatively at specific intervals of time and a rack 1 is rotated through a driving device 7 by a specific angle every time exposure is performed, for example, once. The intensity of the incident X rays is detected by a detector 3. This detection is carried out synchronously with the synchronizing signal that a data collecting device 4 outputs. Then, the collecting device 4 converts the detection output from analog to digital and the conversion output is inputted as X-ray absorption data to a computation control unit 5. Thus, data are collected while the projection direction of X rays is changed successively. The unit 5 reconstitutes an image of the tomographic surface of a body A to be inspected on the basis of the collected data and displays it on a display device 6. Here, the computation control unit 5 reconstitutes the image of the tomographic surface of the body A according to algorithm. Thus, the tomographic image after reconstitution is made easy to see.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はコンピュータ・トモグラフィ・スキャナによる
製品検査等に供するための放射線断層検査装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radiation tomography inspection apparatus for use in product inspection using a computer tomography scanner.

[発明の技術的背景] エンジンブロックやセラミック板等と云った産業製品に
おける内部欠陥や内部組成、構造などを検査できるよう
にすることは品質を保ち、不良品をチェックするうえで
重要である。
[Technical Background of the Invention] It is important to be able to inspect internal defects, internal composition, structure, etc. of industrial products such as engine blocks and ceramic plates in order to maintain quality and check for defective products.

これらのうち内部欠陥についてはX線テレビシステムを
用いてX線透視像をテレビモニタに表示し、観察したり
、或いは超音波を用いて探傷したりする方式が従来より
あるが、この場合に内部欠陥のおおよその様子はわかる
が、組成や構造まではつかむことはできず、ましてや欠
陥分布状態を正確に掴むことは困難であった。そこで、
内部欠陥や組成、構造など精度良く測定することができ
る装置としてX線コンピュータ・トモブライ・スキャナ
(以下、XICTスキャナと称する)を利用することが
考えられる。即ち、Xl1lCTスキヤナとは、例えば
扁平な扇状に広がるファンビームX線を曝射するxsi
源と、測定対象である被検体を介してこのX線源に対峙
して配され、前記ファンビームX線の広がり方向に複数
のX線検出素子を配した検出器とを用い、被検体を中心
にこのX線源と検出器を同方向に例えば1度刻みで18
0゜〜360°にわたって順次回転操作しながら被検体
の断層面の多方向からのX線吸収データを収集したのち
、コンピュータ等により、画像再構成処理を施こし、前
記断層面の像を再構成するようにしたもので、断層面多
位置について組成に応じ、2000段階にもわたる階調
で画像再構成できるので、断層面の状態を詳しく知るこ
とができる。
Among these, conventional methods for detecting internal defects include displaying and observing an X-ray fluoroscopic image on a TV monitor using an X-ray television system, or detecting flaws using ultrasonic waves. Although the general appearance of defects can be seen, it is not possible to understand the composition or structure, much less accurately understand the state of defect distribution. Therefore,
It is conceivable to use an X-ray computer tombstone scanner (hereinafter referred to as an XICT scanner) as a device that can accurately measure internal defects, composition, structure, etc. In other words, the Xl1lCT scanner is, for example, an
A detector that is placed facing the X-ray source through the object to be measured and that has a plurality of X-ray detection elements arranged in the spreading direction of the fan beam X-rays is used to detect the object. Center the X-ray source and detector in the same direction, for example, in 1 degree increments of 18
After collecting X-ray absorption data from multiple directions of the tomographic plane of the subject while sequentially rotating it over a range of 0° to 360°, a computer etc. performs image reconstruction processing to reconstruct the image of the tomographic plane. With this system, images can be reconstructed in as many as 2,000 gradation levels depending on the composition of multiple positions on the tomographic plane, so the condition of the tomographic plane can be known in detail.

上記のものは、第3世代と言われるもので、この他ペン
シル状のX線ビームを発生するXI管を用い、またこの
X線管に対向して単一の検出器を配し、これらを被検体
を介して一直線方向に平行移動走査させ(これをトラバ
ースと言う)、またこのトラバースを1回行うとX線管
及び検出器を被検体を中心に所定角度回転(これをロー
ティトと言う)させ、再びトラバースを行うと言った操
作を繰り返えしながら18o°〜36o°にゎたって方
向を変えながら被検体断面のX線吸収データを収集して
ゆくいわゆる第1世代と呼ばれるもの、また、ペンシル
ビームに変えて広がり角の狭いファンビームを発生する
X線管を用い、また、このファンビームの広がり幅をカ
バーする8チャンネル程度の検出素子を並設した検出器
とを用いて、トラバースとローティトを繰り返えすよう
にし、前記第1世代よりもデータ収集能率を^めた第2
世代と呼ばれるものなど種々の方式がある。
The above system is said to be the 3rd generation, and uses an XI tube that generates a pencil-shaped X-ray beam, and a single detector placed opposite this X-ray tube. The object is scanned in parallel in a straight line (this is called a traverse), and once this traverse is performed, the X-ray tube and detector are rotated by a predetermined angle around the object (this is called a rotation). The so-called first generation method collects X-ray absorption data of the cross section of the object while changing the direction from 18o to 36o while repeating the operation of moving the object and traversing again. , by using an X-ray tube that generates a fan beam with a narrow spread angle instead of a pencil beam, and a detector with about 8 channels of detection elements arranged in parallel to cover the spread width of this fan beam. The second generation has higher data collection efficiency than the first generation by repeating rotation and rotation.
There are various methods, including one called generation.

ところで、このようなXICTスキャナは従来、もっば
ら医用の診断装置として実用に供されており、医用分野
でのX線CTスキャナは基準物質として水及び空気を用
いている。すなわち、水の持つX線吸収係数より得た再
構成のデータであるCT値をOlまた、空気のCT値!
−100(1してデータ補正していた。これは組成がほ
ぼ水に近い人体の断層像の場合には適当であったが、金
属製品などの工業製品の断層像の場合には金属のX線吸
収が大きすぎるため、上記基準物質を基準としていたの
では、その各組成のX線吸収係数がX線吸収の上限のf
R域に集中してしまうため、極端に云えば、皆同じCT
値の領域に含まれてしまうことから、適正な分解能が得
られない。従って、良い再構成画像が得られないので、
欠陥部の判別やその寸法等の測定が困難であり、そのダ
イナミックレンジなどを考慮した何らかの改善が望まれ
ていた。
By the way, such an XICT scanner has conventionally been used practically as a medical diagnostic device, and an X-ray CT scanner in the medical field uses water and air as reference substances. In other words, the CT value, which is reconstructed data obtained from the X-ray absorption coefficient of water, is also the CT value of air!
-100 (1) to correct the data. This was appropriate in the case of a tomographic image of a human body whose composition is almost water, but in the case of a tomographic image of an industrial product such as a metal product, the X Since the radiation absorption is too large, if the above reference material was used as a standard, the X-ray absorption coefficient of each composition would be f, which is the upper limit of X-ray absorption.
Because it concentrates on the R region, to put it in an extreme, everyone has the same CT
Since it is included in the value area, appropriate resolution cannot be obtained. Therefore, a good reconstructed image cannot be obtained.
It is difficult to identify defective parts and measure their dimensions, and some kind of improvement that takes into account the dynamic range has been desired.

[発明の目的] 本発明は上記の事情に鑑みて成されたもので、その目的
とするところはCTスキャナによる放射線断層検査@置
における断層画像の各画素の濃度値のデータ補正を、対
象物の放射線吸収率に応じて変えるようにし、これによ
り再構成後の断層像を見易くすることができるようにす
ることにある。
[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to correct data of the density value of each pixel of a tomographic image in a radiation tomographic examination using a CT scanner. The objective is to change the tomographic image according to the radiation absorption rate of the image, thereby making it possible to easily see the reconstructed tomographic image.

[発明の概要] すなわち本発明は上記目的を達成するため、放射線源と
、被検査体を介してこれに対向して配さ5− れる放射線検出器とを用い被検査体の特定断面に対して
その各位置および各方向からの放射線吸収データを収集
し、このデータをもとに画像再構成手段により画像再構
成処理を施して放射線吸収に基づく前記被検査体特定断
面像を再構成する装置において、前記画像再構成手段に
は予め収集した放射線吸収率が一方は大きく、また他方
は小さい異なる2種の物質の基準放射線吸収データを用
い被検査体の組成に合わせ設定した比率でこれらを加え
て補正データを作成する機能と、この補正データを前記
放射線吸収データより減算しバイアス処理する機能とを
付加し、予め収集した放射線吸収率の大小異なる2種の
物質の基準放射線吸収データを用い被検査体の組成に合
わせ設定した比率でこれらを加えて補正データを作成す
るとともに、この補正データを前記放射線吸収データよ
り減算しバイアス処理を施し、このバイアス処理後の放
射線吸収データを用いて画像再構成処理を行うようにす
る。
[Summary of the Invention] In other words, in order to achieve the above object, the present invention uses a radiation source and a radiation detector disposed opposite to this through the object to be inspected to detect a specific cross section of the object to be inspected. A device that collects radiation absorption data from each position and direction of the object, performs image reconstruction processing using an image reconstruction means based on this data, and reconstructs a specific cross-sectional image of the object to be inspected based on radiation absorption. In the image reconstruction means, standard radiation absorption data of two different substances, one of which has a large radiation absorption rate and the other of which has a small radiation absorption rate, collected in advance are added to the image reconstruction means at a ratio set according to the composition of the object to be inspected. By adding a function to create correction data based on the above radiation absorption data, and a function to perform bias processing by subtracting this correction data from the radiation absorption data, it is possible to use the standard radiation absorption data collected in advance for two types of substances with different radiation absorption rates. These are added at a ratio set according to the composition of the specimen to create correction data, and this correction data is subtracted from the radiation absorption data to perform bias processing, and the radiation absorption data after this bias processing is used to reproduce the image. Perform configuration processing.

−〇− [発明の実施例] 以下、本発明の一実施例について図面を参照しながら説
明する。本発明装置の概略的な構成を第1図に示す。図
において、1は回転可能に支持され、中央に被検査体へ
を配設するための孔1aを設けて成る架台であり、この
架台1の一端部と前記孔1aの近傍には孔1aを介して
X線源2とX線検出用の検出器3が互いに対峙して設け
である。
-〇- [Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of the apparatus of the present invention. In the figure, reference numeral 1 denotes a stand that is rotatably supported and has a hole 1a in the center for arranging the object to be inspected. An X-ray source 2 and a detector 3 for detecting X-rays are provided facing each other.

X線源2にはそのX線放射口側に重金属による絞りが取
付けてあり、この絞りにより偏平で扇状の拡がりを有す
るファンビームXIFBを検出器3に向は放射すること
ができるようになっている。
The X-ray source 2 is equipped with a heavy metal aperture on its X-ray emission port side, and this aperture allows it to emit a fan beam XIFB that is flat and has a fan-like spread toward the detector 3. There is.

このファンビームXI!IFBの拡がり角αは架台1に
おける孔1aの開口径を覆うことができる程度に予め設
定しである。
This Fan Beam XI! The spread angle α of the IFB is preset to such an extent that it can cover the opening diameter of the hole 1a in the pedestal 1.

また、前記検出器3は放射線の強さに応じた電・気信号
を出力する放射線検出素子3aを所定の間隔で複数個、
ファンビームXIIIFBの拡がり方向に並設して成る
もので、これにより空間分解能を持たせである。そして
、各放射線検出素子3aは各々の放射線検出素子3aと
X線′tIA2とを結ぶX線通路(これをX線バスと言
う)を通ってこのX線源2から到達するX線の強度を検
出する。
Further, the detector 3 includes a plurality of radiation detection elements 3a at predetermined intervals, each of which outputs an electric/electrical signal according to the intensity of radiation.
These fan beams are arranged in parallel in the spreading direction of the fan beam XIIIFB, thereby providing spatial resolution. Each radiation detection element 3a detects the intensity of the X-rays arriving from this X-ray source 2 through an X-ray path (this is called an X-ray bus) connecting each radiation detection element 3a and the X-ray 'tIA2. To detect.

放射線検出素子3aの各出力はこの出力をA/D〈アナ
ログ−ディジタル)変換することによりX線吸収を示す
投影データを得るデータ収集@璽4に与えられ、またこ
のデータ収集装[4の出力データはCTII全体の制卸
を司ると共に画像再構成を行なう計算制御ユニット5に
与えられており、この計算i制御ユニット5にはデータ
収集装置4の出力から再構成演算処理して得た被検査体
Aの断面の像等を表示するためのCRT (ブラウン管
)等による表示装[6が接続されている。尚、このよう
な構成の本装置はコンソール8がらの指令を受けると計
算制卸ユニット5が所定のシーケンスに従ってCTl1
置全体を制御し、被検査体Aの投影データ収集を行なう
。すなわち、所定の時間間隔でX線源2よりファンビー
ムX1lFBをパルス的に曝射させ、例えば1回のX線
暉射毎に駆動装置7により所定の角度だけ架台1を回転
させる。
Each output of the radiation detection element 3a is given to a data collection @ 4 which obtains projection data indicating X-ray absorption by A/D (analog-digital) conversion of this output, and the output of this data collection device [4] The data is given to a calculation control unit 5 which controls the entire CTII and performs image reconstruction. A display device [6] such as a CRT (cathode ray tube) for displaying a cross-sectional image of the body A is connected. In addition, in this device having such a configuration, upon receiving a command from the console 8, the calculation control unit 5 executes CTl1 according to a predetermined sequence.
The control unit controls the entire system and collects projection data of the object A to be inspected. That is, the fan beam X11FB is emitted in pulses from the X-ray source 2 at predetermined time intervals, and the gantry 1 is rotated by a predetermined angle by the drive device 7 for each X-ray ejection, for example.

そして、XIIItlJにより検出器3に入射したX線
の強度を該検出器3にて検出する。この入射X線の強度
検出はデータ収集装置4の出力する同期信号に同期しな
がら行われる。検出器3からは各X線バス毎にそれぞれ
の入射X線強度に応じた検出出力が出され、データ収集
装置4に入力される。
Then, the intensity of the X-rays incident on the detector 3 is detected by the detector 3 by XIIItlJ. This intensity detection of the incident X-rays is performed in synchronization with a synchronization signal output from the data acquisition device 4. The detector 3 outputs a detection output corresponding to the incident X-ray intensity for each X-ray bus, and inputs it to the data acquisition device 4.

するとデータ収集装置4はこれら検出出力をA/D変換
し、X線吸収データとして計算制御ユニット5に入力す
る。
Then, the data collection device 4 A/D converts these detection outputs and inputs them to the calculation control unit 5 as X-ray absorption data.

このようにして順次XwA投影方向をかえてデータ収集
してゆく。
In this way, data is collected while sequentially changing the XwA projection direction.

そして、この収集した各X線投影方向におけるX線吸収
データをもとに計算1IIlIIllユニツト5は被検
査体Aの断層面の画像再構成を行なう。そしてこの再構
成された画像は表示装置6に表示される。
Then, the calculation unit 5 reconstructs an image of the tomographic plane of the subject A based on the collected X-ray absorption data in each X-ray projection direction. This reconstructed image is then displayed on the display device 6.

ここで、上記計算制御ユニット5は第2図に示−9= す如きアルゴリズムで被検査体Aの断層面の画像再構成
を行なう。
Here, the calculation control unit 5 performs image reconstruction of the tomographic plane of the subject A using an algorithm as shown in FIG.

すなわち、第1乃至第4のステップatap1〜5te
p4を経て再構成処理が行なわれるが始めのステップで
ある第1のステップ5top 1はX線による種々の方
向の投影データPx (θ、k)(ただし、θは投影角
度、またkはデータ数である)を収集するルーチンでC
Tスキャナのデータ収集ステップと考えて良い。データ
収集が終ると次に第2のステップ1it8D 2に移る
。ここでは、2種のデーターD1 (θ、k)、D2 
(θ、k)より別の補正データD(θ、k)を合成する
。本装置は産業−吊線収集率の低い物質のために02 
(θ、k)としてはX線吸収率の比較的低い水の補正デ
ータを予め蓄えておく。
That is, the first to fourth steps atap1 to 5te
Reconstruction processing is performed through p4, but the first step is the first step 5top 1 is projection data Px (θ, k) of various directions by X-rays (where θ is the projection angle or k is the number of data ) in the routine that collects C
This can be thought of as the data collection step of the T-scanner. Once the data collection is complete, the process moves to the second step 1it8D2. Here, two types of data D1 (θ, k), D2
Another correction data D(θ, k) is synthesized from (θ, k). This device is suitable for industrial use for materials with low hanging wire collection rate.
For (θ, k), correction data for water, which has a relatively low X-ray absorption rate, is stored in advance.

これらの補正データDs (θ、k) 、D2 (θ、
k)は該放111線断層検査装置の撮影領域(すなわち
、10− 撮影領域とは第1図で18で示した部分であり、架台1
を回転させることにより架台1の回転中心を中心として
ファンビームXIIFBも回転するが、その回転したフ
ァンビームX線FBの外縁部に位置するX線バスを接線
として形成される円の内側領域となる)と同じ大きさ若
しくは、それ以下の大きさの鉄の塊でできた鉄ファント
ムおよびアクリル製の容器に水を詰めた水ファントムを
用いこれにX線を照射して得る。
These correction data Ds (θ, k), D2 (θ,
k) is the imaging area of the radiation 111-line tomographic examination device (i.e., the 10-imaging area is the part indicated by 18 in FIG. 1, and the mount 1
By rotating the fan beam XIIFB, the fan beam XIIFB also rotates around the center of rotation of the gantry 1, and becomes the inner area of a circle formed with the X-ray bus located at the outer edge of the rotated fan beam X-ray FB as a tangent. ) and a water phantom made of an acrylic container filled with water and irradiated with X-rays.

そして、これらの補正データDs (θ、k)1、D2
 (θ、k)を用い、新たな適正なる補正データD(θ
、k)を作る。ここで、補正データD(θ、k)は D(θ、k) 一αDl (θ、k)十βD2 (θ、k)・・・(1
)なる関係にあり、また、α、βは係数で、ここではα
十β−1の関係におくものとする。尚、係数α、βは被
検査体の物質に合わせオペレータが適正な値を選んでコ
ンソール8より入力する。
Then, these correction data Ds (θ, k)1, D2
(θ, k), new appropriate correction data D(θ
, k). Here, the correction data D(θ, k) is D(θ, k) - αDl (θ, k) + βD2 (θ, k)...(1
), and α and β are coefficients, and here α
The relationship is assumed to be 10β-1. Incidentally, the coefficients α and β are selected by the operator and are inputted from the console 8 by selecting appropriate values according to the substance of the object to be inspected.

これにより、鉄と水の中間のX線吸収の補正データが得
られる。
As a result, corrected data for X-ray absorption between iron and water can be obtained.

このようにして補正データを得ると、次に第3のステッ
プ5top3に移る。
After obtaining the correction data in this way, the process moves to the third step 5top3.

このステップではデータ収集装置4で得られた投影デー
タPx (θ、k)に対し、補正データD(θ、k)で
バイアス補正を行ない、補正後のデータP×′ (θ、
k)を得る。ここで、補正後のデータP×′ (θ、k
)は P×′ (θ、k)− −Px (θ、k)−D(θ、k)−+2)である。
In this step, bias correction is performed on the projection data Px (θ, k) obtained by the data acquisition device 4 using the correction data D (θ, k), and the corrected data Px' (θ,
k). Here, the corrected data P×′ (θ, k
) is P×′ (θ, k)−−Px (θ, k)−D(θ, k)−+2).

つぎに第4のステップ8tep4に移る。ここではP×
′ (θ、k)を用い、これをコンボリューション(積
和)し、バックブロジェクシミンするなどの従来の再構
成アルゴリズムにより再構成画像を得る。そして、この
再構成画像は表示装[6に表示される。
Next, the process moves to the fourth step 8tep4. Here P×
A reconstructed image is obtained by a conventional reconstruction algorithm such as convolution (sum-of-products) and back-projection using ′ (θ, k). This reconstructed image is then displayed on the display device [6.

このように補正データP×′ (θ、k)により投影デ
ータをバイアス補正することによりX線吸収率の高い物
質を対象としてCT像を得る場合においても飽和するこ
となく適正な階調をもって断層像を再構成することがで
きるようになる。
In this way, by bias-correcting the projection data using the correction data P×' (θ, k), even when obtaining a CT image of a material with high X-ray absorption rate, a tomographic image can be obtained with an appropriate gradation without saturation. will be able to be reconfigured.

例えば被検査体がアルミニウム材の場合、CT値は40
00位、炭酸カルシウムは1000位、鉄では1200
0位となり、鉄やアルミニウムから成る物体を考えた場
合、あるいはX線吸収が水に近いゴムの物体などを考え
た場合にはゴムは水に近いので問題はないものの鉄では
12000と云った極端に大きなCT値を有することか
ら、水に対して12000、またアルミニウムであれば
水に対し4000もの開きが生ずる。そのため投影デー
タとして2000段階程度の分解能が限界であるCTス
キャナにとって水を基準物質に設定すればアルミニウム
や鉄などはすべて上限の同−CT値をとることになり、
識別は全くできない。
For example, if the object to be inspected is aluminum, the CT value is 40.
00th place, calcium carbonate 1000th place, iron 1200th place
If we consider an object made of iron or aluminum, or a rubber object whose X-ray absorption is close to that of water, there is no problem since rubber is close to water, but iron has an extreme value of 12,000. Since aluminum has a large CT value, there is a difference of 12,000 compared to water, and in the case of aluminum, there is a difference of 4,000 compared to water. Therefore, for a CT scanner whose projection data has a resolution of about 2000 steps, if water is set as the reference material, aluminum, iron, etc. will all have the same -CT value, which is the upper limit.
Identification is not possible at all.

しかし、本発明では鉄と水のデータを基準データとして
収集し、これを被検査体の組成に応じて適宜な比率で加
え、補正データを作り、これで投影データをバイアス補
正すなわち、この補正データとの差の値をデータ値とし
て再構成するように13− しており、従って、被検査体の組成に近いX線吸収率の
物質を基準物質とした場合と同じ効果が傳られることか
ら、対象とする被検査体の断層像を高精度に、またデー
タの飽和等による像の乱れなどを生じることなく高画質
で再構成することができ、異常部分の判定誤りや、その
寸法測定のw4差も少なくなる。
However, in the present invention, iron and water data are collected as reference data, and this is added at an appropriate ratio depending on the composition of the inspected object to create correction data, and the projection data is bias-corrected using this correction data. 13-, so that the value of the difference between the It is possible to reconstruct tomographic images of the target object with high precision and high image quality without causing image disturbances due to data saturation, etc., and eliminates errors in determining abnormal areas and the w4 of dimensional measurements. The difference will also be smaller.

しかも、補正データは二つの基準物質のデータの比率を
調整できるので、被検査体の組成が何であっても対応で
きるなどの利点が得られる。
Moreover, since the correction data can adjust the ratio of the data of the two reference materials, there is an advantage that it can be used regardless of the composition of the object to be inspected.

更にまた、従来の水による補正データではX線吸収の大
きい物質のデータ(CT値)の精度が良くなかったが、
本実施例では鉄のような高い吸収率の物質のデータ値も
精度が高くなる。
Furthermore, with conventional water-based correction data, the accuracy of data (CT values) for substances with high X-ray absorption was not good;
In this embodiment, data values for materials with high absorption rates such as iron also have high accuracy.

尚、本発明は上記し且つ図面に示す実施例に限定するこ
となくその要旨を変更しない範囲内で適宜変形して実施
し得るものであり、例えば上記実施例では二つの基準物
質として鉄と水を用いたが他の物質を用いても良い。こ
の場合、異なる放射線吸収値の帯域の精度を向上させる
ことができる。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within the scope of the gist thereof. For example, in the above embodiments, iron and water are used as the two reference materials. was used, but other substances may also be used. In this case, the accuracy of bands of different radiation absorption values can be improved.

14− また、上記実施例では断層像について示したが、透視像
についても同様な変形ができる。また本発明は第3世代
のCTスキャナに限らず他の世代の各CTスキャナに対
しても適用することができる他、X線以外の他の放射線
源を利用したCTスキャナにも利用できる。
14- Furthermore, although the above embodiments have been described with respect to tomographic images, similar modifications can be made with respect to fluoroscopic images. Further, the present invention can be applied not only to the third generation CT scanner but also to other generations of CT scanners, and can also be applied to CT scanners that use radiation sources other than X-rays.

[発明の効果] 以上詳述したように本発明は、放射線源と、被検査体を
介してこれに対向して配される放射線検出器とを用い被
検査体の特定断面に対してその各位置および各方向から
の放射線吸収データを収集し、このデータをもとに画像
再構成手段により画像再構成処理を施して放射線吸収に
基づく前記被検査体特定断面像を再構成する装置におい
て、前記画像再構成手段には予め収集した放射線吸収率
が一方は大きく、また他方は小さい異なる2種の物質の
基準放射線吸収データを用い被検査体の組成に合わせ設
定した比率でこれらを加えて補正データを作成する機能
と、この補正データを加配放射線吸収データより減算し
バイアス処理する機能15− とを付加し、予め収集した放射線吸収率の大小異なる2
種の物質の基準放射線吸収データを用い被検査体の組成
に合わせ設定した比率でこれらを加えて補正データを作
成するとともに、この補正データを前記放射線吸収デー
タより減算しバイアス処理を施し、このバイアス処理後
の放射線吸収データを用いて画像再構成処理を行うよう
にしたので、被検査体の組成に合わせた適正な基準物質
を用いて放射線吸収データをバイアス補正したことと同
じ結果が得られ、従って、種々の物質の被検査体の断面
像を高精度に再構成できるようになり、欠陥部の判定や
その寸法測定を高精度に行うことができるようになるな
どの特徴を有する放射線断層検査装置を提供することが
できる。
[Effects of the Invention] As described in detail above, the present invention uses a radiation source and a radiation detector disposed opposite to the radiation source through the object to be inspected, and detects each radiation source on a specific cross section of the object to be inspected. In the apparatus that collects radiation absorption data from a position and each direction, and performs image reconstruction processing by an image reconstruction means based on this data to reconstruct the specific cross-sectional image of the inspected object based on radiation absorption. The image reconstruction means uses pre-collected reference radiation absorption data of two different substances, one with a large radiation absorption rate and the other with a small radiation absorption rate, and adds these data at a ratio set according to the composition of the inspected object to generate correction data. and a function 15- to perform bias processing by subtracting this correction data from the additive radiation absorption data.
Using the standard radiation absorption data of the seed material, add these at a ratio set according to the composition of the object to be inspected to create correction data, and then subtract this correction data from the radiation absorption data to perform bias processing. Since image reconstruction processing is performed using the processed radiation absorption data, the same result as bias-corrected radiation absorption data using an appropriate reference material tailored to the composition of the subject can be obtained. Therefore, radiation tomography inspection has features such as being able to reconstruct cross-sectional images of objects to be inspected made of various materials with high precision, and making it possible to determine defects and measure their dimensions with high precision. equipment can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
その処理アルゴリズムを示す図である。 ・・・架台、2・・・X線源、3・・・検出器、4・・
・データ収集装置、5・・・計陣制御ユニット、6・・
・表示装置、7・・・駆動装置、8・・・コンソール。 16一
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing its processing algorithm. ... Frame, 2... X-ray source, 3... Detector, 4...
・Data collection device, 5... Instrument control unit, 6...
- Display device, 7... Drive device, 8... Console. 16 one

Claims (1)

【特許請求の範囲】[Claims] 放射線源と、被検査体を介してこれに対向して配される
散開線検出器とを用い被検査体の特定断面に対してその
各位置および各方向からの放射線吸収データを収集し、
このデータをもとに画像再構成手段により画像再構成処
理を施して放射線吸収に基づく前記被検査体特定断面像
を再構成する装置において、前記画像再構成手段には予
め収集した放射線吸収率が一方は大きく、また他方は小
さい異なる2種の物質の基準放射線吸収データを用い被
検査体の組成に合わせ設定した比率でこれらを加えて補
正データを作成する機能と、この補正データを前記放射
線吸収データより減算しバイアス処理する機能とを付加
し、このバイアス処理後の放射線吸収データを用いて画
像再構成処理を行うことを特徴とする放射線断層検査装
置。
Collecting radiation absorption data from each position and direction of a specific cross section of the object to be inspected using a radiation source and a spread-line detector placed opposite to it through the object to be inspected,
In an apparatus that performs image reconstruction processing by an image reconstruction means based on this data to reconstruct the specific cross-sectional image of the object to be inspected based on radiation absorption, the image reconstruction means has a pre-collected radiation absorption rate. A function to create correction data by adding reference radiation absorption data of two different substances, one large and the other small, at a ratio set according to the composition of the inspected object, and to use this correction data to A radiation tomography examination apparatus characterized by adding a function of subtracting from data and performing bias processing, and performing image reconstruction processing using radiation absorption data after the bias processing.
JP59062762A 1984-03-30 1984-03-30 Radiation tomographic inspecting device Granted JPS60205338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59062762A JPS60205338A (en) 1984-03-30 1984-03-30 Radiation tomographic inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062762A JPS60205338A (en) 1984-03-30 1984-03-30 Radiation tomographic inspecting device

Publications (2)

Publication Number Publication Date
JPS60205338A true JPS60205338A (en) 1985-10-16
JPH0345764B2 JPH0345764B2 (en) 1991-07-12

Family

ID=13209722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062762A Granted JPS60205338A (en) 1984-03-30 1984-03-30 Radiation tomographic inspecting device

Country Status (1)

Country Link
JP (1) JPS60205338A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686303A (en) * 1979-12-18 1981-07-14 Toshiba Corp Measuring device for thickness of radiant ray
JPS5897342A (en) * 1981-12-03 1983-06-09 株式会社日立製作所 Ct scanner apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686303A (en) * 1979-12-18 1981-07-14 Toshiba Corp Measuring device for thickness of radiant ray
JPS5897342A (en) * 1981-12-03 1983-06-09 株式会社日立製作所 Ct scanner apparatus

Also Published As

Publication number Publication date
JPH0345764B2 (en) 1991-07-12

Similar Documents

Publication Publication Date Title
JP6590381B2 (en) X-ray apparatus, data processing apparatus and data processing method
JP7217020B2 (en) X-RAY DEVICE, X-RAY INSPECTION METHOD, AND DATA PROCESSING DEVICE
US6148057A (en) Apparatus and method for calibrating detectors in a computed tomography scanner
US5727041A (en) Methods and apparatus for reducing partial volume image artifacts
KR20060099412A (en) Scattering compensating method and scattering measuring method
JPWO2005011502A1 (en) Radiation tomography equipment
JP2006110342A (en) Method and apparatus for reconstruction of tilted cone beam data
US5812628A (en) Methods and apparatus for detecting partial volume image artifacts
US20100278407A1 (en) Object Identification in Dual Energy Contrast-Enhanced CT Images
US9763640B2 (en) 3D image generation method and device for G-arm X-ray machine and G-arm X-ray machine
US4138611A (en) Fan beam CT apparatus with post-processing weighting of picture element signals
JPH06181918A (en) Transmission type three-dimenisonal tomograph
Goodenough et al. Development of a phantom for evaluation and assurance of image quality in CT scanning
JPH01235839A (en) Apparatus and method for forming transmission line image
JPS6073442A (en) Radiation tomographic measuring device
JPH08168487A (en) X-ray tomography and apparatus therefor
Sire et al. X-ray cone beam CT system calibration
JPS60205338A (en) Radiation tomographic inspecting device
JPS6157840A (en) Radiation tomographic inspecting device
JP4064541B2 (en) Reference signal generating method and apparatus, and radiation tomography apparatus
JP4792187B2 (en) Deriving cross-sectional distribution from object dataset
JPS6114550A (en) Inclusion rate measuring instrument
KR100654589B1 (en) Radiation tomography method and apparatus
JPH0496875A (en) Area measuring system for tomographic image
JPS6040941A (en) Tomography apparatus