JPS60205161A - Device for removing noncondensable gas of absorption type refrigerator - Google Patents

Device for removing noncondensable gas of absorption type refrigerator

Info

Publication number
JPS60205161A
JPS60205161A JP6247884A JP6247884A JPS60205161A JP S60205161 A JPS60205161 A JP S60205161A JP 6247884 A JP6247884 A JP 6247884A JP 6247884 A JP6247884 A JP 6247884A JP S60205161 A JPS60205161 A JP S60205161A
Authority
JP
Japan
Prior art keywords
titanium
condenser
absorption
cooling water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6247884A
Other languages
Japanese (ja)
Other versions
JPH0378549B2 (en
Inventor
西川 雄治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Research and Development Co Ltd
Original Assignee
Takuma Research and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Research and Development Co Ltd filed Critical Takuma Research and Development Co Ltd
Priority to JP6247884A priority Critical patent/JPS60205161A/en
Publication of JPS60205161A publication Critical patent/JPS60205161A/en
Publication of JPH0378549B2 publication Critical patent/JPH0378549B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は多重効用吸収式冷凍i+こ於ける不凝縮性ガス
除去装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a noncondensable gas removal device in a multi-effect absorption refrigeration system.

一般に吸収式冷凍機に於いては、吸収剤として腐食性の
極めて強いリチウムブロマイド水溶液が用いられている
。そのため金属類の腐食を完全に防止することが不可能
であり、金属の腐食に伴なって小量ではあるが水素カス
が起生ずる。
Generally, in absorption refrigerators, an extremely corrosive lithium bromide aqueous solution is used as an absorbent. Therefore, it is impossible to completely prevent corrosion of metals, and as metals corrode, hydrogen scum is generated, albeit in a small amount.

ところが、吸収式冷凍機に於いては、発生する水素ガス
が画く僅かであってもこれが凝縮器や吸収器の性能に大
きな影響を与えることになり、結果として冷凍能力の大
幅な低下を招来することになる。
However, in absorption chillers, even a small amount of hydrogen gas generated has a large impact on the performance of the condenser and absorber, resulting in a significant reduction in refrigeration capacity. It turns out.

また吸収式冷凍機に於いては、吸収器や蒸発器等の低圧
部を約7油Hf a b程度の高真空度に保持すること
が総体的条件となるが、83 W iを空気の漏入が皆
無なように製作することは不6J i+目であり、少量
の空気の漏入が不可避のこととなる0しかし、空気の漏
入が浅く僅かでへると、冷凍1ルカは著しく低下して冷
凍機の運転上様々な障害を起生ずる。第2図は吸収式冷
凍機に於ける吸収器・蒸発器シェル内の窒素ガス限度と
冷凍容量の関係を示すものであり、例えば、窒素ガスが
吸収器や蒸発器等の低圧部に4%の限度で存在すると、
冷凍能力が約77%に低下すると報告されている。
In addition, in an absorption refrigerator, the overall condition is to maintain the low pressure parts such as the absorber and evaporator at a high degree of vacuum of approximately 7 oil Hf a b, but the 83 Wi It is unwise to manufacture products with no air leakage at all, and a small amount of air leakage is unavoidable.However, if the air leakage is shallow and slight, the refrigeration capacity will drop significantly. This causes various problems in the operation of the refrigerator. Figure 2 shows the relationship between the nitrogen gas limit in the absorber/evaporator shell and the refrigeration capacity in an absorption chiller. If it exists within the limit of
It is reported that the refrigeration capacity decreases to about 77%.

(高田秋−著「吸収冷凍機」社団法人 日本冷凍協会発行)。(Aki Takada - Author ``Absorption Refrigerator'' Incorporated Association Published by Japan Refrigeration Association).

而して、前述の如き水素ガスや空気等の不凝縮性ガスに
よる弊害を防止するために、従前からパラジウム金属を
用いた水素ガス除去装置やエジェクターを利用した不凝
縮性ガス除去装置、真空ポンプを利用した不凝縮性ガス
除去装置等が一般に広く開発され且つ使用されている。
In order to prevent the above-mentioned harmful effects caused by non-condensable gases such as hydrogen gas and air, hydrogen gas removal devices using palladium metal, non-condensable gas removal devices using ejectors, and vacuum pumps have been developed. Generally, noncondensable gas removal devices using the above have been widely developed and used.

しかし、前者のパラジウム金属を用いた不凝縮性ガス除
去装置は、除去の対象となる不凝縮性ガスが水素ガスの
みであるうえ、長時間使用するとパラジウム金属が脆化
したり、吸収液に触れると吸着性能が低下する等の難点
がある。
However, with the former non-condensable gas removal device using palladium metal, the only non-condensable gas to be removed is hydrogen gas, and the palladium metal becomes brittle when used for a long time, and if it comes into contact with the absorption liquid. There are drawbacks such as decreased adsorption performance.

また、後者のエゼクタ−や真空ポンプによる不凝縮性ガ
ス除去装置には、不凝縮ガスの排出時に水蒸気が同伴し
て排出され、その結果器内の冷媒風が減少したり、或い
は機器の作動不良によって逆に真空破壊を起生ずる恐れ
があるという問題がある0 本発明は、従前の多重効用吸収式冷凍機の不凝縮性ガス
除去装置に於ける上述の如き問題の解決を課題とするも
のであり、水素ガスのみならず酸素や窒素ガス等も同時
に効率よく除去できると共に、長期間に亘って安定した
除去機能を発揮することができ、然かもランニングコス
トの大幅な低減を可能とした不凝酪性ガス除去装置の堤
供を目的とするものである。
In addition, in the latter non-condensable gas removal device using an ejector or a vacuum pump, water vapor is discharged together with the non-condensable gas when it is discharged, resulting in a decrease in the refrigerant air inside the device or malfunction of the equipment. On the contrary, there is a problem that vacuum breakdown may occur due to the above-mentioned method.The present invention aims to solve the above-mentioned problems in the conventional non-condensable gas removal device of a multi-effect absorption refrigerator. It is a non-condensing product that can efficiently remove not only hydrogen gas but also oxygen and nitrogen gases at the same time. The purpose is to provide a dairy gas removal device.

本発明は、多重効用吸収式冷凍機に於いて、内部に冷却
水″8を備えた抽気用冷却器を、抽気管及び凝縮水戻り
管を介して凝縮器に連通させると共に、前記油気用冷却
器に、スポンジチタ/及び粉末チタンの何れか一方又は
両方を内部したチタン封入タンクを連通状に配設したこ
とを、発明の基本構成とするものである。
The present invention provides a multi-effect absorption chiller in which a bleed air cooler equipped with cooling water ``8'' is connected to a condenser via an bleed air pipe and a condensed water return pipe, and The basic structure of the invention is that a titanium-filled tank containing one or both of sponge titanium and powdered titanium is disposed in communication with the cooler.

以下、第1図に示す本発明の一実施例に基づいて、本発
明の詳細な説明する。
Hereinafter, the present invention will be explained in detail based on an embodiment of the present invention shown in FIG.

第1図は、本発明に係る不凝縮性ガス除去装置を適用し
た二重効用吸収式冷凍機の全体系統図であり、略7■)
ljab程度の真空度とした吸収・蒸発器l内に吸収器
2と蒸発器3を設け、冷媒散布管4から散布した冷媒5
を熱交換器6の夕)表面上で蒸発させて管内の冷水7を
冷却すると共に、吸収器2内の冷却水管束8の上方から
吸収液散布器9を介して吸収液10を散布し、冷却水1
1が流通する冷却水管8の外面に形成した液膜中に、前
記蒸発器3から流入する冷媒蒸気12を吸収する。
Figure 1 is an overall system diagram of a dual-effect absorption refrigerator to which the non-condensable gas removal device according to the present invention is applied, and is approximately 7.
An absorber 2 and an evaporator 3 are installed in an absorber/evaporator 1 with a vacuum level of about 100 ml, and a refrigerant 5 is sprayed from a refrigerant spray pipe 4.
is evaporated on the surface of the heat exchanger 6 to cool the cold water 7 in the pipes, and at the same time, the absorption liquid 10 is sprayed from above the cooling water tube bundle 8 in the absorber 2 via the absorption liquid sprayer 9, cooling water 1
The refrigerant vapor 12 flowing from the evaporator 3 is absorbed into a liquid film formed on the outer surface of the cooling water pipe 8 through which the refrigerant vapor 12 flows.

又、冷媒蒸気12を吸収した後の稀1汲収液は吸収液循
環ポンプ14により低温熱交換器I S %高温熱交換
器16を通して高混再生器17へ送られ、低温再生器1
8にて一層濃縮された後、前記散布器9に戻されて行く
In addition, the liquid collected after absorbing the refrigerant vapor 12 is sent to the high mixing regenerator 17 through the low temperature heat exchanger I S % high temperature heat exchanger 16 by the absorption liquid circulation pump 14, and then to the high mixing regenerator 17.
After being further concentrated at step 8, it is returned to the atomizer 9.

尚、第1図に於いて13は冷媒循環ポンプ、19は凝縮
器、28は凝縮器冷却水管、20は油気用冷却器、21
はチタン封入タンクである。
In FIG. 1, 13 is a refrigerant circulation pump, 19 is a condenser, 28 is a condenser cooling water pipe, 20 is an oil cooler, 21
is a titanium filled tank.

本発明に係る不凝縮性ガス除去装置Aは、前記抽気用冷
却器20及びチタン封入タンク21等から構成されてい
る。即ち、抽気用冷却器20は抽気管22を及び凝縮水
戻り管23を介して凝縮器19に連通されており、当該
抽気用冷却器20の冷却水管24へは冷水7の一部が供
給されている。尚、本実施例に於いては冷水7の一部を
冷却水管24へ供給しているが、凝縮器19の冷却水1
1の一部を利用してもよいことは勿論である。
The non-condensable gas removal device A according to the present invention is comprised of the bleed air cooler 20, the titanium-filled tank 21, and the like. That is, the bleed air cooler 20 is connected to the condenser 19 via the bleed air pipe 22 and the condensed water return pipe 23, and a portion of the cold water 7 is supplied to the cooling water pipe 24 of the bleed air cooler 20. ing. In this embodiment, a part of the cold water 7 is supplied to the cooling water pipe 24, but the cooling water 1 of the condenser 19 is
Of course, a part of 1 may be used.

前記チタン封入タンク21は抽気用冷却器20にバルブ
25を介して連通されており、その内部にはチタン展伸
材やチタン合金用原料として使用されているスポンジチ
タン若しくは粉末チタンあが、単独又は混合状態で封入
されている。
The titanium-enclosed tank 21 is connected to a bleed air cooler 20 via a valve 25, and contains sponge titanium or powdered titanium, used alone or as a raw material for titanium wrought materials or titanium alloys. Enclosed in a mixed state.

スポンジチタンや粉末チタンは水素を大量に吸着し、し
かも可逆的に水素を吸脱着する特性を有している。例え
ば、チタン19rに吸着される水素スは、理論的には4
5ON+n/であり、他の金属との水素含有量をNH値
(単位容積中の水素原子の数)で比較すると次表の如く
になる。
Titanium sponge and titanium powder have the property of adsorbing a large amount of hydrogen and reversibly adsorbing and desorbing hydrogen. For example, the amount of hydrogen adsorbed on titanium 19r is theoretically 4
5ON+n/, and when comparing the hydrogen content with other metals in terms of NH value (number of hydrogen atoms per unit volume), the following table shows the results.

また、スポンジチタンや粉末チタンへの水素の吸着は、
所謂脱着可能な可逆的吸着であり、その結果水素化した
チタンを600°C位いの温度に保持しつつ減圧処理す
ることにより、簡単に純チタンに再生することができる
In addition, the adsorption of hydrogen on titanium sponge and titanium powder is
This is so-called reversible adsorption that can be desorbed, and as a result, hydrogenated titanium can be easily regenerated into pure titanium by holding the hydrogenated titanium at a temperature of about 600° C. and subjecting it to reduced pressure treatment.

更に、スポンジチタンや粉末チタンは前述の如く水素ガ
スを吸着する他に、窒素や酸素に対する吸着性能も相当
に高く、機内に存在する殆んどの不凝縮性ガスに対して
有効に作用することができる。
Furthermore, in addition to adsorbing hydrogen gas as mentioned above, titanium sponge and titanium powder also have considerably high adsorption performance for nitrogen and oxygen, and can effectively act on most of the non-condensable gases present inside the aircraft. can.

次に、本発明に係る不凝縮性ガス除去装置Aの作用並び
に効果について説明する。
Next, the operation and effects of the noncondensable gas removal device A according to the present invention will be explained.

一般に多重効用式吸収冷凍機に於いては、金属の腐食に
起因する水素ガスは主として吸収液IOの温度が高くな
る部分、即ち高温再生器17と低温再生器18に於いて
主に発生する。そして高温再生器17内で発生した水素
ガスは、冷媒蒸気27に同伴して低温再生器18へ移送
され、低温再生器18で発生した水素ガスと共に冷媒蒸
気流に同伴して、最終的にはa m 8819内へ集め
られて行く。
In general, in a multi-effect absorption refrigerator, hydrogen gas caused by metal corrosion is mainly generated in the parts where the temperature of the absorption liquid IO becomes high, that is, in the high-temperature regenerator 17 and the low-temperature regenerator 18. The hydrogen gas generated in the high-temperature regenerator 17 is transferred to the low-temperature regenerator 18 along with the refrigerant vapor 27, and is entrained in the refrigerant vapor flow together with the hydrogen gas generated in the low-temperature regenerator 18, and finally am 8819.

一方、吸収蒸発器1等の内部へ1人した外部空気も、吸
収液循環ポンプ14により吸収液10と混合した状態で
高a i’j生器17内へ送られ、前記水素ガスの場合
と同様の経路を騒で最終的には凝縮器19内へ集められ
て行く。
On the other hand, the external air that has entered the absorption evaporator 1 and the like is also sent into the high a i'j generator 17 in a state mixed with the absorption liquid 10 by the absorption liquid circulation pump 14, and is mixed with the absorption liquid 10 by the absorption liquid circulation pump 14. It travels along a similar route and is eventually collected into the condenser 19.

この様にして凝縮器19内へ集まった不凝縮性ガスは、
引き続き抽気管22を通して抽気用冷却器20内へ順次
吸引されて行く。即ち、抽気用冷却器20内には冷却水
管24が設けられており、該冷却水管U内を流れる冷水
7によりその内部が冷却されているため、内圧が凝縮器
19内の飽和水蒸気圧より低くなっている。その結果凝
縮器19内の冷媒蒸気や不凝縮ガスが抽気用冷却器20
内へ移流することになる。この場合、抽気用冷却水が低
温であるほど不凝縮性ガスの吸引力が強力となり、本実
施列の如く冷水7を利用するのが望ましい。
The non-condensable gas collected in the condenser 19 in this way is
Subsequently, the air is sequentially drawn into the air extraction cooler 20 through the air extraction pipe 22. That is, a cooling water pipe 24 is provided in the bleed air cooler 20, and the inside thereof is cooled by the cold water 7 flowing through the cooling water pipe U, so that the internal pressure is lower than the saturated water vapor pressure in the condenser 19. It has become. As a result, refrigerant vapor and non-condensable gas in the condenser 19 are transferred to the bleed air cooler 20.
It will advect inward. In this case, the lower the temperature of the extraction cooling water, the stronger the suction force for the noncondensable gas, and it is desirable to use the cold water 7 as in this embodiment.

油気用冷却器20で凝縮した冷媒は、凝縮水戻り管23
を通して凝a 器19内へ戻されて行く。
The refrigerant condensed in the oil cooler 20 is transferred to the condensed water return pipe 23
The water is returned to the coagulator 19 through the a.

一方、油気用冷却器20内に集められた不凝縮性ガスは
、ガス分子自体の運動によってこれと連通状態となって
いるチタン封入タンク21内のスポンジチタン26と接
触し、順次スポンジチタン26内へ吸着されて行く。
On the other hand, the non-condensable gas collected in the oil cooler 20 comes into contact with the sponge titanium 26 in the titanium-filled tank 21, which is in communication with the non-condensable gas due to the movement of the gas molecules themselves, and the sponge titanium 26 sequentially It gets absorbed inside.

尚、所定時間が経過してスポンジチタン26の不凝、繁
性ガスの吸収が飽和した場合には、バルブ25を閉鎖し
てチタン封入タンク21を切り離し、加熱−g圧により
吸着ガスの脱着を行なってチタンの再生をし、再生した
スポンジチタン26は再度取付けて使用する。
In addition, when the absorption of non-condensing and heavy gases by the titanium sponge 26 is saturated after a predetermined period of time, the valve 25 is closed, the titanium-filled tank 21 is separated, and the adsorbed gas is desorbed by heating and g pressure. The titanium is recycled, and the recycled titanium sponge 26 is reattached and used.

本発明は上述の通り、凝縮器19に連通して抽気用冷却
器20を設け、これによって凝縮器19円から不凝縮性
カスを冷却器20内へ吸引すると共に、吸引し儀不凝縮
性ガスをタンク21内のスポンジチタン等により吸収す
る構成としているため、真空ポンプ等を用いることなく
連続的な不凝縮性ガスの除去が行なえると共に、除去装
置の保守管理が極めて容易になる。
As described above, the present invention provides a bleed air cooler 20 in communication with the condenser 19, thereby sucking non-condensable waste from the condenser 19 into the cooler 20, and also sucking non-condensable gas. Since the non-condensable gas is absorbed by a titanium sponge or the like in the tank 21, the non-condensable gas can be continuously removed without using a vacuum pump or the like, and maintenance of the removal device is extremely easy.

また、抽気用冷却器20内で凝縮した冷媒は凝縮器19
へ戻されて行くため、従前の真空ポンプ等を用いた除去
装置の様に冷媒が系外へ排出されることが無い。
Further, the refrigerant condensed in the bleed air cooler 20 is transferred to the condenser 19.
Since the refrigerant is returned to the system, the refrigerant is not discharged out of the system unlike in conventional removal devices using vacuum pumps or the like.

更に、スポンジチタンや粉末チタンは、水素ガスのみな
らず酸素や窒素に対しても高い吸収性能を有するため、
吸収式冷凍機内に存在すると考えられる不凝縮性ガスの
殆んと全てを極めて効率よく排除することができるうえ
、その再生も比較的簡単に行えるため、ランニングコス
トの大幅な低減を図り得る。
Furthermore, titanium sponge and titanium powder have high absorption performance not only for hydrogen gas but also for oxygen and nitrogen.
Almost all of the noncondensable gas that is thought to exist in the absorption refrigerator can be removed extremely efficiently, and it can be regenerated relatively easily, so running costs can be significantly reduced.

本発明は上述の通り秀れた実用的効用を有するものであ
る。
As mentioned above, the present invention has excellent practical utility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る不凝縮性ガス除去装置Aを適用し
た吸収式冷凍、幾の全体系統図である。 第2図は吸収式冷凍機の吸収・蒸発器/エル中の窒素カ
ス濃度と冷凍容量の関係線図である。 A 不凝縮性ガス除去装置 2 吸収器 3 蒸発器 15 低温熱交換器 16 高温熱交換器 l7 高温再生器 18 低温再生器 19 凝縮器 20 抽気用冷却器 21 チタン封入タンク 22 抽気管 23 凝縮水戻り管 24 冷却水管 25 バルブ 26 スポンジチタン等 特許出願人 株式会社 田11N総合研究所代表者志垣
政信 他1名
FIG. 1 is an overall system diagram of an absorption refrigeration system to which a noncondensable gas removal device A according to the present invention is applied. FIG. 2 is a diagram showing the relationship between the nitrogen sludge concentration in the absorption/evaporator/well of an absorption refrigerator and the refrigeration capacity. A Non-condensable gas removal device 2 Absorber 3 Evaporator 15 Low-temperature heat exchanger 16 High-temperature heat exchanger 17 High-temperature regenerator 18 Low-temperature regenerator 19 Condenser 20 Bleed air cooler 21 Titanium-filled tank 22 Bleed pipe 23 Condensed water return Pipe 24 Cooling water pipe 25 Valve 26 Sponge titanium, etc. patent applicant Masanobu Shigaki, representative of Den11N General Research Institute, and one other person

Claims (1)

【特許請求の範囲】[Claims] 吸収器(2)、蒸発器(3)、高温再生器0η、低温再
生器0椋、凝縮器QI等より成る多重効用吸収式冷凍機
に於いて、内部に冷却水管シ4)を備えた抽気用冷却器
翰を抽気管伐謁及び凝縮水戻り管力)を介して凝縮器(
IIと連通させると共に、前記油気用冷却器c1にスポ
ンジチタン及び粉末チタンの何れか一方又は両方を内蔵
したチタン封入タンク囚)を連通状に配設したことを特
徴とする吸収式冷凍機の不凝潴性ガス除去装置。
In a multi-effect absorption refrigerating machine consisting of an absorber (2), an evaporator (3), a high temperature regenerator, a low temperature regenerator, a condenser QI, etc., an air bleed system equipped with internal cooling water pipes 4) is used. The condenser is connected to the condenser (through the air bleed pipe and condensate return pipe).
2, and a titanium-filled tank containing either one or both of sponge titanium and powdered titanium is disposed in communication with the oil cooler c1. Non-condensable gas removal equipment.
JP6247884A 1984-03-29 1984-03-29 Device for removing noncondensable gas of absorption type refrigerator Granted JPS60205161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6247884A JPS60205161A (en) 1984-03-29 1984-03-29 Device for removing noncondensable gas of absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6247884A JPS60205161A (en) 1984-03-29 1984-03-29 Device for removing noncondensable gas of absorption type refrigerator

Publications (2)

Publication Number Publication Date
JPS60205161A true JPS60205161A (en) 1985-10-16
JPH0378549B2 JPH0378549B2 (en) 1991-12-16

Family

ID=13201331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6247884A Granted JPS60205161A (en) 1984-03-29 1984-03-29 Device for removing noncondensable gas of absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPS60205161A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310275A (en) * 1988-06-07 1989-12-14 Yazaki Corp Absorption type water cooling and heating machine
JPH0264858U (en) * 1988-11-07 1990-05-16
JP2001208455A (en) * 2000-01-25 2001-08-03 Honda Motor Co Ltd Absorption refrigerating machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310275A (en) * 1988-06-07 1989-12-14 Yazaki Corp Absorption type water cooling and heating machine
JPH0264858U (en) * 1988-11-07 1990-05-16
JP2001208455A (en) * 2000-01-25 2001-08-03 Honda Motor Co Ltd Absorption refrigerating machine

Also Published As

Publication number Publication date
JPH0378549B2 (en) 1991-12-16

Similar Documents

Publication Publication Date Title
JPS63503161A (en) Absorption refrigeration and heat pump systems
CN106895617A (en) For the separator of incoagulable gas in the ammonia absorption type refrigeration circulatory system
Iyoki et al. Performance characteristics of the water-lithium bromide-zinc chloride-calcium bromide absorption refrigerating machine, absorption heat pump and absorption heat transformer
JPS60205161A (en) Device for removing noncondensable gas of absorption type refrigerator
CN2821492Y (en) Pressure reducing generation jet suction compound refrigrating device
CN207113319U (en) Separator for incoagulable gas in the ammonia absorption type refrigeration circulatory system
JPS6144230B2 (en)
US3626708A (en) Reduction of vapor pressure in absorption type refrigeration cycle
CN114867300B (en) Adsorption type water treatment system
JPH07198222A (en) Heat pump including reverse rectifying part
US2909041A (en) Absorption refrigeration system and method of treating the same
JP2783876B2 (en) Absorption refrigerator
JPH0345090Y2 (en)
JP2965140B2 (en) Absorption refrigerator and method of operating the same
JPH03282167A (en) Absorptive type freezer
JP3241498B2 (en) Absorption refrigerator
JP2668063B2 (en) Absorbent composition for absorption air conditioner
JPH0744919Y2 (en) Hydrogen gas discharge device
KR940011076B1 (en) Refrigerator
RU2125214C1 (en) Absorption compression refrigerating unit
JPS6317367A (en) Hydrogen removing device for absorption refrigerator
JP3133441B2 (en) Bleeding device for absorption refrigerator
JPS61287402A (en) High vacuum evaporator
JPS6131865A (en) Absorption type refrigerator
JPH02118371A (en) Room cooling and heating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees