JPS60205149A - Heat pump type water heater - Google Patents

Heat pump type water heater

Info

Publication number
JPS60205149A
JPS60205149A JP59064567A JP6456784A JPS60205149A JP S60205149 A JPS60205149 A JP S60205149A JP 59064567 A JP59064567 A JP 59064567A JP 6456784 A JP6456784 A JP 6456784A JP S60205149 A JPS60205149 A JP S60205149A
Authority
JP
Japan
Prior art keywords
heat pump
pump cycle
electric heater
temperature
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59064567A
Other languages
Japanese (ja)
Other versions
JPH046851B2 (en
Inventor
Masaaki Masuda
雅昭 増田
Jiro Kawasaki
川崎 二郎
Masaya Ichikawa
雅弥 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59064567A priority Critical patent/JPS60205149A/en
Publication of JPS60205149A publication Critical patent/JPS60205149A/en
Publication of JPH046851B2 publication Critical patent/JPH046851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/16Reducing cost using the price of energy, e.g. choosing or switching between different energy sources
    • F24H15/164Reducing cost using the price of energy, e.g. choosing or switching between different energy sources where the price of the electric supply changes with time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • F24H15/225Temperature of the water in the water storage tank at different heights of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/486Control of fluid heaters characterised by the type of controllers using timers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To reduce energy cost by utilizing midnight electric power of inexpensive charge effectively by a method wherein the operations of heat pump cycle and an electric heater are controlled so that the hot-water temperature in a tank arrives at a set temperature upon the termination of supply of the midnight electric power. CONSTITUTION:The heating areas of the heat pump cycle and the electric heater are divided in accordance with an atmospheric temperature and the starting time of operation of the heat pump cycle is delayed by a shift time H in the area wherein the assisting heating of the electric heater 11 is not necessitated so that water is heated up to a set hot-water temperature by only the operation of the heat pump cycle upon the termination of supply of the midnight electric power. In case in the area wherein the supplementary heating of the electric heater is necessitated, the operation is effected by employing the heat pump cycle as much as possible but the starting time of operation of the electric heater is delayed by the shift time H in case the supplimentary heating of the heater is to be employed in parallel so that the hot water in the tank is heated up to the set hot-water temperature upon the termination of supply of the midnight electric power. According to this method, the operation of the electric heater, whose power consumption is large, is not effected as much as possible during 8hr in which the midnight electric power of inexpensive charge can be supplied while the heating can be effected by the heat pump, therefore, the electric power consumption or the energy cost may be reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

く技術分野〉 本発明は、深夜電力でもって運転されるヒートポンプサ
イクル及び補助加熱源としての電気ヒータを併設して成
るヒートポンプ式温水器に関し、特にこのヒートポンプ
サイクル及び電気ヒータの運転制御に係る。 〈従来技術〉 ヒートポンプ式温水器では、大気の熱を奪い温水を作る
ため、加温能力は、外気温の影響を太き(受けることに
なる。即ち、第1図に示すごとくヒートポンプの加温能
力は、外気温の上昇とともに増加するが、給湯負荷は一
般に減少する。従って、外気温の低いところでは、ヒー
トポンプだけでは電力不足となって補助加熱源が必要と
なり、逆に外気温の高いところではヒートポンプの加温
能力は過剰となる。 この場合の補助加熱源としては燃焼機や電気ヒーター等
考えられるが、安全性、メンテナンスの点では電気ヒー
ターが優れる反面、この電気ヒーターは消費電力が太き
(燃焼器に比べて多少不経済な面もある。 この電気ヒーターのみならず、ヒートポンプサイクルも
電力の供給によって運転されることから、このヒートポ
ンプサイクル及び電気ヒーターの運転を使用料金の安い
深夜電力の供給によって行うことはエネルギーコストを
低減させる点で有効で、 ある。 しかしながら、深夜電力を利用する場合には、その供給
時間が8時間という制約を受けるため、そ、の時間内で
効率よく沸上げるには工夫が必要である。例えば、第2
図に示すようζこ外気温が低い時、ヒートポンプと補助
熱源を深夜電力供給開始と同時に運転すれば、加温能力
は太き(なるが第3図に示すように深夜電力供給時間帯
の前半で沸上がることになり、ヒートポンプの運転時間
が短くなると共に放熱時間が長くなり効率的とは言えな
い。また、外気温の高い時には、ヒートポンプだけで深
夜電力時間帯の前半で沸上がることになり、放熱などに
よるロスが大きくなる。このことは、温水タンク内に残
湯がある場合にはなお一層筋長される。 く目的〉 本発明は上記の点に鑑み、消費電力の大きい電気ヒータ
ーの運転を最少限度に抑えてできるだけヒートポンプサ
イクルの加熱によって貯湯槽の水を加熱し、しかもヒー
トポンプサイクル及び電気ヒーターの運転を深夜電力を
有効に使用し放熱ロスが少ないよう深夜電力供給終了時
に槽内湯温が設定温度に達するよう制御するヒートポン
プ式温水器を提供することを目的とする。 〈実施例〉 以下本発明の実施例を図面に従って説明する。 第4図は本発明実施例の回路図であって、この第4図に
おいて、1は圧縮器2、凝縮器3、膨張弁4、蒸発器5
を順次接続したヒートポンプサイクルであって、当該サ
イクルを運転することにより上記凝縮器3が加熱器とし
て作用する。 6は上記ヒートポンプサイクルlによって加熱される被
加熱回路であって、この被加熱回路6は加熱したお湯を
貯留する貯湯槽7と、この貯湯槽7内の水に上記凝縮器
3の熱を与えるための受熱器8と、この被加熱回路6中
の水を強制的に循環させるためのポンプ9とから構成さ
れ、このポンプ8の駆動により貯湯槽6内の水か下部よ
り取り出されて受熱器8を通って再び貯湯槽6に戻ると
いうサイクルを繰り返す。 IOは上記ヒートポンプサイクル1と被加熱回路6とを
繋ぐための熱交換器であって、この熱交換器IO内に上
記ヒートポンプサイクル1の凝縮器3と被加熱回路6の
受熱器8とが対向して熱伝的に内設されている。 11は上記貯湯槽7内の下部に内設された電気ヒーター
であって、このヒーター11は」二記ヒートポンプサイ
クル1による加熱能力が外気温の影響により給湯負荷よ
り下回わる場合にヒートポンプサイクルlによる加熱と
併わせで補助的に貯湯槽7の水を加熱するものである。 12は室外等に設けられた外気温センサー、I3はこの
外気温センサー12の出力に応じて上記ヒートポンプサ
イクル1(具体的には圧縮器2)及び電気ヒーター11
の運転制御を行う制御回路であって、この制御回路13
は第5図に示すような構成になっている。 即ち、第5図は、上記制御回路13を機能的に記載した
ブロツク図であって、この第3図において、14は外気
温センサー12からのデータ信号を適宜電気信号に変換
する入力部、15はこの外気温に応じて、外気温に基(
ヒートポンプサイクルの加温能力が、給湯負荷を」二回
わる領域にあるか下回わる領域にあるかを判定する領域
判定手段、l6は上記外気埠に応じて後述のシフト時間
に決定するに当って、外気温とシフト時間との相関関係
に基(データが収納されているデータ収納部、17は外
気温
TECHNICAL FIELD The present invention relates to a heat pump type water heater that includes a heat pump cycle operated using late-night electricity and an electric heater as an auxiliary heating source, and particularly relates to operation control of the heat pump cycle and electric heater. <Prior art> Heat pump water heaters absorb heat from the atmosphere to create hot water, so the heating capacity is greatly affected by the outside temperature. In other words, as shown in Figure 1, the heating capacity of the heat pump The capacity increases as the outside temperature rises, but the hot water supply load generally decreases.Therefore, in places where the outside temperature is low, the heat pump alone will not have enough power and an auxiliary heating source will be required, and conversely, in places where the outside temperature is high, In this case, the heating capacity of the heat pump becomes excessive. In this case, combustion equipment or electric heaters can be considered as auxiliary heating sources, but while electric heaters are superior in terms of safety and maintenance, they consume a lot of power. (It is also somewhat uneconomical compared to a combustor. Since not only this electric heater but also the heat pump cycle is operated by electricity supply, the heat pump cycle and electric heater can be operated by late-night electric power, which is cheaper to use.) However, when using late-night electricity, the supply time is limited to 8 hours, so it is difficult to efficiently boil the electricity within that time. In order to increase the
As shown in the figure, if the heat pump and auxiliary heat source are operated at the same time as the late-night power supply starts when the outside temperature is low, the heating capacity will increase (as shown in Fig. As a result, the operation time of the heat pump becomes shorter and the heat dissipation time becomes longer, which is not efficient.Furthermore, when the outside temperature is high, the heat pump alone will cause the heat pump to boil in the first half of the night when the power is on. , the loss due to heat radiation, etc. becomes large.This problem becomes even more serious when there is residual hot water in the hot water tank.Purpose> In view of the above points, the present invention has been developed to reduce the power consumption of electric heaters. The operation is kept to a minimum, and the water in the hot water storage tank is heated as much as possible by the heating of the heat pump cycle.In addition, the heat pump cycle and the electric heater are operated using late-night power effectively, so that the water temperature in the tank is kept low when the power supply ends in the middle of the night to reduce heat loss. An object of the present invention is to provide a heat pump type water heater that controls water to reach a set temperature. <Examples> Examples of the present invention will be described below with reference to the drawings. Fig. 4 is a circuit diagram of an example of the present invention. In FIG. 4, 1 indicates a compressor 2, a condenser 3, an expansion valve 4, and an evaporator 5.
The condenser 3 acts as a heater by operating the heat pump cycle. Reference numeral 6 denotes a heated circuit that is heated by the heat pump cycle 1, and this heated circuit 6 includes a hot water storage tank 7 that stores heated hot water, and a hot water storage tank 7 that applies heat from the condenser 3 to the water in the hot water storage tank 7. It consists of a heat receiver 8 for heating the heated circuit 6, and a pump 9 for forcibly circulating the water in the heated circuit 6. When the pump 8 is driven, the water in the hot water storage tank 6 is taken out from the lower part and sent to the heat receiver. 8 and returns to the hot water tank 6 again, and the cycle is repeated. IO is a heat exchanger for connecting the heat pump cycle 1 and the heated circuit 6, and the condenser 3 of the heat pump cycle 1 and the heat receiver 8 of the heated circuit 6 face each other in the heat exchanger IO. It is installed internally for heat conduction. Reference numeral 11 denotes an electric heater installed in the lower part of the hot water storage tank 7, and this heater 11 operates in the heat pump cycle 1 when the heating capacity of the heat pump cycle 1 described in 2 is lower than the hot water supply load due to the influence of the outside temperature. The water in the hot water storage tank 7 is heated in addition to the heating by the hot water storage tank 7. Reference numeral 12 denotes an outside temperature sensor installed outdoors, etc., and I3 controls the heat pump cycle 1 (specifically, the compressor 2) and the electric heater 11 according to the output of this outside temperature sensor 12.
A control circuit for controlling the operation of the control circuit 13.
has a configuration as shown in FIG. That is, FIG. 5 is a block diagram functionally illustrating the control circuit 13, and in FIG. is based on the outside temperature (
A region determination means 16 determines whether the heating capacity of the heat pump cycle is in a region where the hot water supply load is twice or less than the hot water supply load, and l6 is a region determining means for determining the shift time described later according to the outside air terminal. Based on the correlation between the outside temperature and the shift time (data storage section 17 is the outside temperature)

【の入力を受けて各領域に応じたシフト時間Hを演
算するシフト時間演算手段、18は深夜電力供給開始時
よりの時間りを検出するタイマー、19はこのタイマー
18からの出力を受けて深夜電力開始時よりの時間りが
シフト時間に達したかどうかを知るために(H−b)の
演算を行う減算手段、20はこの減算手段19の出力が
0になるか否かを判定する判定手段、21はこの判定手
段21の出力を受けて当該手段20の出力が0になれば
領域によってヒートポンプ若しくは電気ヒータを運転す
る運転信号発生手段であって、当該手段21の出力によ
って、ヒートポンプ若しくは電気ヒータが深夜電力供給
開始時よりシフト時間Hたけ遅れて運転が開始される。 次に上記構成の制御回路13の制御動作について、第6
図のフローチャートを参考にして説明する。 先ず、外気温【が上記センサー12によって測定され、
この外気温tが第2図に示すT1 の値を越えるか否か
が判定される(t<T1ort≧T、 )。7このT1
 は第5図に示すように、外気温によるヒートポンプの
加温能力が給湯負荷を上回わる点であって、外気温【が
このT1 を越えれば電気ヒーターによる補助加熱は必
要なく、下回われば必要となる。 ここでこのT1 を越える場合、越えない場合夫々で動
作が異なるので別個に説明する。 先ず、外気温【がTl を下回わる場合について説明す
ると、この場合はヒートポンプサイクル1の加熱のみで
は給湯負荷に対応できないので外気温度に応じてシフト
時間Hを定め深夜電力供給時よりヒートポンプサイクル
lを運転すると共にこのシフト時間Hだけ遅らせて電気
ヒーター11の運転を併わせで行わせ、深夜電力供給終
了時に設定湯温に沸き上げるようにヒートポンプサイク
ル】及び電気ヒーター11を制御する。 即ち、第7図に示すように、先ず深夜電力開始と同時に
ヒートポンプサイクルlを運転する。この時第4図に示
すポンプ9が駆動されて貯湯槽7内の水が回路6内を循
環しながら加熱され昇温してい(。一方で、第8図の線
図に基いて、外気温TLに応じた電気ヒーター11のシ
フト時間Hが記憶されたデータより定められ、深夜電力
供給開始時よりこのH時間経過したところでヒートポン
プサイクル1に加えて電気ヒーター11の運転が開始す
る。すると、第7図に示す如(加温能力が上冒し、深夜
電力終了と同時に貯湯槽7内の湯温か設定温度に到達す
る。 尚、第8図に示す外気温TLと電気ヒーターのシフト時
間Hとの相関曲線図は、所定容量の水を設定湯温にまで
深夜電力供給時間(8時間)内に加熱するとして、電気
ヒーターの運転開始時間をH時間だけ遅らせた時に深夜
電力供給終了時に設定湯温に沸き上かるように、水の温
度、貯湯容量、ヒートポンプサイクル及び電気ヒーター
の加温能力から実験的に定めた近似曲線である。 次に第2図において外気温がT を上回わる場合につい
て説明すると、この場合はヒートポンプサイクルの加温
能力が給湯負荷より上回わるので、電気ヒーターの補助
加熱は必要なく、外気温かT1より上がる程ヒートポン
プサイクルの加温能力が過剰となるので、ヒートポンプ
サイクルの運転開始時間を深夜電力供給開始時よりシフ
ト時間■4だけ遅らせて開始させる。 即ち第9図に示すように、外気温T、に応じてヒートポ
ンプのシフト時間Hを定め、第1O図に示すように深夜
電力開始時よりH時間だけ遅らせてヒートポンプサイク
ルの運転を開始し、深夜電力供給終了と同時に設定湯温
に沸き」−げるようにする。 尚、第9図に示すこの外気g、T)l とヒートポンプ
サイクルのシフト時間Hとの相関線図は」−配力8図の
外気温−電気ヒーターシフト時間線図と同様に実験的に
定められたものである。 従って上述のヒートポンプ式給湯機によれば、外気温に
応じて領域を分け゛〔、電気ヒーターの補助加熱の必要
のない領域においてはヒートポンプサイクルのみの運転
で、深夜電力供給終了時に設定湯温に沸き上がるように
ヒートポンプサイクルの運転開始時間をシフト時間Hだ
け遅らせ、又、電気ヒーターによる補助加熱が必要な時
は極力ヒートポンプサイクルを用いて運転すると共にヒ
ーターの補助加熱を併用する場合に、深夜電力供給終了
と同時に設定湯温に沸き上がるようにシフト時間Hだけ
電気ヒーターの運転開始時間を遅らせたので、料金の安
い深夜−力が供給される8時間内に、極力消費電力の大
きい電気ヒーターの運転を行なわずにヒートポンプによ
る加熱で賄うことができ、消費電力を減少させてエネル
ギーコストの低減を可能とすると共に、深夜電力供給終
了と同時に設定湯温に沸き上がるように領域に応じてヒ
ートポンプサイクル若しくは電気ヒーターの運転開始時
間をシフト時Hだけ遅らせたので、深夜電力供給終了時
間より早めに沸きあがって所定温度に維持Tるよう温度
制御する必要がなく、有効に深夜電力を利用することが
できる。 〈他の実施例〉 次に、貯湯槽II内に残湯がある場合には加温量が残湯
量に応じて変える必要があるので、この場合の実施例に
ついて第11図を用いて説明する。 尚、第4図図示の第1実施例と同一構成部分については
同符号を付し説明を省略する。 第11図において、14a、14b、14cは貯湯槽1
1内の上位、中位、下位の夫々に設けられたサーミスタ
等の温度検出器、15はこの温度検出器14a、14b
、14cの検知出力に基いて槽11内の残湯量を検出す
るための残湯量検知回路、16はこの残湯量検知回路1
5及び外気温センサー12からの信号を受けてヒートポ
ンプサイクル1若しくは電気ヒーター11の運転を制御
する制御回路である。その他の構成は第4図のものと同
一である。 上記構成のヒートポンプ式温水器の動作を説明すると、
サーミスタ+4a、14b、+4cで槽11内の上部、
中部、下部の温度か測定さn、この検知結果が上記残湯
量検知回路15へ送られて、これらサーミスタの温度を
適宜電気信号に変換し、この結果が制御回路16に送ら
れると共に外気温センサー12によって外気温度が入力
されて、この外気温及び残湯量に応じたヒートポンプサ
イクル1及び電気ヒーター11の運転制御が行われる。 この場合制御回路16は、残湯…検知のための各サーミ
スタ+4a、+4b、14cからの検出温度、外気温度
を読み取って、先ず外気温に基いて、電気ヒーターの補
助加熱が必要である領域かヒートポンプサイクルのみの
運転で良い領域かを判定する。ここで、外気温が電気ヒ
ーターの補助加熱が必要な領域である場合には、深夜電
力供給開始と同時にヒートポンプサイクルを運転し、一
方で残湯量に応じて電気ヒーターのシフト時間Hを定め
、深夜電力供給開始時よりH時間だけ遅らせて電気ヒー
ターを運転開始し、深夜電力供給終了と同時に設定温度
に沸き上がるようにする。つまり、深夜電力供給終了と
同時に設定湯温に沸き上かるようにシフト時間Hを定め
る。 このノット時間Hの判断基準は、第12図の外気温−電
気ヒーターシフト時間線図による。即ち、第12図に示
すように、残湯量に応して外気温−電気ヒーターシフト
線図はA −A4と夫々異なす、との残湯量に応じて選
定された線図A1−A4個々において外気温に基いて′
嘔気ヒーターシフト時間Hが定められる。 具体的に一例を説明すると、 1、サーミスター4a、14b、14cによりすべての
水位において40℃以下であることが検知されると、残
湯量がほとんどないものとし、第12図に示すように、
A1線図が選定され、このA、に基いて外((温がTL
の場合にはシフト時間H1か定めらnる。 このようにシフト時間Hか定められると、第13図の沸
き上げ特性図に示すように深夜電力供給開始と同時にヒ
ートポンプサイクルが運転されて貯湯水が昇温し、供給
開始時よりH,時間経過後電気ヒーターの運転が開始さ
れて、B1に示すように昇温し、深夜電力供給終了時に
設定湯温に沸き上がる。 2、又、最上位のサーミスター48のみ40℃以上の水
があることを検知し、中部、低部にはない場合には、同
様にして第12図に示すA2線図が選択されて、このA
2線図に基いて外気温TL に応じたシフト時間H2が
定められる。 このようにシフト時間H2が定められると、第13図に
示すように電気ヒーターかH2時間だけ遅れて運転開始
され、B2に示すような沸き上げ特性となり深夜電力供
給終了時に設定湯温に到達する。 3、同様にして、最上部及び中部のサーミスタ+48 
、+4bが40℃以上であることを検知すると、第12
図において、A3線図が選択されてシフト時間H3が定
められ、このシフト時間H3に応じて電気ヒーターが運
転制御されて第13図のB3沸き上げ特性図を得る。 4、同様にしてすべてのサーミスタ14a、+4b、1
4cにおいて、40℃以上の水があると判定された場合
には、第12図においてA4線図が選定されてシフト時
間H4が定められ、これに応じてB4の沸き上げ特性が
得られる。 以上のように、残湯量に応じて、19湯量が多い場合に
はシフト時間Hを短か(、残湯量が少ない場合1こはシ
フト時間Hを多(とって、深夜電力供給終了と同時に設
定湯温に到達するようにする。 次に、外気温によって、ヒートポンプの加温能が給湯負
荷を上回わり電気ヒーターによる補助加熱の必要がない
領域であることが判定されると、電気ヒーターの運転は
行わずに外気温に応じたヒートポンプサイクルの運転開
始時間を深夜電力供給開始時間よりシフト時間Hだけ遅
らせて深夜電力供給終了時に設定湯温に達するようにす
る。 このヒートポンプサイクルのシフト時間Hの判断基準は
、第14図の外気温−ヒートポンプサイクルシフト時間
線図において、各サーミスタの検知出力に基づ(残湯量
に応じた線図A1〜A4が選択され(選択基準は上記1
〜4に基づく)で、外気温THに対応するシフト時間H
1〜H4が定められ、このシフト時間H1〜H4分だけ
、ヒートポンプサイクルの運転開始時間が遅延されて運
転が行われて、深夜電力供給終了と同時に設定湯温に沸
き上がる。(沸き上げ特性線図第15図参照) 尚、上記実施例においては残湯量を検知ファクターとし
てとらえたが、同様にして残湯温度をファクターとして
とらえ、この残湯温度に応じたシフト時間を定めて、深
夜電力供給終了時に設定温度に沸き上げるようにするこ
とも可能である。 尚、上記実施例では深夜電力供給時間内に当該電力を利
用して設定湯温に沸き上げるよう制御する例を示したが
、当該方法はこれに限らず、一定時間内にある設定され
た値に温度、湿度等を調整するもの全てに適用すること
ができる。 〈効果〉 以上本発明によれば、外気温の判定領域に応じてヒート
ポンプ若しくは電力ヒーターの運転時間を所定時間だけ
、遅らせて、深夜電力供給終了時に設定湯温に沸き上が
るよう制御する制御回路を設けたので、料金の安い深夜
電力を有効に利用してエネルギコストを低減できると共
に貯湯槽での放熱時間の短縮及び深夜電力ピーク時の回
避を実現することができる。
Shift time calculating means that receives the input from [ and calculates the shift time H according to each area; 18 is a timer that detects the time since the start of power supply at midnight; 19 is a timer that receives the output from this timer 18 and calculates the shift time H according to each area. A subtractor 20 performs the calculation (H-b) in order to determine whether the time since the start of power has reached the shift time; 20 is a determination unit 20 that determines whether the output of the subtractor 19 becomes 0 or not; Means 21 is an operation signal generating means that receives the output of the determining means 21 and operates the heat pump or electric heater depending on the region when the output of the means 20 becomes 0. The heater starts operating a shift time H later than when power supply starts late at night. Next, the control operation of the control circuit 13 having the above configuration will be explained in the sixth section.
This will be explained with reference to the flowchart in the figure. First, the outside temperature is measured by the sensor 12,
It is determined whether this outside temperature t exceeds the value of T1 shown in FIG. 2 (t<T1ort≧T,). 7This T1
As shown in Figure 5, T1 is the point at which the heating capacity of the heat pump due to the outside temperature exceeds the hot water supply load; It becomes necessary. Here, the operations will be explained separately depending on whether T1 is exceeded or not. First, let us explain the case where the outside air temperature falls below Tl. In this case, the heat pump cycle 1 cannot handle the hot water supply load by heating alone, so the shift time H is determined according to the outside air temperature, and the heat pump cycle l starts when power is supplied late at night. At the same time, the electric heater 11 is operated with a delay of this shift time H, and the heat pump cycle and the electric heater 11 are controlled so that the hot water is heated to the set temperature when power supply ends in the middle of the night. That is, as shown in FIG. 7, first, the heat pump cycle 1 is operated at the same time as the power starts in the middle of the night. At this time, the pump 9 shown in Fig. 4 is driven, and the water in the hot water tank 7 is circulated within the circuit 6, heating and rising in temperature (on the other hand, based on the diagram in Fig. 8, the outside temperature is The shift time H of the electric heater 11 according to the TL is determined from the stored data, and the operation of the electric heater 11 is started in addition to the heat pump cycle 1 when this H time has elapsed since the start of power supply in the middle of the night. As shown in Fig. 7 (the heating capacity is exceeded, the hot water temperature in the hot water storage tank 7 reaches the set temperature at the same time as the power ends in the middle of the night. The correlation curve diagram shows that, assuming that a predetermined volume of water is heated to the set hot water temperature within the midnight power supply time (8 hours), if the electric heater operation start time is delayed by H hours, the set hot water temperature will change when the midnight power supply ends. This is an approximate curve determined experimentally based on the water temperature, hot water storage capacity, heat pump cycle, and heating capacity of the electric heater so that the temperature rises to a boiling point. To explain, in this case, the heating capacity of the heat pump cycle exceeds the hot water supply load, so there is no need for auxiliary heating by the electric heater, and as the outside temperature rises above T1, the heating capacity of the heat pump cycle becomes excessive, so the heat pump The cycle operation start time is delayed by shift time ■4 from the start of midnight power supply. That is, as shown in Fig. 9, the heat pump shift time H is determined according to the outside temperature T, and as shown in Fig. 1O. As shown in FIG. 9, the operation of the heat pump cycle is started with a delay of H hours from the start of the midnight power supply, and the water is brought to the set temperature at the same time as the midnight power supply ends. , T)l and the shift time H of the heat pump cycle is experimentally determined in the same way as the outside temperature - electric heater shift time diagram in the power distribution diagram 8. Therefore, the above-mentioned heat pump According to the type water heater, the areas are divided according to the outside temperature. In areas where auxiliary heating by the electric heater is not required, only the heat pump cycle is operated, and the heat pump cycle is activated so that the water reaches the set temperature when the power supply ends in the middle of the night. The start time of the cycle is delayed by shift time H, and when auxiliary heating with an electric heater is required, the heat pump cycle is used as much as possible, and when auxiliary heating of the heater is used, it is set at the same time as the power supply ends late at night. By delaying the start of operation of the electric heater by shift time H to allow the water to reach the same temperature, the heat pump can be operated without operating the electric heater, which consumes as much power as possible, during the 8-hour period when power is supplied late at night, when electricity is cheaper. In addition to reducing power consumption and reducing energy costs, the heat pump cycle or electric heater operation start time depending on the area so that the water reaches the set temperature as soon as the power supply ends in the middle of the night. Since the temperature is delayed by the shift time H, there is no need to control the temperature so that the temperature is heated earlier than the midnight power supply end time and maintained at a predetermined temperature T, and the late night power can be used effectively. <Other Examples> Next, when there is residual hot water in the hot water storage tank II, the amount of heating needs to be changed according to the amount of remaining hot water, so an example in this case will be explained using FIG. 11. . Components that are the same as those of the first embodiment shown in FIG. 4 are designated by the same reference numerals and their explanations will be omitted. In FIG. 11, 14a, 14b, and 14c are hot water storage tanks 1.
Temperature detectors such as thermistors provided at the upper, middle, and lower positions in 1, 15 are the temperature detectors 14a and 14b.
, 14c, a remaining hot water amount detection circuit for detecting the amount of remaining hot water in the tank 11 based on the detection output of 14c; 16 is this remaining hot water amount detection circuit 1;
This is a control circuit that controls the operation of the heat pump cycle 1 or the electric heater 11 in response to signals from the heat pump cycle 1 and the outside temperature sensor 12. The rest of the configuration is the same as that in FIG. 4. To explain the operation of the heat pump type water heater with the above configuration,
The upper part of the tank 11 with thermistors +4a, 14b, +4c,
The temperature of the middle and lower portions is measured, and the detection results are sent to the remaining hot water amount detection circuit 15, which converts the temperatures of these thermistors into electrical signals as appropriate, and the results are sent to the control circuit 16 and the outside temperature sensor. 12, the outside air temperature is input, and the operation of the heat pump cycle 1 and the electric heater 11 is controlled according to the outside air temperature and the amount of remaining hot water. In this case, the control circuit 16 reads the detected temperature from each thermistor +4a, +4b, and 14c for detecting remaining hot water and the outside air temperature, and first determines whether the area requires auxiliary heating with the electric heater based on the outside air temperature. Determine whether it is appropriate to operate only the heat pump cycle. Here, if the outside temperature is in a range that requires supplementary heating by the electric heater, the heat pump cycle is operated at the same time as power supply starts in the middle of the night, and the shift time H of the electric heater is determined depending on the amount of remaining hot water. The operation of the electric heater is started with a delay of H hours from the start of power supply, so that the temperature reaches the set temperature at the same time as the power supply ends in the middle of the night. In other words, the shift time H is determined so that the hot water reaches the set temperature at the same time as the late-night power supply ends. The criterion for determining the knot time H is based on the outside temperature-electric heater shift time diagram shown in FIG. That is, as shown in FIG. 12, the outside temperature-electric heater shift diagrams are different from A-A4 depending on the amount of remaining hot water, and the graphs A1-A4 are individually selected according to the amount of remaining hot water. Based on outside temperature′
A nausea heater shift time H is determined. To explain a specific example, 1. If the thermistors 4a, 14b, and 14c detect that the water level is 40°C or lower at all water levels, it is assumed that there is almost no remaining hot water, and as shown in Fig. 12,
The A1 diagram is selected, and based on this A, the outside ((temperature is TL
In this case, the shift time H1 is determined. When the shift time H is determined in this way, as shown in the boiling characteristic diagram in Figure 13, the heat pump cycle is operated at the same time as the power supply starts in the middle of the night, and the temperature of the stored hot water rises, and the time H has elapsed since the start of the supply. The rear electric heater starts operating, and the temperature rises as shown in B1, and the water reaches the set temperature at the end of the midnight power supply. 2. Also, if only the thermistor 48 at the top level detects that there is water at 40°C or higher, and there is no water at the middle or lower part, the A2 diagram shown in FIG. 12 is similarly selected, This A
The shift time H2 is determined according to the outside temperature TL based on the two-line diagram. When the shift time H2 is determined in this way, the electric heater starts operating with a delay of H2 hours as shown in Fig. 13, and the boiling characteristics as shown in B2 are achieved, and the set water temperature is reached when the power supply ends in the middle of the night. . 3. Similarly, the thermistor at the top and middle +48
, +4b is detected to be 40°C or higher, the 12th
In the figure, the A3 diagram is selected and the shift time H3 is determined, and the electric heater is controlled in accordance with this shift time H3 to obtain the B3 boiling characteristic diagram shown in FIG. 4. Similarly, all thermistors 14a, +4b, 1
4c, if it is determined that there is water at 40° C. or higher, the A4 diagram is selected in FIG. 12, the shift time H4 is determined, and the boiling characteristics of B4 are obtained accordingly. As mentioned above, depending on the amount of hot water remaining, 19 If the amount of hot water is large, the shift time H should be shortened (19 If the amount of remaining hot water is low, the shift time H should be set long) Next, when it is determined that the heating capacity of the heat pump exceeds the hot water supply load based on the outside temperature and there is no need for supplementary heating with the electric heater, the electric heater is turned off. The operation start time of the heat pump cycle according to the outside temperature is delayed by the shift time H from the midnight power supply start time without running, so that the set hot water temperature is reached when the midnight power supply ends.The shift time H of this heat pump cycle The judgment criteria are based on the detection output of each thermistor in the outside temperature vs. heat pump cycle shift time diagram in Fig. 14 (diagrams A1 to A4 corresponding to the amount of remaining hot water are selected (selection criteria are the above 1).
~4), the shift time H corresponding to the outside temperature TH
1 to H4 are determined, and the operation start time of the heat pump cycle is delayed by the shift time H1 to H4, and the hot water is heated to the set temperature at the same time as the midnight power supply ends. (See Figure 15 of the boiling characteristic diagram) In the above embodiment, the amount of remaining hot water was taken as a detection factor, but in the same way, the temperature of the remaining hot water was taken as a factor, and the shift time was determined according to the temperature of the remaining hot water. It is also possible to raise the temperature to a set temperature when power supply ends late at night. In addition, in the above embodiment, an example was shown in which the electric power is used to control the boiling water to a set temperature during the midnight power supply time, but the method is not limited to this, and the method is not limited to this. It can be applied to anything that adjusts temperature, humidity, etc. <Effects> According to the present invention, a control circuit is provided which delays the operation time of the heat pump or the electric heater by a predetermined period of time depending on the judgment range of the outside temperature, and controls the water to reach the set temperature when the power supply ends in the middle of the night. Therefore, it is possible to reduce energy costs by effectively using low-cost late-night electricity, and to shorten the heat dissipation time in the hot water tank and avoid peak electricity consumption at night.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、ヒートポンプサイクルの加温能力
及び給湯負荷と外気温との関係線図、第3図は、深夜電
力供給時間と湯温との関係線図(一般例)、 第4図は、本発明実施例の回路図、 第5図は、本発明実施例に用いられる制御回路の機能ブ
ロック図、 第6図は、同上フローチャート、 第7図及び第1O図は、本発明実施例による深夜電力供
給時間と湯温との関係線図、 第8図は、電気ヒーターのシフト時間と外気温との関係
線図、 第9図は、ヒートポンプサイクルのシフト時間と外気温
との関係線図、 第11図は、他の実施例の回路図、 第12図は、他の実施例に用いられる電気ヒーターのシ
フト時間と外気温との関係線図、第13図及び第15図
は、同上深夜電力供給時間の湯温との関係線図、 第14図は、同上ヒートポンプサイクルのシフト時間と
外気温との関係線図。 1:ヒートポンプサイクル、3:凝縮器(加熱器)、7
;貯湯槽、11:電気ヒーター、12:外気温センサー
、13,16:制御回路。 代理人 弁理士 福 士 愛 彦(他2名)温 能 力 一一一一一参 外【燻 :$/ 図 第2図 :≧’3+’i :?、5 区 亀凭ヒー9シフト時間 第8図 第9 図 寿運良電力訊檜咄1硝 第7図 第10 凶 會乳し−9−シフト貸1八j 第12図 し−上イン7′シフトy1N5 第14図 第13図 別’*t77451.檜時刑 第15 図
Figures 1 and 2 are relationship diagrams between the heating capacity of the heat pump cycle, hot water supply load, and outside temperature; Figure 3 is a relationship diagram between late-night power supply time and hot water temperature (general example); 4 is a circuit diagram of an embodiment of the present invention, FIG. 5 is a functional block diagram of a control circuit used in an embodiment of the present invention, FIG. 6 is a flowchart of the same as above, and FIG. 7 and FIG. Figure 8 is a diagram showing the relationship between electric heater shift time and outside temperature according to the example; Figure 9 is a diagram showing the relationship between heat pump cycle shift time and outside temperature. Relationship diagram, Figure 11 is a circuit diagram of another embodiment, Figure 12 is a relationship diagram between electric heater shift time and outside temperature used in another embodiment, Figures 13 and 15. Figure 14 is a relationship diagram between the shift time of the heat pump cycle and outside air temperature. 1: Heat pump cycle, 3: Condenser (heater), 7
; hot water tank, 11: electric heater, 12: outside temperature sensor, 13, 16: control circuit. Agent Patent Attorney Aihiko Fukushi (and 2 others) Onriki 11111 Outside [Smoking: $/ Figure 2: ≧'3+'i:? , 5 Ward Turtle Heat 9 Shift Hours Figure 8 Figure 9 Figure Juunryo Electric Power Station 1 Glass Figure 7 Figure 10 Bad Breast Milk - 9 - Shift Rental 18j Figure 12 Shi - Upper Inn 7' Shift y1N5 Figure 14 Figure 13 Separate '*t77451. Hinoki Jigyo Figure 15

Claims (1)

【特許請求の範囲】 1、深夜電力を利用して貯湯槽内の水を加熱するヒート
ポンプサイクルの加熱器と、深夜電力を利用しこのヒー
トポンプサイクルの加熱器による加熱が不足する時に上
記槽内の水を補助的に加熱する電気ヒータとを併設して
成るヒートポンプ式温水器において、 下記1及び2の動作をヒートポンプサイクル及び電気ヒ
ータに行わせる制御回路を設けたことを特徴とするヒー
トポンプ式温水器。 ■、外気温によって、ヒートポンプサイクルの加温能力
が給湯負荷を下回わり電気ヒータによる補助加熱が必要
な時には、 深夜電力供給開始時よりヒートポンプサイクルのみの加
熱運転を行い、 深夜電力供給終了時に槽内湯温が設定温度に達するよう
に電気ヒータの運転開始時間を外気温に応じてヒートポ
ンプの運転開始時より所定時間遅らせる。 ■ 外気温によって、ヒートポンプサイクルの加温能力
が給湯負荷を上回わり電気ヒータによる補助加熱が必要
ない時には、 深夜電力供給終了時に槽内湯温が設定温度に達するよう
に、ヒートポンプサイクルの運転開始時間を深夜電力供
給開始時間より所定時間遅らせる。
[Scope of Claims] 1. A heater for a heat pump cycle that heats water in a hot water tank using late-night electricity; A heat pump type water heater equipped with an electric heater for auxiliary heating of water, characterized in that the heat pump type water heater is equipped with a control circuit that causes the heat pump cycle and the electric heater to perform the following operations 1 and 2. . ■When the heating capacity of the heat pump cycle falls below the hot water supply load due to the outside temperature and auxiliary heating with an electric heater is required, the heating operation of only the heat pump cycle is performed from the start of power supply in the middle of the night, and the heating operation of the heat pump cycle is started when the power supply ends in the middle of the night. The electric heater's operation start time is delayed by a predetermined period of time from the heat pump's operation start time according to the outside temperature so that the indoor water temperature reaches a set temperature. ■ When the heating capacity of the heat pump cycle exceeds the hot water supply load due to the outside temperature and auxiliary heating by the electric heater is not required, the operation start time of the heat pump cycle is adjusted so that the hot water temperature in the tank reaches the set temperature when the power supply ends in the middle of the night. is delayed by a predetermined period of time from the midnight power supply start time.
JP59064567A 1984-03-29 1984-03-29 Heat pump type water heater Granted JPS60205149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59064567A JPS60205149A (en) 1984-03-29 1984-03-29 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59064567A JPS60205149A (en) 1984-03-29 1984-03-29 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JPS60205149A true JPS60205149A (en) 1985-10-16
JPH046851B2 JPH046851B2 (en) 1992-02-07

Family

ID=13261934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59064567A Granted JPS60205149A (en) 1984-03-29 1984-03-29 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JPS60205149A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448542U (en) * 1987-09-22 1989-03-24
JPH01239349A (en) * 1988-03-17 1989-09-25 Daikin Ind Ltd Heat pump type hot water feed apparatus
JP2007071472A (en) * 2005-09-08 2007-03-22 Toshiba Electric Appliance Co Ltd Hot water supply device
JP2013130356A (en) * 2011-12-22 2013-07-04 Mitsubishi Electric Corp Storage water heater
JP2016050751A (en) * 2014-09-02 2016-04-11 株式会社デンソー Heat pump type water heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938544A (en) * 1982-08-30 1984-03-02 Mitsubishi Electric Corp Storage type hot water feeder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938544A (en) * 1982-08-30 1984-03-02 Mitsubishi Electric Corp Storage type hot water feeder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448542U (en) * 1987-09-22 1989-03-24
JPH01239349A (en) * 1988-03-17 1989-09-25 Daikin Ind Ltd Heat pump type hot water feed apparatus
JP2007071472A (en) * 2005-09-08 2007-03-22 Toshiba Electric Appliance Co Ltd Hot water supply device
JP4484221B2 (en) * 2005-09-08 2010-06-16 東芝機器株式会社 Water heater
JP2013130356A (en) * 2011-12-22 2013-07-04 Mitsubishi Electric Corp Storage water heater
JP2016050751A (en) * 2014-09-02 2016-04-11 株式会社デンソー Heat pump type water heater

Also Published As

Publication number Publication date
JPH046851B2 (en) 1992-02-07

Similar Documents

Publication Publication Date Title
JPS6111539A (en) Controller and method for defrosting outdoor coil of heat pump
JP2008008548A (en) Electric water heater
JPS60205149A (en) Heat pump type water heater
JP3904402B2 (en) Home fuel cell system
JP2000346449A (en) Heat pump hot-water supplier
JP2557251B2 (en) Water heater
JP2003050051A (en) Heat pump type hot-water supplier
JP2003247757A (en) Solar heater
JPS6018731Y2 (en) heat pump water heater
JP2004028456A (en) Hot-water space heating system
JPS60164150A (en) Heat pump type hot water supplier
JP3979770B2 (en) Hot water storage hot water supply system
JPS6030425B2 (en) solar water heater
JP3371703B2 (en) Hot water storage system
JPH0875248A (en) Water heater
JPS6235583B2 (en)
JPS58140553A (en) Warm water apparatus
JP2001194008A (en) Electric water heater and operating method of the same
JPH05256520A (en) Heat pump hot water feeder
JPS60164158A (en) Heat pump type hot water supplier
JPH0814657A (en) Heat pump hot water supply system
JP3297543B2 (en) Electric water heater
JPS58123046A (en) Heat pump type hot water supplier
JP2001227819A (en) Hot-water supply device utilizing solar energy
JPH05256521A (en) Heat pump hot water feeder