JPS60202675A - Manufacture of negative electrode for nonaqueous electrolyte secondary battery - Google Patents

Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Info

Publication number
JPS60202675A
JPS60202675A JP59058701A JP5870184A JPS60202675A JP S60202675 A JPS60202675 A JP S60202675A JP 59058701 A JP59058701 A JP 59058701A JP 5870184 A JP5870184 A JP 5870184A JP S60202675 A JPS60202675 A JP S60202675A
Authority
JP
Japan
Prior art keywords
negative electrode
filler
electrolyte secondary
secondary battery
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59058701A
Other languages
Japanese (ja)
Inventor
Takako Sonohara
園原 貴子
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59058701A priority Critical patent/JPS60202675A/en
Publication of JPS60202675A publication Critical patent/JPS60202675A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a negative electrode having high energy density and good charge-discharge performance by compressing a mixture of metal or alloy which absorbs and releases alkali metal ion, a binder, and a filler which is soluble in solvent, and immersing it in the solvent to dissolve the filler. CONSTITUTION:Metal or alloy (such as Sn-Cd) powder which is absorbs and releases alkali metal ion with charge and discharge, a binder such as polytetrafluoroethylene, and a filler which is soluble in a solvent are kneaded. The mixture is compressed in a desired shape and immersed in the solvent to dissolve the filler. By this process, a porous negative electrode for a nonaqueous electrolyte secondary battery is obtained. For example, NaCl powder is used as the filler and water is used as the solvent. The metal or metal alloy is selected from Si, Bi, Cd, In, Sb, Zn, Ag, and Al. Thus, a negative electrode having high reliability and capable of charge and discharge is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池用負極の製造法の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in a method for manufacturing a negative electrode for a non-aqueous electrolyte secondary battery.

従来例の構成とその問題点 従来、リチウム等のアルカリ金属を負極とする非水電解
質二次電池の開発が活発にすすめられてきた。しかし、
この釉の二次電池は現在まだ実用化されていない。その
主な理由は、充放電回数(サイクル)の寿命が短く、特
にデンドライトの発生などによる負極側の充放電効率が
低いだめである。
Conventional Structures and Problems The development of non-aqueous electrolyte secondary batteries using an alkali metal such as lithium as a negative electrode has been actively promoted. but,
This glazed secondary battery has not yet been put into practical use. The main reason for this is that the life of the number of charging/discharging cycles (cycles) is short, and the charging/discharging efficiency on the negative electrode side is particularly low due to the formation of dendrites.

このような負極の欠点を改良するため、負極集電体の利
料を替えて析出するリチウムとの密着性を良くしたり、
電解質中にデンドライト発生防止の添加剤を加えたりす
る方法が報告されている。
In order to improve these drawbacks of the negative electrode, we changed the interest rate of the negative electrode current collector to improve the adhesion with the precipitated lithium.
A method has been reported in which an additive to prevent dendrite formation is added to the electrolyte.

さらに最近、負極としてリチウム以外のAIなどの金属
または合金を使用することが提案された。
More recently, it has been proposed to use metals or alloys other than lithium, such as AI, as negative electrodes.

これは充電によりリチウムとの合金を作シ、放電により
リチウムをイオンとして、電解質中に溶解させるもので
ある。これにより充電時のデンドライトの発生は、なく
なるとされている。丑だ最近では、Sn、Bi 、Pb
、Cd、In、Sb、Zn、Ag0群か・ら選ばれた金
属あるいは合金も負極として使用できることが提案され
、この場合も充電により金属または合金と、リチウムと
の合金ができ、放電によりリチウムをイオンとして電解
質中に溶解させるものである。しかし、これら金属や、
合金をそのまま板状のままで使用すると、表面積が小さ
く、大電流での充放電が困難であった。
This creates an alloy with lithium by charging, and ionizes the lithium by discharging, which is dissolved in the electrolyte. This is said to eliminate the occurrence of dendrites during charging. Recently, Sn, Bi, Pb
It has been proposed that metals or alloys selected from the group consisting of , Cd, In, Sb, Zn, and Ag0 groups can also be used as negative electrodes. In this case as well, an alloy of the metal or alloy and lithium is formed by charging, and lithium is released by discharging. It is dissolved in the electrolyte as an ion. However, these metals
If the alloy was used in the form of a plate, the surface area would be small, making it difficult to charge and discharge with a large current.

そこでその充放電特性を改良するために、充電によりア
ルカリ金属との合金を作り、放電によりアルカリ金属を
溶解させる金属または合金を微粉化し、ポリ四フフ化エ
チレン樹脂とともに練合し、圧延加工して極板とする負
極が提案された。しかし、この構成では多孔率は40V
og%程度であり、結着剤であるポリ四フッ化エチレン
樹脂などの高分子物質が撥油性であるため、電極内部へ
の電解液の浸透が不十分であり、充放電の利用率が低下
した。
Therefore, in order to improve its charge/discharge characteristics, an alloy with an alkali metal is made by charging, and a metal or alloy that dissolves the alkali metal by discharge is pulverized, kneaded with polytetrafluoroethylene resin, and rolled. A negative electrode was proposed as a plate. However, in this configuration, the porosity is 40V
Since the polymer material such as polytetrafluoroethylene resin that is the binder is oil-repellent, the penetration of the electrolyte into the inside of the electrode is insufficient, resulting in a decrease in the charge/discharge utilization rate. did.

発明の目的 本発明は、非水電解質二次電池用負極に関するもので、
高エネルギー密度で充放電特性および信頼性にすぐれた
充放電可能な電池の負極の製造法を提供するものである
OBJECT OF THE INVENTION The present invention relates to a negative electrode for non-aqueous electrolyte secondary batteries.
The present invention provides a method for manufacturing a negative electrode for a rechargeable and dischargeable battery that has high energy density, excellent charge-discharge characteristics, and reliability.

発明の構成 本発明は、負極の多孔度を犬にして、大電流での充放電
特性の改良を行うだめ、負極中に水溶性のNaC5粉末
や砂糖粉末、まだはテトラハイドロフランに可溶性のポ
リ塩化ビニル粉末を充填剤として入れ、金属寸たは合金
と結着剤とから成る合剤を圧縮成型したのち、H2Oや
テトラハイドロフラン中に極板を浸漬し、N、aCl 
、砂糖、ポリ塩化ビニルなどの充填剤を溶解させた後、
真空乾燥を行って多孔性負極を得るものである。
Structure of the Invention The present invention aims to increase the porosity of the negative electrode and improve its charge/discharge characteristics at large currents. After adding vinyl chloride powder as a filler and compression molding a mixture consisting of metal particles or alloys and a binder, the electrode plate is immersed in H2O or tetrahydrofuran, and N, aCl
, after dissolving fillers such as sugar, PVC, etc.
A porous negative electrode is obtained by vacuum drying.

実施例の説明 本発明に関する実施例として、充放電によりリチウムを
吸蔵・放出する合金にSn85wt%−Cd15wt%
の合金、結着剤としてポリ四フフ化エチレン樹脂、溶媒
に可溶性の充填剤として溶解度の高い結晶粉末であるN
 a C(lを用いて、下記の検討を行った。ポリ四フ
ッ化エチレン樹脂、 NaC/は市販のものを用いた。
DESCRIPTION OF EMBODIMENTS As an example related to the present invention, 85 wt% Sn-15 wt% Cd was added to an alloy that occludes and desorbs lithium by charging and discharging.
alloy, polytetrafluoroethylene resin as a binder, and highly soluble crystalline powder N as a solvent-soluble filler.
The following study was conducted using aC(l).A commercially available polytetrafluoroethylene resin and NaC/ were used.

まず、前述の5n−Cd合金とポリ四フッ化エチレン樹
脂を、両者の和に対してポリ四フッ化エチレン樹脂を6
wt% になるように、加えて練合した。ここでポリ四
フフ化エチレン樹脂を5wt%とじたのは、3 wt 
4未満では圧縮成形したときに強度がでないためである
。さらに、N’、aClを5n−Cd合金とポリ四フッ
化エチレン樹脂とNaC1の合剤のうち、N’aClが
IQwt%(極板B)となるように加えて練合し、ロー
ラーで圧延し、0.2賜のフィルム状にした。そのフィ
ルム状の負極をNl エキスバンドメタルに両面から圧
着し、0.26胆に圧延した。次にそれを水中に浸漬し
、真空含没後、超音波洗浄してNaC(lを溶出し、真
空乾燥した。その極板を1×1.6伽に切断し、第1図
のように隅の負極合剤1を削り落し露出したNiネット
2にNi ’IJボン3を取9付けて試験極とした。
First, the above-mentioned 5n-Cd alloy and polytetrafluoroethylene resin are mixed, and the polytetrafluoroethylene resin is 6% of the sum of the two.
It was added and kneaded so that it became wt%. Here, 5 wt% of polytetrafluoroethylene resin is 3 wt.
This is because if it is less than 4, the strength will be low when compression molded. Furthermore, N' and aCl were added and kneaded to a mixture of 5n-Cd alloy, polytetrafluoroethylene resin, and NaCl so that N'aCl was IQwt% (electrode plate B), and rolled with a roller. It was made into a film with a thickness of 0.2. The film-like negative electrode was pressure-bonded to Nl expanded band metal from both sides and rolled to a thickness of 0.26 cm. Next, it was immersed in water, vacuum impregnated, ultrasonically cleaned to elute NaC (L), and vacuum dried.The electrode plate was cut into 1 x 1.6 pieces, and the corners were A test electrode was prepared by scraping off the negative electrode mixture 1 and attaching a Ni'IJ bond 3 to the exposed Ni net 2.

また比較のために、前述のSn、、−Cd合金でNa 
Cl0w+%のもの(極板A)、N’aC,520w 
t%のもの(極板C)、NaC140wt%のもの(極
板D)も同様に試作した。第1表に組成を示す。
For comparison, in the Sn, -Cd alloy mentioned above, Na
Cl0w+% (electrode A), N'aC, 520w
t% (electrode plate C) and NaC 140wt% (electrode plate D) were similarly produced. Table 1 shows the composition.

第 1 表 以上のような試験極に対して充放電を施すために、試験
用セルに試験極と、セパレータを介した対極としてのT
 I S2よシなる正極を入れ、さらにセパレータを介
した照合負極としてのリチウム極を入れ、1モルの過塩
素酸リチウム(L I Cl04)を溶解したプロピレ
ンカーボネート(pc)とジメの電位はリチウム照合電
極に対しo、otsvとo、s Vの間で、充放電のサ
イクルを繰り返した。第3サイクルでの放電容量を電流
密度に対してプロットしたものが第2図である。
Table 1 In order to charge and discharge the test electrodes shown above, the test cell is equipped with a test electrode and a T electrode as a counter electrode with a separator in between.
Insert a positive electrode such as I S2, and then insert a lithium electrode as a negative electrode for comparison through a separator. The electrodes were cycled repeatedly between o, otsv and o,s volts. FIG. 2 is a plot of the discharge capacity in the third cycle versus the current density.

第3図に示すように、極板Aの多孔率は約40Vo1%
であるが、Na(4を10wt%添加し溶出した極板B
の多孔率は約6o Vod%であり、NaC1を20w
t%を添加し溶出した極板Cの多孔率は約eoVo5%
、 NaC1を40wt%添加し溶出した極板りの多孔
率は約9oVo、5%となる。NaC1を4゜wt%以
上添加し溶出した極板は、強度が悪く、加工の限界であ
り、極板として使用不可能である。
As shown in Figure 3, the porosity of plate A is approximately 40Vo1%
However, the electrode plate B eluted by adding 10 wt% of Na(4)
The porosity of is about 6o Vod%, and 20w of NaCl
The porosity of the electrode plate C eluted by adding t% is about eoVo5%
The porosity of the electrode plate eluted by adding 40 wt% of NaCl is approximately 9oVo, 5%. An electrode plate eluted by adding 4 wt % or more of NaCl has poor strength, is at the limit of processing, and cannot be used as an electrode plate.

同様に、充填剤としてNaC1粉末のかわシに砂糖粉末
を用い、溶媒のN2oに浸漬し、真空含浸後、超音波洗
浄して砂糖粉末を溶出し、真空乾燥した。
Similarly, sugar powder was used as a filler for NaCl powder, immersed in the solvent N2O, vacuum impregnated, ultrasonic cleaning to elute the sugar powder, and vacuum drying.

また充填剤としてNaC1のかわりにポリ塩化ビニル粉
末を用い、溶媒のテトラノ・イドロフランに浸漬し、真
空含浸後、超音波洗浄してポリ塩化ビニル粉末を溶出し
、真空乾燥した。砂糖およびポリ塩化ビニルを用いたと
き、N a C1の場合とほぼ同様の結果が得られた。
In addition, polyvinyl chloride powder was used instead of NaCl as a filler, and the sample was immersed in the solvent tetranohydrofuran, vacuum impregnated, and then ultrasonically cleaned to elute the polyvinyl chloride powder, followed by vacuum drying. Results similar to those for N a C1 were obtained using sugar and polyvinyl chloride.

しかしながら作業性の点からみると、ポリ塩化ビニルは
溶媒のテトラハイドロフランに溶出し、真空乾燥した後
の極板の形状が薄く縮小し、表面には溶出したポリ塩化
ビニルが残っている。また、砂糖粉末はNaC1よりN
2゜に対する溶解度が高いため、より多く溶出しやすく
、多孔率を上げることができる。そのため、砂糖、 N
aC4、ポリ塩化ビニルの順に作業性がよへ第2図に示
すように、2mA/crA以上の充放電では、本発明の
N aClや砂糖、ポリ塩化ビニルを充填剤とし、電極
を圧縮成型後、充填剤を溶出して多孔性電極としたもの
の方が、充放電容量は大となった。第2図より少なくと
も多孔度は50 Vo/チ以上であることが必要である
However, from the point of view of workability, polyvinyl chloride is eluted into the solvent tetrahydrofuran, and the shape of the electrode plate after vacuum drying is reduced to a thinner shape, with the eluted polyvinyl chloride remaining on the surface. Also, sugar powder is more N than NaC1.
Since it has a high solubility at 2°, it can be easily eluted in larger quantities and the porosity can be increased. Therefore, sugar, N
Workability improves in the order of aC4 and polyvinyl chloride.As shown in Figure 2, when charging and discharging at 2 mA/crA or more, the NaCl of the present invention, sugar, and polyvinyl chloride are used as fillers, and the electrodes are compressed and then molded. However, the charge/discharge capacity was higher when the filler was eluted to form a porous electrode. From FIG. 2, it is necessary that the porosity is at least 50 Vo/ti.

多孔度はgoVo1%くらいが極板強度の点で限界であ
るので、望1しくは6Q〜90 Vo1%位がよい。多
孔率を従来の4oVo1%<らいであったものを60〜
90Vo1%に上げることによって、電極内部への電解
液の浸透を十分にし、充放電の利用率を高めることがで
きる。
Since the porosity is at a limit of about 1% goVo from the point of view of electrode plate strength, it is preferably about 6Q to 90Vo 1%. The porosity was changed from the conventional 4oVo1% to 60~
By increasing the voltage to 90Vo1%, the electrolytic solution can sufficiently penetrate into the electrode, and the utilization rate of charging and discharging can be increased.

上記はSn 85 wt% −Cd15wt%の合金で
例を示したが、これ以外に、Sn、Bi、Pb、Cd、
In。
The above example shows an alloy of Sn 85 wt% - Cd 15 wt%, but in addition to this, Sn, Bi, Pb, Cd,
In.

Sb 、 Zn 、 Ag0群から選ばれた金属、ある
いは、Sn、Bi 、Pb、Cd、In、Sb、Zn、
Agの群から選ばばれた少なくとも2種の合金から成る
合金、さらにAIにおいても、良好な結果が得られた。
Sb, Zn, a metal selected from the Ag0 group, or Sn, Bi, Pb, Cd, In, Sb, Zn,
Good results were also obtained with alloys consisting of at least two alloys selected from the Ag group, and also with AI.

発明の効果− 以上のように本発明の製造法は、多孔率を上げることが
でき、高エネルギー密度で充放電特性および信頼性にす
ぐれた充放電可能な電池の負極を提供できる。
Effects of the Invention - As described above, the manufacturing method of the present invention can increase the porosity and provide a negative electrode for a chargeable/dischargeable battery that has high energy density, excellent charge/discharge characteristics, and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における試験極の外観図、第
2図は本発明の一実施例における種々の電極と比較例の
電流密度−放電容量変化特性図、第3図は本発明の一実
施例による負極の多孔率を示した図である。 1・・・・・・負極合剤、2・・・・・・N1ネット、
3・・・・・・Niリボン、極板A・・・・・・比較例
、極板B−D・・・・・本発明の実施例。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 。 (7′″) 4)’J>淀
Fig. 1 is an external view of a test electrode according to an embodiment of the present invention, Fig. 2 is a current density-discharge capacity change characteristic diagram of various electrodes according to an embodiment of the present invention and a comparative example, and Fig. 3 is a diagram of current density-discharge capacity change characteristics of various electrodes according to an embodiment of the present invention and a comparative example. FIG. 3 is a diagram showing the porosity of a negative electrode according to an example. 1... Negative electrode mixture, 2... N1 net,
3...Ni ribbon, electrode plate A...comparative example, electrode plate B-D...example of the present invention. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure. (7''') 4)'J>Yodo

Claims (1)

【特許請求の範囲】 (1)充放電にともなってアルカリ金属イオンを吸蔵し
たシ放出したシする粉末状の金属または合金、結着剤、
溶媒に可溶性の充填剤から成る合剤を圧縮成型した後、
溶媒中に浸漬し、前記充填剤を溶解せしめる工程を有す
ることを特徴とする非水電解質二次電池用負極の製造法
0 (2)アルカリ金属イオンを吸蔵したシ放出したシする
粉末状の金属または合金は、Sn 、 Bi 、 Pb
 、Cd。 In、Sb、Zn、Agの群から選んだ金属または合金
、またはAlであることを特徴とする特許請求の範囲第
1項記載の非水電解質二次電池用負極の製造法0 (3)充填剤は、NaC(J粉末、砂糖粉末などを用い
ることを特徴とする特許請求の範囲第1項記載の非水電
解質二次電池用負極の製造法。 (4)充填剤にNaC1粉末、砂糖粉末などを用いると
き、溶媒H20を用いることを特徴とする特許請求の範
囲第3項記載の非水電解質二次電池用負極の製造法。 (6)充填剤はポリ塩化ビニル粉末を用いることを特徴
とする特許請求の範囲第1項記載の非水電解質二次電池
用負極の製造法。 (6)充填剤にポリ塩化ビニル粉末を用いるとき、溶媒
はテトラノ−イドロ7ラン(THF)を用いる ゛こと
を特徴とする特許請求の範囲第6項記載の非 ′水軍解
質二次電池用負極の製造法0 (7)多孔率が50〜90 Vog%であ、ることを特
徴とする特許請求の範囲第1項記載の非水電解質二次電
池用負極の製造法。 (8)多孔率が望ましくは60〜90 Vo1%である
ことを特徴とする特許請求の範囲第7項記載の非水電解
質二次電池用負極の製造法。
[Scope of Claims] (1) Powdered metal or alloy, binder, which occludes and releases alkali metal ions upon charging and discharging;
After compression molding a mixture consisting of a filler soluble in a solvent,
A method for producing a negative electrode for a non-aqueous electrolyte secondary battery, which comprises the step of immersing in a solvent and dissolving the filler (2) Powdered metal that occludes and releases alkali metal ions Or the alloy is Sn, Bi, Pb
, Cd. Method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, characterized in that the negative electrode is a metal or alloy selected from the group of In, Sb, Zn, Ag, or Al. (3) Filling A method for producing a negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, characterized in that the filler is NaC (J powder, sugar powder, etc.). (4) The filler is NaC powder, sugar powder, etc. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 3, characterized in that when using a solvent H20, etc., the filler is polyvinyl chloride powder. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1. (6) When polyvinyl chloride powder is used as a filler, tetrano-hydro-7-furan (THF) is used as a solvent. (7) A patent claim characterized in that the porosity is 50 to 90 Vog%. A method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1. (8) A method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 7, wherein the porosity is preferably 60 to 90 Vo1%. A method for producing a negative electrode for electrolyte secondary batteries.
JP59058701A 1984-03-27 1984-03-27 Manufacture of negative electrode for nonaqueous electrolyte secondary battery Pending JPS60202675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59058701A JPS60202675A (en) 1984-03-27 1984-03-27 Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59058701A JPS60202675A (en) 1984-03-27 1984-03-27 Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS60202675A true JPS60202675A (en) 1985-10-14

Family

ID=13091822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59058701A Pending JPS60202675A (en) 1984-03-27 1984-03-27 Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS60202675A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114884U (en) * 1991-03-26 1992-10-09 ダイハツ工業株式会社 car body structure
EP0709907A1 (en) * 1994-10-21 1996-05-01 Canon Kabushiki Kaisha An anode with anode active material retaining body having a number of pores distributed therein for a rechargeable battery, rechargeable battery provided with said anode, and process for the production of said anode
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
JP2002367602A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114884U (en) * 1991-03-26 1992-10-09 ダイハツ工業株式会社 car body structure
EP0709907A1 (en) * 1994-10-21 1996-05-01 Canon Kabushiki Kaisha An anode with anode active material retaining body having a number of pores distributed therein for a rechargeable battery, rechargeable battery provided with said anode, and process for the production of said anode
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
JP2002367602A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell

Similar Documents

Publication Publication Date Title
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JPS62290071A (en) Organic electrolyne secondary battery
JPS60202675A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
WO2001004976A1 (en) Positive plate current collector for lead storage battery and lead storage battery comprising the same
JP3094423B2 (en) Lead storage battery
JPS63266767A (en) Manufacture of hydrogen storage electrode
JP2925672B2 (en) Non-aqueous electrolyte battery
JPH088115B2 (en) Non-aqueous electrolyte secondary battery
JP4151825B2 (en) Negative electrode current collector for Li secondary battery
JP2000200598A (en) Sealed lead-acid battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS60124357A (en) Negative electrode of nonaqueous electrolyte secondary battery
JP2846673B2 (en) Method for producing zinc electrode for alkaline storage battery
JPH08148179A (en) Nickel-hydrogen storage battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPH0746606B2 (en) Non-aqueous electrolyte secondary battery
JP2518090B2 (en) Lead acid battery
JPS6089068A (en) Nonaqueous electrolyte secondary battery
JPS6086759A (en) Nonaqueous electrolyte secondary battery
JPS59228370A (en) Nonaqueous electrolyte secondary battery
JPH04163861A (en) Secondary battery with non-aqueous electrolyte
JPS6089069A (en) Nonaqueous electrolyte battery
JPS59186276A (en) Nonaqueous electrolyte secondary battery