JPS6020471A - Manufacture of members for fuel cell - Google Patents

Manufacture of members for fuel cell

Info

Publication number
JPS6020471A
JPS6020471A JP58126189A JP12618983A JPS6020471A JP S6020471 A JPS6020471 A JP S6020471A JP 58126189 A JP58126189 A JP 58126189A JP 12618983 A JP12618983 A JP 12618983A JP S6020471 A JPS6020471 A JP S6020471A
Authority
JP
Japan
Prior art keywords
carbon
particles
electrode
separator
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58126189A
Other languages
Japanese (ja)
Other versions
JPH0158623B2 (en
Inventor
Takamasa Kawakubo
川窪 隆昌
Mitsuru Yoshida
充 吉田
Yoshihisa Suda
吉久 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP58126189A priority Critical patent/JPS6020471A/en
Publication of JPS6020471A publication Critical patent/JPS6020471A/en
Publication of JPH0158623B2 publication Critical patent/JPH0158623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent any breakage which might be caused due to compressive pressure by making the compressing process performed to decrease contact resistance unnecessary in assembling a fuel cell by interposing carbon between the separator and the electrode so as to unify them. CONSTITUTION:80pts.wt. a furan-resin primary condensation product and 20pts.wt. carbon black are kneaded while heated to prepare a paste having a viscosity of 500cp at 25 deg.C. The thus prepared paste, after being heated to 60 deg.C and poured in a metallic mold, is hardened in a heating oven before being separated from the metallic mold. The thus obtained body is then heated again to convert it into a carbon precursor, thereby obtaining a dense organic molded body 9 having ribs. Next, after pulverized tragacanth gum powder is mixed with 5wt% of water and the mixture is formed into a flat plate, this is held in an oven at 50 deg.C for one hour before being heated to 110 deg.C to evaporize water, thereby obtaining a green organic macromolecular plate-like porous body 8. Next, 2wt% of a hardening agent is added to the above mixture consisting of a furan-resin primary condensation product and carbon black, and the mixture is stirred to make an organic liquid composition. Then adhesion work is performed using the organic liquid composition before the obtained body is left to stand at ordinary temperature to solidify the liquid composition. Next, the thus obtained body is heated to 180 deg.C to convert it into a carbon precursor which is then sintered and cooled, thereby obtaining a member consisting of a carbon electrode and a carbon separator stuck together with carbon.

Description

【発明の詳細な説明】 本発明は燃料電池用部材の製造法に関する。詳しくは本
発明は有ta賦形物を炭素化させて成る、実質的に炭素
から成る燃料電池用炭素電極と炭素セパレーターとの一
体賦形物の製造法に関する。さらに詳しくは、本発明は
、炭素セパレーターの片面もしくは両面に、多孔質炭素
電極が炭素接着層を介して強固に接着されている、燃料
電池用部材の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing fuel cell members. More specifically, the present invention relates to a method for producing an integral molded product consisting of a carbon electrode for a fuel cell and a carbon separator, which are made essentially of carbon, by carbonizing a ta-formed product. More specifically, the present invention relates to a method for manufacturing a fuel cell member in which a porous carbon electrode is firmly adhered to one or both sides of a carbon separator via a carbon adhesive layer.

炭素製品は耐蝕性、耐熱性に優れ、かつ優れた電子伝導
性を兼ね備えた性質を示゛ず。従って、燃料電池用の電
極及びセパレーターとして従来から利用されて来た。例
えば燃料電池用の多孔性炭素電極としては、炭素繊維を
フラン或いはフェノール樹脂等の熱硬化性樹脂を用いて
プリプレグ化し賦形復炭素化処理し、必要に応じて切削
加工を施して得られることが知られている。一方炭素セ
パレーターは、黒鉛ブロックからの機械的切削加工によ
って作られている。これらの電極とセパレーターは、電
池として組み上げるには電極の片面に白金等の触媒を担
持させて、セパレーク−1燃料極、電解質、酸素極、セ
パレーターを1ユニツトとし、十数ユニットから数百ユ
ニットを直列に接続する方法が取られる。この際、電極
とセパレーターは接触抵抗を出来る限り少なくして、接
触部における、接触抵抗による損失を小さくする為、電
極、セパレーター共に可能な限り表面の平滑性を大きく
する必要があり、さらに、電極とセパレーターとの接触
抵抗を小さくする為にはユニット全体を機械的に圧締し
なければならない。従って電極とセパレーク−の接触部
の平滑性は極めて精度高いものを要求される。ところが
、電極に供されるカーボンファイバーを含有する炭素多
孔体を平滑板に成形することは高度の技術を要し、溝付
は加工においては、切削加工による方法を用いても、或
いは金型等を用いて成形する方法を採用しても極めて大
きな困難性を伴う。
Carbon products have excellent corrosion resistance, heat resistance, and excellent electronic conductivity. Therefore, it has conventionally been used as an electrode and separator for fuel cells. For example, porous carbon electrodes for fuel cells can be obtained by prepreg-forming carbon fibers using a thermosetting resin such as furan or phenol resin, shaping and decarbonizing the fibers, and cutting the carbon fibers as necessary. It has been known. Carbon separators, on the other hand, are made by mechanical cutting from graphite blocks. To assemble these electrodes and separators into a battery, a catalyst such as platinum must be supported on one side of the electrode, and the fuel electrode, electrolyte, oxygen electrode, and separator are made into one unit. A method of connecting in series is used. At this time, in order to minimize the contact resistance between the electrode and the separator and reduce loss due to contact resistance at the contact portion, it is necessary to make the surfaces of the electrode and separator as smooth as possible. In order to reduce the contact resistance between the separator and the separator, the entire unit must be mechanically clamped. Therefore, the smoothness of the contact portion between the electrode and the separator must be extremely precise. However, forming a porous carbon material containing carbon fibers to be used as an electrode into a smooth plate requires advanced technology, and grooves cannot be formed by cutting, or by using a mold, etc. Even if a method of molding is adopted, it is extremely difficult.

また絶対強度が不足し、ハンドリング或いは製造工程中
に破損することが多い。また、セパレーターを製造する
場合においても、原料黒鉛ブロックから所定の厚みに切
り出したり、溝加工をするにも、電極の場合と同様に極
めて困難であり、特に厚みが1勇鵬以下の薄い製品に関
しては殆ど得られていないのが現状である。また、炭素
は、柔軟性に欠ける脆性体であるので、圧締時に、電極
とセパレーターの接触面に些細な凹凸があったり、圧締
力が均一にかかつてない場合は、電極又はセパレーター
が破損してしまうことがある。
Furthermore, it lacks absolute strength and is often damaged during handling or manufacturing processes. In addition, when manufacturing separators, it is extremely difficult to cut out raw graphite blocks to a predetermined thickness and process grooves, just as in the case of electrodes, especially for thin products with a thickness of 1 mm or less. Currently, very little is available. In addition, carbon is a brittle material that lacks flexibility, so if there are slight irregularities on the contact surface between the electrode and separator or the clamping force is not uniform, the electrode or separator may be damaged. Sometimes I end up doing it.

電池の内部抵抗を減じ、より大きな出力を出す為には、
電極とセパレーク−を均一に圧締して密着させなければ
ならず、その技術的難度も極めて高いものである。 本
発明は以上の欠点を鑑み、その目的とするところは電極
部とセパレータ一部を炭素化反応を利用して、炭素を結
着剤として一体賦形化し、電池に組み上げる際の接触抵
抗を少なくする圧締工程を不用のものとし、さらに電極
部とセパレータ一部の炭素接着によって接触抵抗を全く
無くし、電子伝導性を飛曜的に向上させ、燃料電池の発
電効率を大中に増加させること、及び、電極とセパレー
ター各々の機械的強度の増加、司法精度の向上、従来の
技術では極めて困難であった複雑な形状や肉厚の薄い製
品を、簡便な方法で、安価に、設計通りの製品を製造す
る方法を提供するものである。
In order to reduce the internal resistance of the battery and produce greater output,
The electrode and the separator must be uniformly pressed and brought into close contact, which is extremely technically difficult. In view of the above-mentioned drawbacks, the present invention aims to use a carbonization reaction to form an electrode part and a part of a separator into one piece with carbon as a binder, thereby reducing contact resistance when assembled into a battery. To eliminate the need for a pressing process, and to completely eliminate contact resistance by bonding the electrode part and part of the separator with carbon, dramatically improving electronic conductivity and significantly increasing the power generation efficiency of the fuel cell. It also increases the mechanical strength of the electrodes and separators, improves judicial precision, and allows products with complex shapes and thin walls to be manufactured in a simple manner, at low cost, and as designed, which was extremely difficult with conventional technology. It provides a method for manufacturing a product.

本願発明者らは、この目的を達成するため、鋭意研究の
結果、電極部として、粒状に焼結した疎構造炭素体が1
′iられる有機高分子粒子の表面層を熔かして粒子間に
点接着を生じさせたことにより成る有機高分子多孔体を
準備し、セパレータ一部として、炭素化して密構造炭素
体が得られる、有機高分子物質及びアスファルトピッチ
類、乾溜ピッチ類の1種又は2種以上と微粒子炭素第5
)末との配合物から成る成形体を準備腰有機高分子多孔
体と成形体がグリーン状態、もしくは炭素前駆体化状態
のものを、炭素化後高い炭素残査を残す自機液状組成物
を用いて接着した後に、接着液を固化さ−U、不活性ガ
ス雰囲気中で炭素化処理を施すことからなる、有機賦形
物を炭素化させて成り、実質的に炭素から成る燃料電池
用炭素電極と炭素セパレーターとの一体賦形物の製造法
に想到した。
In order to achieve this objective, the inventors of the present application have conducted intensive research and found that a single loosely structured carbon body sintered into granules is used as the electrode part.
A porous organic polymer is prepared by melting the surface layer of the organic polymer particles to create point adhesion between the particles, and is carbonized to obtain a dense structure carbon material as a part of the separator. organic polymeric substances, asphalt pitches, dry distilled pitches, and particulate carbon No. 5.
) Prepare a molded body made of a mixture of organic polymer porous material and a molded body that is in a green state or a carbon precursor state, and prepare a self-produced liquid composition that leaves a high carbon residue after carbonization. Carbon for fuel cells is made by carbonizing an organic excipient and is made essentially of carbon. We came up with a method for manufacturing an integrated molded product of an electrode and a carbon separator.

本願発明において、炭素という用語は、炭素質及び黒船
質を包含し、疎構造とは炭素多孔体から成る構造であり
、また密構造とはバインダー及び必要に応じて炭素粉末
を加え常法によって炭素前駆体化処理を施した後不活性
ガス雰囲気中で焼成して成る炭素材の有する構造を言い
、焼成過程で必然的に生じるバインダ一部分の微細クラ
ンク等の構造は多孔構造とは呼ばない。また、密構造を
得るだめの配合組成物を混合、混練した後、成形機等を
用いて任意の形状に賦形した状態や疎構造を得るため有
機高分子粒子の表面を熔かして点接着を生じさせ、粒子
同士を結合させた状態をグリーン状態、と称する。さら
に炭素前駆体化状態とは、グリーン状態の成形体を、炭
素化促進触媒または架橋剤または重合開始剤を添加する
方法、酸処理を施す方法、CI 、0 、空気等の雰囲
気中で50〜500゛Cに加熱架橋する方法、紫外線、
電子線あるいはその他の放射線等を照射させて架橋硬化
さゼる方法等の手段によって不溶、不融化処理した状態
である。
In the present invention, the term carbon includes carbonaceous substances and black carbonaceous substances, a loose structure is a structure consisting of a carbon porous body, and a dense structure is a structure consisting of a carbon porous body, and a dense structure is a structure made of carbon by adding a binder and, if necessary, carbon powder. This refers to the structure of a carbon material obtained by firing in an inert gas atmosphere after a precursor treatment, and the structure of fine cranks in a portion of the binder that inevitably occurs during the firing process is not called a porous structure. In addition, after mixing and kneading the compounded composition to obtain a dense structure, the surface of the organic polymer particles is melted and dotted to obtain a state in which it is shaped into an arbitrary shape using a molding machine, or to obtain a loose structure. A state in which adhesion occurs and particles are bonded to each other is called a green state. Furthermore, the carbon precursor state refers to a method of adding a carbonization accelerating catalyst, a crosslinking agent, or a polymerization initiator to a molded body in a green state, a method of acid treatment, a method of applying an acid treatment, a method of converting the molded body in a green state to a CI, 0, 50 to 50 in an atmosphere such as air, etc. Method of heating crosslinking at 500°C, ultraviolet rays,
It is in a state in which it has been rendered insoluble or infusible by means such as crosslinking and curing by irradiation with electron beams or other radiation.

本発明の燃料電池用炭素電極と炭素セパレーターとの一
体賦形物の製造法について以下に具体的に説明する。
A method for producing an integral molded product of a carbon electrode for a fuel cell and a carbon separator according to the present invention will be specifically described below.

まず、不活性ガス雰囲気中で焼成して炭素セパレーター
を17ることか出来る密構造炭素となるグリーン状態成
形体を形成しておく。これは、有機高分子物質及びアス
ファルトピッチ類、乾性ピンチ類等の1種又は2種以」
二混合した混合物と微粒炭素粉末との配合物をヘンシエ
ルミキザー等の混合機で均一に混合し、次にこの混合物
を加圧ニーダ−12本ロール、3本ロール、コニ〜ダ−
等の高度に剪断力がかりられる混練機を用いて加熱下で
混練し、混線物をカレンダーロール、押出成形機、射出
成形機、塗布機、注型法等を用いて、第3図の9もしく
は第2図の11の形状に成形することによってiUられ
る。このグリーン状態成形体を炭素前駆体化処理するこ
とて炭素前駆体化状態の成形体を17る。なお、使用す
る有機高分子物質は、ポリ塩化ビニル、ポリアクリロニ
トリル、ポリビニルアルコール、ポリ塩化ビニル−酢酸
ビニル共重合体等の熱可塑性樹脂、フェノール樹脂、フ
ラン樹脂、エポキシ樹脂、不飽和ポリエステル等の熱硬
化性樹脂1.リグニン、セルロース等の天然高分子物質
、ナフタリンスルホン酸のポルマリン縮合物等の縮合多
環芳香族を分子の基本構造内に有する合成高分子物質等
を包含する。アスファルトピンチ類としては石油アスフ
ァルト、コールクールピンチ、ナフサ分解ピンチ等や合
成樹脂等の炭化水素化合物の400℃以下の乾性物等が
ある。炭素微粉末は、例えば天然黒鉛、人造黒鉛、カー
ボンブラック、コークス粉末、木炭粉末等の1種又は2
種以上を選択し、平均粒子径は20μ以下好ましくは1
0μ以下の微粉末状の炭素粉を配合物全量に対し5〜5
0重量%添加する。次に、不活性ガス雰囲気中で焼成し
て炭素電極を得ることできる疎構造炭素となるグリーン
状態有機高分子多孔体を形成しておく。これは有機高分
子粒子を、加熱による融解、溶剤による熔解を利用して
軟化さ−U粒子表面層間に点接着を住じさせることによ
ってi3られる。本発明における有機高分子粒子は塩素
化塩化ビニル、ポリアクリロニトリル、ポリビニルアル
コール、ポリフェニレンエーテル、ポリビニルヘンゼン
等の熱可塑性樹脂の粒子、フラン樹脂、フェノール樹脂
、ビスマレイミド・トリアジン樹脂等の熱硬化性樹脂の
モノマーまたは初期縮合体を熱変形可能な程度、もしく
は溶解可能な程度迄硬化させたものを粉砕した粒子、ト
ラガントガム、アラビアガム、糖類の如き、縮合多環芳
香族を分子の基本構造に持つ天然高分子粒子、又前記に
は含まれない縮合多環芳香族を分子の基本構造に持つナ
フタリンスルホン酸のポルマリン縮合物、インダンスレ
ン系染料及びその中間体の如き合成高分子粒子、石油ア
スファルト、コールクールピンチ、合成樹脂等の乾性ピ
ンチを300〜500°Cて熱処理し、低分子化合物を
溶剤で除去したものを粉砕した粒子のうち1種又は2種
以上の混合物であり、粒子の大きさは、直径又は最大辺
が1龍以下であり、かつ粒子の90%以上が10μ以上
である。本発明において、前記有機高分子粒子は、必要
に応じて溶剤を加え、第3図の8もしくは第4図の10
の形状に成形し、加熱による融解、溶剤による溶解を利
用して、冷却又は溶剤を揮散させて、グリーン状態有機
高分子多孔体を形成しておく。このグリーン状態有機高
分子多孔体炭素前駆体化処理することで炭素前駆体化状
態の有機高分子多孔体を得る。
First, a green-state molded body is formed into a dense structure of carbon that can be fired in an inert gas atmosphere to form a carbon separator. This includes one or more of organic polymer substances, asphalt pitches, dry pinches, etc.
The blend of the two-mixed mixture and fine carbon powder is mixed uniformly with a mixer such as a Henschel mixer, and then this mixture is transferred to a pressure kneader, 12 rolls, 3 rolls, and a co-kneader.
The mixture is kneaded under heat using a kneading machine that can apply a high shearing force, and the mixed wire is mixed using a calender roll, an extrusion molding machine, an injection molding machine, a coating machine, a casting method, etc. IU is formed by molding into the shape 11 in FIG. This green state compact is subjected to a carbon precursor treatment to obtain a carbon precursor state compact 17. The organic polymer substances used include thermoplastic resins such as polyvinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyvinyl chloride-vinyl acetate copolymers, phenolic resins, furan resins, epoxy resins, and unsaturated polyesters. Curable resin 1. It includes natural polymeric substances such as lignin and cellulose, and synthetic polymeric substances having a condensed polycyclic aromatic group in the basic structure of the molecule, such as a polymarin condensate of naphthalene sulfonic acid. Asphalt pinches include petroleum asphalt, coal cool pinch, naphtha decomposition pinch, etc., and dry products of hydrocarbon compounds such as synthetic resins at 400° C. or less. The carbon fine powder may be one or two of natural graphite, artificial graphite, carbon black, coke powder, charcoal powder, etc.
The average particle size is 20μ or less, preferably 1
5-5% of finely powdered carbon powder with a size of 0μ or less is added to the total amount of the mixture.
Add 0% by weight. Next, a green state organic polymer porous body is formed which becomes loosely structured carbon from which a carbon electrode can be obtained by firing in an inert gas atmosphere. This can be achieved by softening the organic polymer particles by melting them by heating or by melting them by a solvent, and causing point adhesion to form between the surface layers of the U particles. The organic polymer particles in the present invention are particles of thermoplastic resins such as chlorinated vinyl chloride, polyacrylonitrile, polyvinyl alcohol, polyphenylene ether, and polyvinylhenzen, and thermosetting resins such as furan resins, phenolic resins, and bismaleimide/triazine resins. Particles obtained by curing monomers or initial condensates of Polymer particles, synthetic polymer particles such as polymarine condensates of naphthalene sulfonic acid having fused polycyclic aromatics in the basic molecular structure, indanthrene dyes and intermediates thereof, petroleum asphalt, It is a mixture of one or two or more of the particles obtained by heat-treating a dry pinch of synthetic resin, etc. at 300 to 500°C and removing low-molecular compounds with a solvent. has a diameter or maximum side of 1 μm or less, and 90% or more of the particles have a diameter of 10 μm or more. In the present invention, the organic polymer particles can be prepared by adding a solvent if necessary to form the organic polymer particles at 8 in FIG. 3 or at 10 in FIG. 4.
The organic polymer porous body is formed into a green state organic polymer porous body by molding it into the shape of , melting it by heating or dissolving it by a solvent, and then cooling it or volatilizing the solvent. By subjecting the green state porous organic polymer to a carbon precursor treatment, a porous organic polymer in a carbon precursor state is obtained.

次にこの炭素セパレーク−が得られるグリーン状態の成
形体、炭素前駆体化状態の成形体いづれかと、多孔質炭
素電極が得られる有機高分子多孔体のグリーン状態、炭
素前駆体化状態のいづれかを炭素化した段階で結合させ
るため、有機質液状組成物を用いて双方を接着する操作
を行う。
Next, either the molded body in a green state or a molded body in a carbon precursor state from which this carbon separator is obtained, or the green state or carbon precursor state of an organic polymer porous body from which a porous carbon electrode is obtained. In order to bond them at the stage of carbonization, an operation is performed to bond them together using an organic liquid composition.

ここで有機質液状組成物とは、ポリ塩化ヒニル、塩素化
塩化ビニル樹脂等の熱可塑性樹脂、フェノール樹脂、フ
ラン樹脂、ポリイミド等の熱硬化性樹脂、トランガント
ガム等の天然高分子物質、石油アスファルト、コールタ
ールピッチ等のアスファルトピンチ類、有機高分子を乾
性して得られる乾性ピッチ類の1種又は2種以上の組成
物で、炭素化時に電極とセパレーターの結合をより強固
にする為に、平均粒度2oμ以下の、天然黒鉛、人造黒
鉛、カーボンブラック、コークス粉、木炭粉等の炭素微
粉末を5〜50重量部加えることも良い。尚、使用する
有機高分子物質、ピッチ、炭素微粉末等は、セパレータ
一部分及び電極部分の形成に用いた素材と同じものが結
合力の増強につながるので好ましいが、セパレータ一部
分と電極部分の形成に用いた素材が異なる場合には、セ
パレータ一部分の素材に一致させれば良い。使用する有
機高分子物質、ピノヂ類が品温で液状を呈さないものは
、その素材の初期縮合物、溶剤に熔解した溶液、或いは
加熱溶融物を用いると良い。電極部きセパレータ一部間
に塗布した有機質液状組成物は、加熱、脱溶剤等の処理
を行い固化させることで、電極部とセパレータ一部の固
着を行う。このように形状調整操作の後、必要に応じて
炭素前駆体化処理を行い或いは行うことなく、不活性ガ
ス雰囲気中で800°C以上、好ましくは1000℃以
上に加熱昇温して炭素化処理を行う。かくして、炭素電
極部と炭素セパレータ一部が炭素を介して接合された一
体賦形物が得られる。この時、焼成温度には上限がなく
、必要に応じ3000℃程度まで加熱しても良い。
Here, the organic liquid composition refers to thermoplastic resins such as polyhinyl chloride and chlorinated vinyl chloride resins, thermosetting resins such as phenol resins, furan resins, and polyimides, natural polymer substances such as trangant gum, and petroleum asphalt. , asphalt pinches such as coal tar pitch, and dry pitches obtained by drying organic polymers, in order to strengthen the bond between the electrode and the separator during carbonization. It is also good to add 5 to 50 parts by weight of fine carbon powder such as natural graphite, artificial graphite, carbon black, coke powder, charcoal powder, etc., with an average particle size of 2 μm or less. It is preferable that the organic polymer material, pitch, carbon fine powder, etc. used be the same as the material used to form the separator part and the electrode part, as this will lead to an increase in bonding strength. If the materials used are different, it is sufficient to match the material of a portion of the separator. If the organic polymer material used, Pinoji, does not exhibit a liquid state at temperature, it is preferable to use an initial condensate of the material, a solution dissolved in a solvent, or a heated melt. The organic liquid composition applied between a portion of the separator with the electrode portion is solidified by heating, solvent removal, etc., thereby fixing the electrode portion and the separator portion. After the shape adjustment operation as described above, carbonization treatment is performed by heating to 800° C. or higher, preferably 1000° C. or higher, in an inert gas atmosphere, with or without performing a carbon precursor treatment as necessary. I do. In this way, an integral molded article is obtained in which the carbon electrode part and part of the carbon separator are joined via carbon. At this time, there is no upper limit to the firing temperature, and it may be heated up to about 3000° C. if necessary.

電極部とセパレータ一部との良好な炭素接着を得るには
、500°Cまでは昇温速度50℃/hr以下好ましく
は30°C/hr以下て焼成するのが適当である。50
0℃以上からの昇温速度には特に制限はない。この操作
によって得られたセパレータ一部の炭素は、不浸透性に
優れ、高強度、高電気伝導性を有し、燃料電池用炭素セ
パレーターとして優れた性質を有するものである。
In order to obtain good carbon adhesion between the electrode part and a part of the separator, it is appropriate to perform the firing at a heating rate of 50°C/hr or less, preferably 30°C/hr or less, up to 500°C. 50
There is no particular restriction on the rate of temperature increase from 0°C or higher. The carbon part of the separator obtained by this operation has excellent impermeability, high strength, and high electrical conductivity, and has excellent properties as a carbon separator for fuel cells.

また従来の方法の様に炭素化後の切削工程を必要としな
いので、歩留も高く、コスト的に有利な方法である。
Furthermore, unlike conventional methods, a cutting step after carbonization is not required, so the yield is high and the method is advantageous in terms of cost.

また、電極部は、有機高分子粒子焼結体がそのままの形
状で炭化しているので、機械強度が大きく、電気伝導性
も優れる連続気孔性の炭素多孔体であり、有機高分子粒
子の粒子径を調節することによって、多孔体の気孔径、
気孔率を自由に調節することが可能で、燃料電池の効率
良い出力を出せる様に電極の気孔の設計を可能にするも
のである。
In addition, the electrode part is made of organic polymer particle sintered body that is carbonized in its original shape, so it is a continuous porous carbon material with high mechanical strength and excellent electrical conductivity. By adjusting the diameter, the pore diameter of the porous body,
It is possible to freely adjust the porosity, and it is possible to design the pores of the electrode so that the fuel cell can produce efficient output.

本発明による製品は上記セパレーターと電極を炭素を介
在して一体賦形化したものであるから、電極に組み上げ
る際の接触抵抗を減少させる圧締工程を不用のものとし
、圧締による破損の防止に寄与するのみならず、電子伝
導性の飛躍的向上を実現することができる。
Since the product according to the present invention is made by integrally molding the separator and the electrode with carbon interposed therebetween, it eliminates the need for a clamping process to reduce contact resistance when assembling into the electrode, and prevents damage due to clamping. This not only contributes to the improvement of electronic conductivity, but also dramatically improves electronic conductivity.

また、電極部とセパレータ一部は従来の製品よりも高い
強度を有し、さらに一体化しているので、従来の様に単
独では出現しなかった耐折損性の向上が見込まれ、セパ
レーター及び電極部の厚さも必要最小限の厚み迄薄くす
ることが可filで、電池本体の小型化、軽量化に貢献
することが大である。また、従来の方法ではセパレータ
一部、電極部共、加工費が高価で、特にリブ付のものは
歩留も小さくそのコストは極めて大きがったが、本発明
の方法ではセパレーター、電極単独でも低コストで製作
出来るが、さらにこれらを一体化したものを効率良く安
価に製造するものであるから、燃料電池の普及にさらに
拍車をかけるもので極めて有意義な発明と言うことが出
来る。
In addition, the electrode part and part of the separator have higher strength than conventional products, and since they are integrated, it is expected that the breakage resistance will be improved, which could not be achieved independently as in the past. The thickness of the battery can be reduced to the minimum necessary thickness, which greatly contributes to making the battery body smaller and lighter. In addition, in the conventional method, processing costs were high for both the separator and the electrode, and the yield was low and the cost was extremely high, especially for those with ribs, but with the method of the present invention, the separator and electrode alone can be processed. This invention can be manufactured at low cost, and furthermore, it can be manufactured efficiently and inexpensively by integrating these elements, so it can be said to be an extremely meaningful invention that will further spur the spread of fuel cells.

次に、実施例により本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実韮訓上 フラン樹脂初期縮合物〔0菊日立化成製ヒタフランVF
−302)80重量部とカーボンブランク〔■三菱(2
成製MA−100)20重量部を3本ロールにて加熱下
混練し、25゛cで500cp の粘度のペーストを得
た。次に該配合物を60℃に加熱し金型に注型し加熱オ
ーブン中で60℃2時間、次に150℃5時間で硬化し
、金型から離型し、さらに180℃10時間加熱して炭
素前駆体化処理を行って、第3図中9に示される密構造
リブ付有機成形体を得た。リプの中は1.5鶴、高さは
2. Ova、全厚は3.5顛であった。次に粉砕した
トラガントガム粉末のうち、振とう式フルイにて65メ
ツシユー250メソシユの範囲の粒径の粒子を取り出し
た。次いで水5重量%をヘンシェルミキサーにて均一に
分散混合し、その混粉を厚さ3鶴の平板に成形し、50
kg/cJの加圧を油圧プレス機にて1分間行い、°5
0℃に調節したオーブンに1時間保持し、次いで110
℃3時間加熱して水を蒸散させグリーン状態の厚さ1.
5mmの第3図中の8に示される有機高分子平板多孔体
を得た。次に前記のフラン初期縮合物とカーボンブラン
クの配合物に対し、2重量%の硬化剤〔1ll)日立化
成製A−3硬化剤〕を加え、良く攪拌混合した後有機液
状組成物とし、第3図に示される様に接合加工し、常温
で3時間放置して液状物を固化し、さらに180℃迄加
熱して炭素前駆体化処理を行った後、窒素ガス雰囲気中
で常温から300℃迄は20”C/h300〜500℃
は40℃/h、500〜1000℃は100℃/hで昇
温して焼成し、冷却後、第5図に示される、炭素電極と
炭素セパレーターが炭素で接着された一体賦形物を得た
。得られた製品のリブ付セパレーターのリブ巾は1.3
鰭、高さは1.7fi、全厚は3.01であった。平板
電極の厚さは1.2鰭、炭素接着層の厚さは0.1順で
あった。従って得られた製品の全厚は5,6龍であった
。電気抵抗は電極とセパレーターを各々同条件で別個に
成形、焼成し、炭素接着層を介在させないで第5図の如
く圧締したところ、その数値の55%という低抵抗値で
あった。多孔体電極のかさ密度ば0.65、気孔径は2
0〜130μ、連続気孔率95%、セパレ−り一部分の
通気率は5.0X10cn+/5(He、△P=1at
m)であった。
Hitachi Chemical Hitafuran VF initial condensate of furan resin
-302) 80 parts by weight and carbon blank [■Mitsubishi (2
20 parts by weight of the prepared MA-100) were kneaded under heat using three rolls to obtain a paste having a viscosity of 500 cp at 25°C. Next, the mixture was heated to 60°C, cast into a mold, cured in a heating oven at 60°C for 2 hours, then at 150°C for 5 hours, released from the mold, and further heated at 180°C for 10 hours. A carbon precursor treatment was performed to obtain a densely structured ribbed organic molded body shown at 9 in FIG. The inside of the lip is 1.5 cranes, the height is 2. Ova, the total thickness was 3.5 meters. Next, from the ground tragacanth gum powder, particles having a particle size ranging from 65 mesh to 250 mesh were taken out using a shaking sieve. Next, 5% by weight of water was uniformly dispersed and mixed using a Henschel mixer, and the mixed powder was formed into a flat plate with a thickness of 3 mm.
Pressurize kg/cJ for 1 minute using a hydraulic press, and
Placed in an oven adjusted to 0°C for 1 hour, then heated to 110°C.
℃ for 3 hours to evaporate water to a green state thickness of 1.
A 5 mm porous organic polymer plate shown at 8 in FIG. 3 was obtained. Next, 2% by weight of a curing agent [1 liter) Hitachi Chemical A-3 curing agent] was added to the mixture of the furan precondensate and carbon blank, and after stirring and mixing well, an organic liquid composition was prepared. As shown in Figure 3, the bonding process was carried out, and the liquid was left at room temperature for 3 hours to solidify, and then heated to 180°C to form a carbon precursor, and then heated from room temperature to 300°C in a nitrogen gas atmosphere. Until 20"C/h300~500℃
The temperature was raised at 40°C/h for 500°C to 1000°C, and 100°C/h for 500 to 1000°C. Ta. The rib width of the ribbed separator of the obtained product is 1.3
The fins were 1.7 fi in height and 3.01 in total thickness. The thickness of the flat plate electrode was 1.2 fins, and the thickness of the carbon adhesive layer was 0.1 fin. Therefore, the total thickness of the product obtained was 5.6 mm. When the electrical resistance was determined by molding and firing the electrode and separator separately under the same conditions and pressing them together as shown in FIG. 5 without interposing a carbon adhesive layer, the resistance value was as low as 55% of that value. The bulk density of the porous electrode is 0.65, and the pore diameter is 2.
0~130μ, continuous porosity 95%, air permeability of the separate part 5.0X10cn+/5(He, △P=1at
m).

実掘側1 フラン樹脂初期縮合物〔■武田薬品工業製プロミネー1
.Q−1001)50重量部と塩素含有率65%の塩素
化塩化ビニル樹脂粉末(−日本カーバイト製二カテンプ
’r−025)30重量部、平均粒径7μの鱗状黒1t
i) ’175)末〔側日本黒鉛製csp)20重量部
をヘンシェルミキサーを用いて均一に混合した。次にそ
の混合物を加圧ニーダ−を用いて加熱下十分混練した。
Actual excavation side 1 Furan resin initial condensate [■ Promine 1 manufactured by Takeda Pharmaceutical Co., Ltd.
.. Q-1001) 50 parts by weight and 30 parts by weight of chlorinated vinyl chloride resin powder (Nikatemp'r-025 manufactured by Nippon Carbide) with a chlorine content of 65%, 1 ton of scaly black with an average particle size of 7μ
i) 20 parts by weight of '175) powder [CSP manufactured by Nippon Graphite Co., Ltd.] were uniformly mixed using a Henschel mixer. Next, the mixture was sufficiently kneaded under heat using a pressure kneader.

混練後カレンダーロールを用いて成形し、厚さQ、 5
1111の板状体を1υ、加熱オーブン中で150℃4
時間、次いで180℃8時間の炭素前駆体化処理を行っ
て第4図中の11に示される密構造平板有機成形体を得
た。次に塩素含有率65%の塩素化塩化ビニル樹脂粉末
[−日本カーバイト製二カテンプT−025]を24時
間ボールミルで粉砕した粒子を、金型に投入し250℃
に5分加熱し有機高分子多孔体を得、加熱オーブン中で
180°Cで10時間加熱後窒素ガス中で10℃/hで
昇温し400℃迄加熱して炭素前駆体化処理を施し、第
4図中の10に示される有機高分子リブ付多孔体を得た
。リブのrIJは2ll、高さは1.5鶴、多孔体の全
厚は3龍であった。次に前記のフラン初期縮合物70重
量部、黒鉛粉末30重量部より成る有機質液状組成物を
用いて、第4図に示される様に接合加工し、加熱オーブ
ン中80℃で液状物を固化し、さらに180℃迄加熱し
た。その後窒素ガス雰囲気中で’M温から300℃迄は
20℃/hr、300〜500℃は30℃/h、500
〜1000 °cは100℃/hで昇温して焼成し冷却
後、第6図に示される炭素電極と炭素セパレーターが炭
素で接着された一体賦形物を得た。得られた製品のセパ
レーターの厚さは0.4N、リブ付電極のりブの中は1
.8鰭、高さは1.35鰭、電極全体の厚さは2.6鰭
であった。炭素接着層の厚さは0.IOであった。
After kneading, it is molded using a calendar roll to a thickness of Q, 5.
A plate-shaped body of 1111 was heated at 1υ in a heating oven at 150°C4.
Then, a carbon precursor treatment was carried out at 180° C. for 8 hours to obtain a dense structured flat plate organic molded body shown in 11 in FIG. Next, particles of chlorinated vinyl chloride resin powder with a chlorine content of 65% [-Nikatemp T-025 manufactured by Nippon Carbide] were ground in a ball mill for 24 hours, and the particles were placed in a mold and heated to 250°C.
The material was heated for 5 minutes to obtain a porous organic polymer, heated in a heating oven at 180°C for 10 hours, and then heated in nitrogen gas at a rate of 10°C/h to 400°C to undergo carbon precursor treatment. An organic polymer ribbed porous body shown in 10 in FIG. 4 was obtained. The rIJ of the rib was 2ll, the height was 1.5mm, and the total thickness of the porous body was 3mm. Next, an organic liquid composition consisting of 70 parts by weight of the furan initial condensate and 30 parts by weight of graphite powder was bonded as shown in Figure 4, and the liquid was solidified at 80°C in a heating oven. , and further heated to 180°C. After that, in a nitrogen gas atmosphere, from 'M temperature to 300℃, 20℃/hr, from 300 to 500℃, 30℃/h, 500℃
After firing at a temperature of ~1000°C at a rate of 100°C/h and cooling, an integral molded product in which a carbon electrode and a carbon separator were bonded with carbon as shown in FIG. 6 was obtained. The thickness of the separator of the obtained product is 0.4N, and the thickness of the ribbed electrode is 1N.
.. It had 8 fins, a height of 1.35 fins, and a total electrode thickness of 2.6 fins. The thickness of the carbon adhesive layer is 0. It was IO.

従ってflられた製品の全1!7は5.8鰭であった。Therefore, all 1!7 of the flied products were 5.8 fins.

電気抵抗は、電極とセパレーク−を各々同条件で別個に
成形、焼成し、炭素接着層を介在させないで第6図の如
く圧締したところ、その数値の60%という低抵抗値で
あった。多孔体電極部分のかさ密度は0.60、気孔径
は10〜100μ、連続気孔率96%でありセパレータ
一部分の通気率は7.Ox 10 cf/ s (He
、△P−1atm)であった。
The electrical resistance was as low as 60% of that value when the electrode and the separator were molded and fired separately under the same conditions and pressed together as shown in FIG. 6 without intervening a carbon adhesive layer. The bulk density of the porous electrode part is 0.60, the pore diameter is 10-100μ, the continuous porosity is 96%, and the air permeability of the separator part is 7. Ox 10 cf/s (He
, ΔP-1 atm).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は燃料電池の単セルの構造を模式的に示
したものである。第1図はリブ付セパレーク−型、第2
図はリブ付電極型の構造である。 第3図、第4図は本発明の有機液状組成物を用いてセパ
レーク−と電極を接着する際の模式図である。第3図は
りブイ1セパレーター型、第4図はリブ付電極型の構造
である。 第5図、第6図は本発明による炭素化処理後のセパレー
ターと電極の一体賦形物の模式図である。第5図はリブ
付セパレーター型、第6図はりブ(1電極の構造である
。 図において、 1・・・リブ付セパレーター 2・・・平板電極 3・・・平板セパレーター4・・・
リブ付電極 5・・・電解質 6・・・空気 7・・・燃料 8・・・有機高分子平板多孔体 9・・・密構造リブ付有機成形体 10・・・有機高分子リブ付多孔体 11・・・密構造平板有機成形体 12・・・有機液状組成物 13・・・接着剤炭素 特許出願人 三菱鉛筆株式会社 #1図 幕2 図 高3図 第4に 秦5閏
FIGS. 1 and 2 schematically show the structure of a single cell of a fuel cell. Figure 1 shows a ribbed separate lake type;
The figure shows the structure of a ribbed electrode type. FIGS. 3 and 4 are schematic views of bonding a separator and an electrode using the organic liquid composition of the present invention. Figure 3 shows the structure of a beam buoy with one separator type, and Figure 4 shows the structure of a ribbed electrode type. FIG. 5 and FIG. 6 are schematic diagrams of an integral molding of a separator and an electrode after carbonization treatment according to the present invention. Fig. 5 shows a ribbed separator type, Fig. 6 shows a ribbed structure (one electrode structure).
Ribbed electrode 5... Electrolyte 6... Air 7... Fuel 8... Organic polymer flat plate porous body 9... Dense structure ribbed organic molded body 10... Organic polymer ribbed porous body 11...Dense structured flat plate organic molded body 12...Organic liquid composition 13...Adhesive carbon patent applicant Mitsubishi Pencil Co., Ltd. #1 Diagram 2 Figure height 3 Figure 4 Qin 5

Claims (1)

【特許請求の範囲】 1)疎構造炭素体から成る平板又はリプ付の電極成形体
と密構造炭素体から成る、電極成形体が平板の場合はリ
ブ付でリブ付の場合は平板のセパレーター成形体とを、
グリーン状態または炭素前駆体化状態において、炭素化
後炭素残査率の高い有機液状組成物を用いて接着し、そ
の後炭素化処理を施すことから成る炭素質の一体構造か
ら成る燃料電池用部材の製造法。 2)該疎構造炭素体は有機高分子粒子の表面層を溶かし
て粒子間に点接着を生じさせて成る有機高分子多孔体を
炭素化して得られる粒状に焼結した炭素体である第1項
の製造法。 3)該密構造炭素体は有機高分子物質及びアスファルト
ピッチ類、乾溜ピッチ類の1種又は2種以上の微粒子炭
素粉末との配合物から成る成形体を炭素化して得られる
炭素体である第1項の製造法。 4)該有機質”液状組成物は、有機高分子物質及びアス
ファルトピッチ類、乾溜ピッチ類の1種又は2種以上の
混合物である第1項の製造法。 5)該有機質液状組成物は、有機高分子物質及びアスフ
ァルトピンチ類、乾溜ピッチ類の1種又は2種以上の混
合物に微粒炭素粉末が配合される第1項の製造法。 6)該炭素化処理は800℃以上に加熱昇温して行われ
る第1項の製造法。 7)該有機高分子粒子は直径又は最大辺が1層重以下で
あり、かつ該粒子の90%以上が直径又は最大辺が10
μm以上である第2項の製造法。 8)該有機高分子粒子は塩素化塩化ビニル、ポリアク 
・リロニトリル、ポリビニルアルコール、ポリフェニレ
ンエーテル、ポリジビニルベンゼン等の熱可塑性樹脂の
粒子、フラン樹脂、フェノール樹脂、ビスマレイミド・
トリアジン樹脂等の熱硬化性樹脂のモノ 。 マー又は初期縮合体を熱変形可能な程度、もしくは溶剤
で溶解可能な程度迄硬化させたものを粉砕した粒子、ト
ラガントガム、アラビアガム、糖類の如き縮合多環芳香
族を分子の基本構造内に持つ天然高分子粒子、又前記に
は含まれない縮合多環芳香族を分子の基本構造内に持つ
合成高分子粒子、石油アスファルト、コールタールピッ
チ、合成樹脂の乾溜ピッチを300〜500℃で熱処理
し、低分子化合物を溶剤で除去したものを粉砕した粒子
のうち、1種又は2種以上の混合物である第2項の製造
法。
[Scope of Claims] 1) An electrode molded body with a flat plate or lip made of a loose structure carbon body and a separator molded with ribs if the electrode molded body is a flat plate and a flat plate if it is ribbed. with the body,
A fuel cell member consisting of a carbonaceous monolithic structure that is bonded in a green state or a carbon precursor state using an organic liquid composition with a high rate of carbon residue after carbonization, and then subjected to carbonization treatment. Manufacturing method. 2) The loosely structured carbon body is a carbon body sintered into granules obtained by carbonizing an organic polymer porous body made by dissolving the surface layer of organic polymer particles to cause point adhesion between the particles. Manufacturing method of section. 3) The dense structure carbon body is a carbon body obtained by carbonizing a molded body consisting of a blend of an organic polymer substance and one or more types of fine particle carbon powder of asphalt pitch and dry distilled pitch. Manufacturing method in Section 1. 4) The manufacturing method of item 1, wherein the organic liquid composition is one or a mixture of two or more of an organic polymer substance, asphalt pitch, and dry distilled pitch. 5) The organic liquid composition is an organic The manufacturing method according to item 1, wherein fine carbon powder is blended with one or more mixtures of polymeric substances, asphalt pinches, and dry distilled pitches. 6) The carbonization treatment involves heating and raising the temperature to 800°C or higher. 7) The organic polymer particles have a diameter or maximum side of 1 layer or less, and 90% or more of the particles have a diameter or maximum side of 10
The manufacturing method according to item 2, wherein the size is µm or more. 8) The organic polymer particles are chlorinated vinyl chloride, polyacrylic
・Particles of thermoplastic resin such as rylonitrile, polyvinyl alcohol, polyphenylene ether, polydivinylbenzene, furan resin, phenol resin, bismaleimide・
Thermosetting resins such as triazine resin. Particles obtained by curing polymers or initial condensates to the extent that they can be thermally deformed or soluble in solvents, and have condensed polycyclic aromatics such as gum tragacanth, gum arabic, and sugars in the basic structure of the molecule. Natural polymer particles, synthetic polymer particles having a condensed polycyclic aromatic group in the basic structure of the molecule that is not included in the above, petroleum asphalt, coal tar pitch, and dry distilled synthetic resin pitch are heat treated at 300 to 500°C. , the manufacturing method of item 2, which is one or a mixture of two or more of the particles obtained by pulverizing particles from which low-molecular compounds have been removed with a solvent.
JP58126189A 1983-07-13 1983-07-13 Manufacture of members for fuel cell Granted JPS6020471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58126189A JPS6020471A (en) 1983-07-13 1983-07-13 Manufacture of members for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126189A JPS6020471A (en) 1983-07-13 1983-07-13 Manufacture of members for fuel cell

Publications (2)

Publication Number Publication Date
JPS6020471A true JPS6020471A (en) 1985-02-01
JPH0158623B2 JPH0158623B2 (en) 1989-12-12

Family

ID=14928893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126189A Granted JPS6020471A (en) 1983-07-13 1983-07-13 Manufacture of members for fuel cell

Country Status (1)

Country Link
JP (1) JPS6020471A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232568A (en) * 1985-04-08 1986-10-16 Mitsubishi Pencil Co Ltd Manufacture of whole carbon component for fuel cell
JPS62126563A (en) * 1985-11-27 1987-06-08 Tokai Carbon Co Ltd Manufacture of carbon member for fuel cell
JPS62276760A (en) * 1986-05-26 1987-12-01 Tokai Carbon Co Ltd Manufacture of complex electrode for fuel cell
JPS6348763A (en) * 1986-08-14 1988-03-01 Kureha Chem Ind Co Ltd Composite electrode substrate bonded with teflon and its manufacture
JPS6348766A (en) * 1986-08-14 1988-03-01 Kureha Chem Ind Co Ltd Composite electrode substrate having different rib height and its manufacture
JPS6348767A (en) * 1986-08-14 1988-03-01 Kureha Chem Ind Co Ltd Composite electrode substrate having teflon-sealed end and its manufacture
JPS6364906A (en) * 1986-09-03 1988-03-23 Showa Denko Kk Glassy carbon plate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232568A (en) * 1985-04-08 1986-10-16 Mitsubishi Pencil Co Ltd Manufacture of whole carbon component for fuel cell
JPS62126563A (en) * 1985-11-27 1987-06-08 Tokai Carbon Co Ltd Manufacture of carbon member for fuel cell
JPS62276760A (en) * 1986-05-26 1987-12-01 Tokai Carbon Co Ltd Manufacture of complex electrode for fuel cell
JPS6348763A (en) * 1986-08-14 1988-03-01 Kureha Chem Ind Co Ltd Composite electrode substrate bonded with teflon and its manufacture
JPS6348766A (en) * 1986-08-14 1988-03-01 Kureha Chem Ind Co Ltd Composite electrode substrate having different rib height and its manufacture
JPS6348767A (en) * 1986-08-14 1988-03-01 Kureha Chem Ind Co Ltd Composite electrode substrate having teflon-sealed end and its manufacture
JPH0582715B2 (en) * 1986-08-14 1993-11-22 Kureha Chemical Ind Co Ltd
JPS6364906A (en) * 1986-09-03 1988-03-23 Showa Denko Kk Glassy carbon plate
JPH0432798B2 (en) * 1986-09-03 1992-06-01 Showa Denko Kk

Also Published As

Publication number Publication date
JPH0158623B2 (en) 1989-12-12

Similar Documents

Publication Publication Date Title
JP2001052721A (en) Separator for fuel cell and its manufacture
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
CN114784307A (en) Graphene-reinforced expanded graphite/polyimide-polyether ether ketone composite bipolar plate and preparation method thereof
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JPS6020471A (en) Manufacture of members for fuel cell
US4950443A (en) Process for producing carbon product with coarse and dense structure
CN114759209A (en) Expanded graphite/polyimide-polyether sulfone composite bipolar plate and preparation method thereof
JPS62171908A (en) Production of carbon plate
JPH0131445B2 (en)
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPS62260709A (en) Formed carbon article and production thereof
JP3580644B2 (en) Method for producing solid activated carbon and electric double layer capacitor obtained thereby
JPS62154470A (en) Manufacture of carbon member for fuel cell
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPS62252308A (en) Production of carbon plate
JPS62270412A (en) Production of carbon board
JPH0363183B2 (en)
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JPH0757741A (en) Manufacture of carbonaceous preformed body and electrode substrate
JPS61190862A (en) Whole carbon component for fuel cell and its manufacture
JPH06329469A (en) Preformed carbonaceous material and production of electrode substrate
JPS62160661A (en) Production of thin carbon plate for fuel cell separator
JPH0159969B2 (en)
JP4236248B2 (en) Method for producing separator material for polymer electrolyte fuel cell
JPS61232568A (en) Manufacture of whole carbon component for fuel cell