JPS60202526A - Method and device for production of magnetic recording medium - Google Patents

Method and device for production of magnetic recording medium

Info

Publication number
JPS60202526A
JPS60202526A JP5972584A JP5972584A JPS60202526A JP S60202526 A JPS60202526 A JP S60202526A JP 5972584 A JP5972584 A JP 5972584A JP 5972584 A JP5972584 A JP 5972584A JP S60202526 A JPS60202526 A JP S60202526A
Authority
JP
Japan
Prior art keywords
magnetic
substrate
magnetic field
recording medium
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5972584A
Other languages
Japanese (ja)
Inventor
Kazuyuki Miyamoto
和幸 宮本
Akira Tazaki
田崎 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP5972584A priority Critical patent/JPS60202526A/en
Publication of JPS60202526A publication Critical patent/JPS60202526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To secure high coercive force and high output by forming a magnetic layer on a substrate with cobalt and a rare earth element used as primary components and so as to show the magnetic anisotropy in a prescribed direction with the function of a magnetic field. CONSTITUTION:An evaporation source 3 containing cobalt 2 and another evaporation source 5 containing a rare earth element 4 are put independently of each other within a bell jar 1 serving as a vacuum tank. The source 3 is heated by an electron beam 7 radiated from an electron gun 6; while the source 5 is heated by an AC power supply. Then the evaporation materials given from both sources are led onto a substrate 9 set at an upper part by opening selectively a shutter 8. At the same time, an electromagnet 10 set around the substrate 9 generates an even magnetic field in the intra-surface direction (an arrow head 11, for example) of the substrate 9 by a DC power supply. Thus a continuous magnetic thin film 15 is formed in a desired composition ratio.

Description

【発明の詳細な説明】 1、産業上の利用分野 本発明は磁気ディスク、磁気カード、磁気チー 。[Detailed description of the invention] 1. Industrial application field The present invention is a magnetic disk, a magnetic card, and a magnetic chip.

プ等の磁気記録媒体、その製造方法及び装置に関するも
のである。
The present invention relates to a magnetic recording medium such as a disk drive, a method for manufacturing the same, and an apparatus.

2、従来技術 従来、この種の磁気記録媒体は、ビデオ、オーディオ、
ディジタル等の各種電気信号の記録に幅広く利用されて
いる。一般の磁気記録媒体としては、基体(支持体)上
に、磁性粉末とバインダー樹脂とを主成分とyる磁性塗
料を塗布し、所定方向に磁化容易軸が向くように配向さ
せた塗布型の媒体が知られている。しかしながら、塗布
型の媒体は、磁性層中に非磁性のバインダー樹脂が存在
しているために、磁性粉末の充填密度を高めることには
限界があり、高出力、高S/N比等を得ることができな
い。
2. Prior Art Conventionally, this type of magnetic recording medium has been used for video, audio,
It is widely used for recording various electrical signals such as digital ones. A general magnetic recording medium is a coated type in which a magnetic paint mainly composed of magnetic powder and a binder resin is applied onto a substrate (support) and oriented so that the axis of easy magnetization points in a predetermined direction. The medium is known. However, with coating-type media, there is a limit to increasing the packing density of magnetic powder due to the presence of non-magnetic binder resin in the magnetic layer, and achieving high output, high S/N ratio, etc. I can't.

そこで、バインダー樹脂を用いることなく磁性粒子を基
体上に被着して連続薄膜からなる磁性層を形成した磁気
記録媒体が提案され、実用化されてきている。この連続
薄膜型の媒体は、高密度記録に適し、塗布型の媒体の欠
点をなくせる点で注目されている。
Therefore, magnetic recording media in which magnetic particles are deposited on a substrate to form a magnetic layer consisting of a continuous thin film without using a binder resin have been proposed and put into practical use. This continuous thin film type medium is attracting attention because it is suitable for high-density recording and eliminates the drawbacks of coated type media.

一方、サマリウム(Sm)とコバル) (Co)とを主
成分とするSml−メCoス系のアモルファス膜を、そ
の面内方向に磁化容易軸が向くように製膜する技術が発
表されている(Proc、4jh Int。
On the other hand, a technology has been announced for forming an Sml-MeCo amorphous film whose main components are samarium (Sm) and cobal (Co) so that the axis of easy magnetization is oriented in the in-plane direction. (Proc, 4jh Int.

Conf、 on Rapidly Quenched
 Metals (Sendai1981) ) 、こ
のS ml−2Co)を膜は、高保磁力を示す等の点で
注目されるべきものである。
Conf, on Rapidly Quenched
Metals (Sendai 1981)), this Sml-2Co) film is noteworthy in that it exhibits a high coercive force.

しかしながら、この公知技術では、S ml−3CoX
膜の実用化、及びその実用化に要求される緒特性につい
ては充分に検討されてはいない。しかも、SmとCoと
を共通の発熱体ボード上で同時にフラッシュ蒸発させ、
基体上に蒸着(フラッシュ蒸着)させているので、S 
m −Co合金粉末を高温に保持されたボート上に落下
させ、1つ1つの粉末粒子を順次瞬間的に蒸発させる必
要がある。このため、常に一定の速さで合金粉末を供給
しなければならないのでその供給の制御が困難であると
共に、蒸発速度をあまり速くすることができない。また
、粉末を供給するために、Sm等の元素が酸化され易く
、その取扱いに注意を要する。更にまた、上記フラッシ
ュ蒸着法では、組成の均一な合金粉末又は粒子を供給す
る必要があり、かっCoとSmとの蒸気圧に差があるた
めに膜組成の制御も困難である。
However, in this known technique, S ml-3CoX
The practical application of the membrane and the mechanical properties required for its practical application have not been sufficiently studied. Furthermore, Sm and Co are simultaneously flash evaporated on a common heating element board,
Because it is vapor-deposited (flash-deposited) on the substrate, S
It is necessary to drop the m-Co alloy powder onto a boat maintained at a high temperature and instantaneously evaporate each powder particle one by one. For this reason, since the alloy powder must always be supplied at a constant rate, it is difficult to control the supply, and the evaporation rate cannot be made very high. Furthermore, since the powder is supplied, elements such as Sm are easily oxidized and must be handled with care. Furthermore, in the flash vapor deposition method described above, it is necessary to supply alloy powder or particles with a uniform composition, and it is also difficult to control the film composition because of the difference in vapor pressure between Co and Sm.

3、発明の目的 本発明の目的は、上述のS ml−2’CoX系膜のも
つ特長を効果的に利用した磁気記録媒体を提供すること
にある。
3. OBJECT OF THE INVENTION An object of the present invention is to provide a magnetic recording medium that effectively utilizes the features of the above-mentioned Sml-2'CoX film.

本発明の他の目的は、上述のS ml−)CCox系膜
を磁性膜として好適な特性を示すように高速に製膜し、
かつ膜組成の制御の容易な製造方法及びその装置を提供
することにある。
Another object of the present invention is to form the above-mentioned Sml-)CCox film at high speed so as to exhibit suitable characteristics as a magnetic film,
Another object of the present invention is to provide a manufacturing method and an apparatus therefor that allow easy control of film composition.

4、発明の構成及びその作用効果 即ち、本発明の第1の発明は、基体と、この基体上に形
成された磁性層とからなる磁気記録媒体において、前記
磁性層が、 +al、コバルトと希土類元素(例えばサマリウム)と
を主成分とすること、 山)、磁界の作用下で所定方向に磁気異方性を示すよう
に形成されたものであること を夫々構成として具備することを特徴とする磁気記録媒
体に係るものである。
4. Structure of the invention and its effects, that is, the first invention of the present invention is a magnetic recording medium comprising a substrate and a magnetic layer formed on the substrate, wherein the magnetic layer contains +al, cobalt, and rare earth. The main component is an element (e.g., samarium), and the structure is formed so as to exhibit magnetic anisotropy in a predetermined direction under the action of a magnetic field. This relates to magnetic recording media.

この第1の発明によれば、コバルトと希土類元素とを主
成分とする磁性層が、磁界の作用下に所定方向に磁気異
方性を示す(磁化容易軸が向く)ように形成されたもの
であるから、高保磁力、高出力の磁気記録媒体を提供す
ることができ、かつ連続W膜量の媒体として高密度記録
に適したものを提供できる。
According to the first invention, a magnetic layer mainly composed of cobalt and rare earth elements is formed so as to exhibit magnetic anisotropy in a predetermined direction (the axis of easy magnetization is oriented) under the action of a magnetic field. Therefore, a magnetic recording medium with high coercive force and high output can be provided, and a medium with a continuous W film amount suitable for high-density recording can be provided.

この第1の発明においては、上記磁性層中のコバルトは
六方晶系の結晶構造を有し、この結晶構造内にて希土類
元素をコバルト原子が取囲む如くに両元素が結合した形
になっているときに、充分な磁気異方性を示すものと考
えられる。こうした磁気異方性は、上記の磁界の作用で
充分に生ぜしめることができる。また、この磁気異方性
は、コバルトと希土類元素との割合、及び磁界強度のコ
ントロールによって、後述する如くに大きくすることが
できる。このためには、コバルトの割合を60〜9B原
子%(at%)、更には7Q〜90at%とするのが望
ましく、磁界を強くする程磁気異方性を大きくすること
ができる。
In this first invention, the cobalt in the magnetic layer has a hexagonal crystal structure, and within this crystal structure, the rare earth element is surrounded by cobalt atoms, so that both elements are combined. It is thought that it exhibits sufficient magnetic anisotropy when Such magnetic anisotropy can be sufficiently produced by the action of the above-mentioned magnetic field. Further, this magnetic anisotropy can be increased as described later by controlling the ratio of cobalt and rare earth elements and the magnetic field strength. For this purpose, it is desirable to set the proportion of cobalt to 60 to 9B atomic % (at %), more preferably 7Q to 90 atomic %, and the stronger the magnetic field, the larger the magnetic anisotropy can be.

上記の希土類元素としては、サマリウムが好適であるが
、他にユーロピウム、ガドリニウム等も使用可能であり
、2種類以上の希土類元素の併用も可能である。また、
磁性層には、銅、亜鉛、クロム、リチウム、チタン、マ
グネシウム、ニッケル、鉄、マンガン等の第3元素を少
量添加し、磁気特性、配向性等を向上させることができ
る。
As the rare earth element mentioned above, samarium is preferable, but europium, gadolinium, etc. can also be used, and two or more types of rare earth elements can also be used in combination. Also,
A small amount of a third element such as copper, zinc, chromium, lithium, titanium, magnesium, nickel, iron, or manganese can be added to the magnetic layer to improve magnetic properties, orientation, and the like.

また、上記第1の発明による磁気記録媒体を再現性良く
効果的に製造するために、次の方法及び装置を提案する
ものである。
Furthermore, in order to effectively manufacture the magnetic recording medium according to the first invention with good reproducibility, the following method and apparatus are proposed.

の作用下で基体上に共蒸着させて磁性層を形成すること
を特徴とする磁気記録媒体の製造方法に係るものである
。また、本発明の第3の発明による装置は、コバルトを
収容する第1の蒸発源と、希土類元素を収容する第2の
蒸発源とが基体に対向して配置され、かつ前記基体に対
し所定方向に磁界を発生させるための磁界発生手段が前
記基体の周囲に設けられることを特徴とする磁気記録媒
体の製造装置に係るものである。
The present invention relates to a method of manufacturing a magnetic recording medium characterized in that a magnetic layer is formed by co-evaporation on a substrate under the action of. Further, in the apparatus according to the third aspect of the present invention, a first evaporation source containing cobalt and a second evaporation source containing a rare earth element are arranged opposite to a base body and are arranged at a predetermined position with respect to the base body. The present invention relates to an apparatus for manufacturing a magnetic recording medium, characterized in that a magnetic field generating means for generating a magnetic field in a direction is provided around the base body.

これらの方法及び装置によれば、コバルトと希土類元素
とを夫々別個の蒸発源から蒸発させるので、各元素を予
め所定量収容して蒸発させ、高速に蒸着することができ
ると同時に、各蒸発量を蒸発源毎に独立に制御できるた
めに常に所望の膜組成を得ることが可能となる。コバル
トと希土類元素との蒸気圧に差があっても、夫々を適切
な加熱方式で別々に蒸発制御を行うことができる。また
、上記の磁界発生手段は、基体に対し所定方向く特に面
内方向、又は面に垂直方向)に磁界を効果的に生ぜしめ
るために、基体の周囲に配置することが必要である。特
に、磁界発生手段として電磁石を用いれば、面内方向に
磁界を発生させて面内方向での高密度記録が可能な媒体
が得られるのみならず、電源電圧の制御によって磁界強
度を任意に変化させ、蒸発膜の磁気異方性を適切にコン
トロールできる。また、基体面に垂直方向の磁界は、永
久磁石によって発生させることができ、これによって高
密度の垂直磁気記録に適した媒体が得られる。
According to these methods and devices, since cobalt and rare earth elements are evaporated from separate evaporation sources, a predetermined amount of each element can be stored and evaporated in advance, and the evaporation can be performed at high speed. Since this can be controlled independently for each evaporation source, it is possible to always obtain the desired film composition. Even if there is a difference in vapor pressure between cobalt and rare earth elements, the evaporation of each can be controlled separately using an appropriate heating method. Further, the magnetic field generating means described above needs to be arranged around the base body in order to effectively generate a magnetic field in a predetermined direction, particularly in the in-plane direction or in the perpendicular direction to the plane of the base body. In particular, if an electromagnet is used as a magnetic field generating means, it is possible not only to generate a magnetic field in the in-plane direction and obtain a medium that enables high-density recording in the in-plane direction, but also to arbitrarily change the magnetic field strength by controlling the power supply voltage. This makes it possible to appropriately control the magnetic anisotropy of the evaporated film. Further, a magnetic field perpendicular to the substrate surface can be generated by a permanent magnet, thereby providing a medium suitable for high-density perpendicular magnetic recording.

5、実施例 以下、本発明を実施例について更に詳細に説明する。5. Examples Hereinafter, the present invention will be explained in more detail with reference to Examples.

まず、第1図について、S fnl−えCoズからなる
合金磁性薄膜を磁性層とする磁気記録媒体の製造装置(
真空蒸着装置)を説明する。
First, regarding FIG. 1, an apparatus for manufacturing a magnetic recording medium (
vacuum evaporation equipment) will be explained.

この装置によれば、真空槽としてのペルジャー1内に、
コバルト2を収容した蒸発源3とサマリウム4を収容し
たタンゲステンポート製の蒸発源巨とが別個に配され、
このうち、蒸発源3は電子銃6による電子ビーム7で加
熱(電子ビーム加熱)され、他の蒸発源5は図示省略し
た交流電源により加熱される。各蒸発源上にはシャッタ
8が配され、この選択的開放によって各蒸発源からの蒸
発物質が上方の基体9上に導びかれ、ここに共蒸着され
る。
According to this device, in the Pelger 1 as a vacuum chamber,
An evaporation source 3 containing cobalt 2 and an evaporation source made of tungsten port containing samarium 4 are arranged separately,
Of these, the evaporation source 3 is heated by an electron beam 7 from an electron gun 6 (electron beam heating), and the other evaporation sources 5 are heated by an AC power source (not shown). A shutter 8 is disposed above each evaporation source, and by selectively opening the shutter 8, the evaporated material from each evaporation source is guided onto the substrate 9 above and co-deposited thereon.

基体9の周囲には、電磁石10が配置され、図示省略し
た直流電源によって基体9の面内方向く例えば矢印11
方向)に均一に磁界が発生せしめられる。基体9は、実
際には、電磁石10のヨーク12の熱により必要以上に
昇温するのを防止するために、セラミックス板13に固
定され、更に基体9がヨーク間の中央に位置するように
セラミックス板13がビス14によってヨーク11に固
定される。ここで、電磁石10による磁界の強さは、基
体9の中央において、直流電源が1.5Aのときに15
000 e 、 1.OAのときに11000eとなる
An electromagnet 10 is arranged around the base 9, and is driven by a DC power source (not shown) in the in-plane direction of the base 9, for example, by an arrow 11.
A magnetic field is generated uniformly in the direction). The base 9 is actually fixed to a ceramic plate 13 in order to prevent the temperature from rising more than necessary due to the heat of the yokes 12 of the electromagnet 10, and the ceramic plate 13 is fixed so that the base 9 is located in the center between the yokes. A plate 13 is fixed to the yoke 11 with screws 14. Here, the strength of the magnetic field by the electromagnet 10 is 15 at the center of the base 9 when the DC power supply is 1.5A.
000 e, 1. When it is OA, it becomes 11000e.

第1図に示した真空蒸着装置を用いて基体9上にSm1
−ズCOス系磁性層を形成するときの条件は、次の通り
であってよい。
Sm1 was deposited on the substrate 9 using the vacuum evaporation apparatus shown in FIG.
The conditions for forming the -Z CO2 magnetic layer may be as follows.

真空度 2 X 10〜3 X 10 Torr蒸着速
度 1000〜1500人/lllIn蒸着膜厚 80
0〜1500 A 基体 ポリイミド 基体温度 室温 印加磁場 最大15000 e こうした条件下で、基体9上には第2図に示すように5
rn1−エCOχからなる連続磁性薄膜15を所望の組
成比で形成することができる。即ち、各蒸発源3及び5
を独立して制御することによって各蒸発量を個別に制御
できると同時に、蒸気圧に差のあるSma:Coとを前
者はタングステンボートで、後者は電子銃加熱で加熱、
蒸発させることができる。各元素の蒸発量は、各加熱源
に供給する電流値に依存するから、予め電流値と蒸発量
との関係をめておくことによって、希望する一様な組成
の多元合金薄膜を高速で製膜することができるのである
Degree of vacuum: 2 x 10 to 3 x 10 Torr Vapor deposition rate: 1000 to 1500 people/lllIn vapor deposition film thickness: 80
0 to 1500 A Substrate Polyimide substrate temperature Magnetic field applied at room temperature Maximum 15000 e Under these conditions, as shown in FIG.
A continuous magnetic thin film 15 made of rn1-COχ can be formed with a desired composition ratio. That is, each evaporation source 3 and 5
At the same time, by independently controlling the evaporation amount of each evaporation amount, Sma:Co and Sma:Co, which have different vapor pressures, can be heated by a tungsten boat for the former and by an electron gun for the latter.
Can be evaporated. The amount of evaporation of each element depends on the current value supplied to each heating source, so by determining the relationship between the current value and the amount of evaporation in advance, a multi-component alloy thin film with the desired uniform composition can be produced at high speed. It is possible to form a film.

また、上記電磁石10による磁界が基体9に平行に作用
する状態でSmおよびGoが共蒸着されるから、得られ
た合金薄膜内に面内方向への磁気異方性を充分に発生さ
せることができる。即ち、このような磁場中での蒸着で
得られたSm+−χCoχ系薄膜には、印加磁場方向が
磁化容易軸となるような一軸異方性が存在することが判
明したのである。
Furthermore, since Sm and Go are co-deposited while the magnetic field from the electromagnet 10 acts parallel to the substrate 9, it is possible to sufficiently generate magnetic anisotropy in the in-plane direction within the obtained alloy thin film. can. That is, it has been found that the Sm+-χCoχ thin film obtained by vapor deposition in such a magnetic field has uniaxial anisotropy such that the direction of the applied magnetic field is the axis of easy magnetization.

次に、上記の如く作成した磁気記録媒体の緒特性につい
て説明する。特性の測定に際しては、磁化曲線は試料振
動型磁力計で、異方性エネルギーは磁気トルク針で、化
学組成はプラズマ発光分析器Uarrell Ash社
製)で、膜厚は繰返し光干渉針(情況光学工業所社製)
で夫々測定した。
Next, the characteristics of the magnetic recording medium produced as described above will be explained. When measuring the characteristics, the magnetization curve was measured with a sample vibrating magnetometer, the anisotropy energy was measured with a magnetic torque needle, the chemical composition was measured with a plasma emission analyzer (manufactured by Uarrell Ash), and the film thickness was measured with a repeated optical interference needle (situated optics). Manufactured by Kogyoshosha)
Each was measured with

第3図は、印加磁場を種々変化させた場合に得られた合
金薄膜の異方性エネルギーKuのCo濃度依存性を示し
ている。この結果によれば、Sm−Go系系合金l護膜
磁気異方性は、その要求される値(I X lo’er
g / cc以上)を満足し、かつ組成比の選択によ、
て制御可能である。特に、Coを60〜98at%(S
mは2〜40at%)、更には70〜90at%にする
のが望ましい。Coが80a t%又はSmがgoat
%付近で異方性エネルギーが最大となることが分る。ま
た、印加磁場を上述した電磁石の電源によって変化させ
て大きくする程、磁気異方性が大きくなる(特に150
00 e SS m19.9at% テ最大値10.7
X10erg /ccと示す)ことが分る。なお、Go
が60a t%未満では、Smが多くなりすぎて磁化が
減少し、測定限界を越えてしまう。
FIG. 3 shows the Co concentration dependence of the anisotropic energy Ku of the alloy thin film obtained when the applied magnetic field was varied. According to this result, the magnetic anisotropy of the Sm-Go based alloy l layer is equal to the required value (I
g/cc or more), and by selecting the composition ratio,
controllable. In particular, Co is 60 to 98 at% (S
(m is 2 to 40 at%), preferably 70 to 90 at%. Co is 80a t% or Sm is goat
It can be seen that the anisotropic energy is maximum around %. In addition, the larger the applied magnetic field is changed by the power source of the electromagnet mentioned above, the larger the magnetic anisotropy becomes (particularly at 150
00 e SS m19.9at% Te maximum value 10.7
X10erg/cc). In addition, Go
If it is less than 60 at%, Sm becomes too large and magnetization decreases, exceeding the measurement limit.

第4図は、上記合金Wl繞組成をS m、<りCGof
fとした場合の磁化のヒステリシス曲線を示す。同図に
おいて、Ha/は第1図中の矢印11で示した面内方向
く磁化容易軸方向)で測定した磁化曲線を示すが、これ
によれば上記合金薄膜の角型比は非常に高< (Jl大
で0,98のものかえられる)、その保磁力は約750
0eと充分に高く、磁化膜として好適な状態となってい
ることが分る。なお、上記矢印11に対し直角方向(即
ち、第1図中の紙面垂直方向)で測定した磁化曲線Hb
/#)示したが、この方向では磁化され難いことが理解
される。
FIG. 4 shows the composition of the alloy Wl as S m, < CGof
A hysteresis curve of magnetization is shown when f is taken as f. In the same figure, Ha/ shows the magnetization curve measured in the in-plane direction (direction of easy magnetization axis) indicated by arrow 11 in Fig. 1. According to this, the squareness ratio of the above-mentioned alloy thin film is extremely high. < (0.98 can be changed in Jl large), its coercive force is about 750
It can be seen that the value is 0e, which is sufficiently high, and is in a suitable state as a magnetized film. In addition, the magnetization curve Hb measured in the direction perpendicular to the arrow 11 (that is, the direction perpendicular to the paper surface in FIG. 1)
/#) However, it is understood that it is difficult to be magnetized in this direction.

第5図は、磁気異方性(異方性定数)Ku及び飽和磁化
Maの温度依存性を3 mo、tff COo、14f
について示したものである(但、ここで「温度」とは測
定時の温度のことである)。これによれば、温度を制御
することによって合金薄膜の磁気異方性を所望の値に高
く設定することができる。但、飽和磁化は温度によって
も殆ど変化しない。
Figure 5 shows the temperature dependence of magnetic anisotropy (anisotropy constant) Ku and saturation magnetization Ma at 3 mo, tff COo, 14 f
(However, "temperature" here refers to the temperature at the time of measurement.) According to this, the magnetic anisotropy of the alloy thin film can be set to a high desired value by controlling the temperature. However, the saturation magnetization hardly changes depending on the temperature.

次に、上記した蒸発量制御1.印加磁場の影響を具体的
な例で説明する。
Next, the above-mentioned evaporation amount control 1. The influence of the applied magnetic field will be explained using a specific example.

■1 第1図に示した蒸着装置を使用し、ペルジャー内部を油
拡散ポンプにて2×16jorr程度まで排気し、Co
を電子銃で、Smをタングステンボートで夫々加熱、蒸
発させた。水晶振動式膜厚針によって蒸発速度が安定に
なったことを確認した後、シャッタを開放1して製膜を
開始した。このとき、各蒸発源への加熱電流値について
は、電子銃は6〜8KVの加速電圧にて加速して0.1
〜0.3Aの電子流でCo蒸発源を加熱し、タングステ
ンボートの方は60〜BOAの電流で加熱した。蒸発速
度は電子流及び加熱電流に依存し、蒸着膜組成の制御を
可能にすることが確認された。
■1 Using the vapor deposition equipment shown in Figure 1, the inside of the Pelger is evacuated to about 2 x 16 jorr using an oil diffusion pump, and the Co
was heated and evaporated using an electron gun and Sm using a tungsten boat. After confirming that the evaporation rate was stabilized using a crystal vibrating film thickness needle, the shutter was opened 1 to start film formation. At this time, the heating current value for each evaporation source is set to 0.1 by accelerating the electron gun at an accelerating voltage of 6 to 8 KV.
The Co evaporation source was heated with an electron current of ~0.3 A, and the tungsten boat was heated with a current of ~60 BOA. It was confirmed that the evaporation rate depends on the electron flow and the heating current, allowing control of the deposited film composition.

■1 幅20厳諷、厚さ80−1厚さ5G、us+のポリイミ
ドフィルム(デエポン社製「キャブトン」)からなる基
体に平行に、電磁石によって15000 eの磁界を印
加した。この状態で、SmとCoとを既述した方式の二
元独立加熱法により真空蒸着し、膜厚1500A、 S
m19.9at%のSm−Co系合金薄膜を形 3成し
た。薄膜面内には1−当たり10.7 X IJerg
の磁気異方性エネルギーが存在することが測定された。
(1) A magnetic field of 15,000 e was applied by an electromagnet in parallel to a substrate made of a US+ polyimide film ("Cabton", manufactured by Depont Co., Ltd.) having a width of 20 mm, a thickness of 80-1, and a thickness of 5 G. In this state, Sm and Co were vacuum-deposited using the binary independent heating method described above to form a film with a thickness of 1500A.
A Sm--Co alloy thin film having a thickness of 19.9 at% was formed. 10.7 x IJerg per 1 in the thin film plane
It was determined that there is a magnetic anisotropy energy of .

また、磁化容易軸方向の磁化過程をみたところ、良好な
角型比(残留磁化M r /飽和磁化M s =0.9
8) −を示し、保磁力Hcも7500eであり、記録
材料として充分に適合し得る値査示す合金WiIIII
が得られた。 、 以上、本発明を例示したが、上述の実施例は本発明の技
術的思想に基いて更に変形可能であるこ例えば、Coと
Sm等の希土類元素との割合、 ゛とが理解されよう。
In addition, when looking at the magnetization process in the easy axis direction, a good squareness ratio (residual magnetization M r /saturation magnetization M s =0.9
8) Alloy WIII which exhibits − and has a coercive force Hc of 7500e, which indicates that it is fully suitable as a recording material.
was gotten. Although the present invention has been illustrated above, it will be understood that the above-described embodiments can be further modified based on the technical idea of the present invention, for example, by changing the ratio of Co and rare earth elements such as Sm.

合金の膜組成(第3元素を添加するときには第3の蒸発
源を設ければよい)、磁気異方性の方向、蒸発源の構造
及びその加熱方法(各蒸発源とも夫々同一構造、例えば
タングステンボードやアルミナル・ンボであってよい)
、磁界発生手段の種類、構造、配置等は適宜変更するこ
とができる。また、磁気記録媒体として使用可能な基体
の材料は、ポリイミド以外にもポリエチレンテレフタレ
ート、ポリ塩化ビニル、三酢酸セルロース、ポリカーボ
ネート、ポリアミド、ポリメチルメチフタレートの如き
プラスチックス、ガラス等のセラミックス等が使用可能
である。さらに、Mg、AntSS t。
The film composition of the alloy (when adding a third element, it is sufficient to provide a third evaporation source), the direction of magnetic anisotropy, the structure of the evaporation source, and its heating method (each evaporation source has the same structure, for example, tungsten) (Can be board or aluminum board)
The type, structure, arrangement, etc. of the magnetic field generating means can be changed as appropriate. In addition to polyimide, substrate materials that can be used as magnetic recording media include plastics such as polyethylene terephthalate, polyvinyl chloride, cellulose triacetate, polycarbonate, polyamide, and polymethylmethyphthalate, and ceramics such as glass. It is. Furthermore, Mg, AntSS t.

Ti、V、Crs Mns Fe、C0% Nis C
u。
Ti, V, Crs Mns Fe, C0% Nis C
u.

Z n % G e % Z r SN b SM o
 s Ru % T e ST a sWなどの金属、
半金属およびその合金等も使用可能である。基体の形状
はシート、カード、ディスク、ドラムの他、長尺テープ
状でもよい。
Z n % G e % Z r SN b SM o
Metals such as s Ru % T e ST a sW,
Semi-metals and their alloys can also be used. The shape of the substrate may be a sheet, a card, a disk, a drum, or a long tape.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を例示するものであって、第1図は真空蒸
着装置の概略断面図、 第2図は磁気記録媒体の一部分の断面図、第3図は磁気
異方性のCO濃度依存性を示すグラフ、 第4図は磁化のヒステリシス曲線図、 第5図は磁気異方性の温度依存性を示すグラフ、である
。 なお、図面に示した符号において、 2………・・・・旧・・・・・・旧・・コバルト3・・
・・・・・・・・・・・・・・旧旧旧・・コバル)IQ
N4・・・・・・・・・・・・・・・・・・・・・・・
・・・・サマリウム5・・・・・・・・・・・・・・・
・・・・・・・・・・・・サマリウム蒸発源(タングス
テンボート) 6・・・・・・・・・・・・・・・・・・・・・・・・
・・・電子銃8・・・・・・・・・・・・・・・・・・
・・・・・・・・・シャッタ9・・・・・・・・・・・
・・・・・・・・・・・・・・・・基体10・・・・・
・・・・・・・・・・・・・・・・・・・・・・電磁石
15・・・・・・・・・・・・・・・・・・・・・・・
・・・・合金薄膜(磁性層)である。
The drawings illustrate the present invention; FIG. 1 is a schematic cross-sectional view of a vacuum evaporation apparatus, FIG. 2 is a cross-sectional view of a portion of a magnetic recording medium, and FIG. 3 is a diagram showing the CO concentration dependence of magnetic anisotropy. FIG. 4 is a graph showing the hysteresis curve of magnetization, and FIG. 5 is a graph showing the temperature dependence of magnetic anisotropy. In addition, in the codes shown in the drawings, 2... Old... Old... Cobalt 3...
・・・・・・・・・・・・・・・ Old old old... Kobal) IQ
N4・・・・・・・・・・・・・・・・・・・・・
・・・Samarium 5・・・・・・・・・・・・・・・
・・・・・・・・・Samarium evaporation source (tungsten boat) 6・・・・・・・・・・・・・・・・・・・・・・・・
・・・Electron gun 8・・・・・・・・・・・・・・・・・・
・・・・・・・・・Shutter 9・・・・・・・・・・・・
......Base 10...
・・・・・・・・・・・・・・・・・・・Electromagnet 15・・・・・・・・・・・・・・・・・・・・・・
...It is an alloy thin film (magnetic layer).

Claims (1)

【特許請求の範囲】 1、基体と、この基体上に形成された磁性層とからなる
磁気記録媒体において、前記磁性層が、(al、コバル
トと希土類元素とを主成分とすること、 (b)、磁界の作用下で所定方向に磁気異方性を示すよ
うに形成されたものであること を夫々構成として具備することを特徴とする磁気記録媒
体。 2、コバルトと希土類元素とを別個に夫々蒸発させ、磁
界の作用下で基体上に共蒸着させて磁性層を形成するこ
とを特徴とする磁気記録媒体の製造方法φ 3、コバルトを収容する第1の蒸発源と、希土類元素を
収容する第2の蒸発源とが基体に対向して配置され、か
つ前記基体に対し所定方向に磁界を発生させるための磁
界発生手段が前記基体の周囲に設けられることを特徴と
する磁気記録媒体の製造装置。
[Claims] 1. A magnetic recording medium comprising a substrate and a magnetic layer formed on the substrate, wherein the magnetic layer contains (al, cobalt and rare earth elements as main components); (b) ), a magnetic recording medium characterized in that it is formed so as to exhibit magnetic anisotropy in a predetermined direction under the action of a magnetic field.2. A method for manufacturing a magnetic recording medium characterized by forming a magnetic layer by co-evaporating and co-depositing on a substrate under the action of a magnetic field φ3, a first evaporation source containing cobalt, and a first evaporation source containing rare earth elements. A second evaporation source is disposed facing the substrate, and a magnetic field generating means for generating a magnetic field in a predetermined direction with respect to the substrate is provided around the substrate. Manufacturing equipment.
JP5972584A 1984-03-28 1984-03-28 Method and device for production of magnetic recording medium Pending JPS60202526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5972584A JPS60202526A (en) 1984-03-28 1984-03-28 Method and device for production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5972584A JPS60202526A (en) 1984-03-28 1984-03-28 Method and device for production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60202526A true JPS60202526A (en) 1985-10-14

Family

ID=13121461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5972584A Pending JPS60202526A (en) 1984-03-28 1984-03-28 Method and device for production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60202526A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253762A (en) * 1986-04-25 1987-11-05 Mitsubishi Heavy Ind Ltd Vapor deposition method for zn alloy
JPS63302417A (en) * 1987-01-29 1988-12-09 Hitachi Ltd Magnetic recording medium
WO2000014768A1 (en) * 1998-09-09 2000-03-16 Veeco Instruments, Inc. Electromagnetic field generator and method of operation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253762A (en) * 1986-04-25 1987-11-05 Mitsubishi Heavy Ind Ltd Vapor deposition method for zn alloy
JPS63302417A (en) * 1987-01-29 1988-12-09 Hitachi Ltd Magnetic recording medium
WO2000014768A1 (en) * 1998-09-09 2000-03-16 Veeco Instruments, Inc. Electromagnetic field generator and method of operation
US6545580B2 (en) 1998-09-09 2003-04-08 Veeco Instruments, Inc. Electromagnetic field generator and method of operation

Similar Documents

Publication Publication Date Title
JPH0411625B2 (en)
US3929604A (en) Method for producing magnetic recording medium
US4002546A (en) Method for producing a magnetic recording medium
CA1209262A (en) Magnetic recording medium
JPS60202526A (en) Method and device for production of magnetic recording medium
JPS6029956A (en) Production of photomagnetic recording medium
EP0324854A1 (en) Optomagnetic recording medium and process for its manufacture
JPS6339124A (en) Magnetic recording medium and its production
JPS59162622A (en) Vertical magnetic recording material and its production
JPS59147422A (en) Formation of magnetic layer
JP2738733B2 (en) Magnetic film
JPS59163810A (en) Vertical magnetic recording means and manufacture of the same
EP0116881A2 (en) Magnetic recording medium and process of manufacturing the same
JPS6037531B2 (en) Method for manufacturing magnetic recording media
JPS59148317A (en) Formation of magnetic layer
JPH0462814A (en) Method for producing artificial grid film
Takao et al. Magnetic Properties of Ferromagnetic Thin Films Prepared by Ion Plating
JPS60217531A (en) Production of magnetic recording medium
JPH056256B2 (en)
Takao et al. Ferromagnetic thin films prepared by ion plating
JPS63452A (en) Manufacture of magnetic thin film
JPS6031013B2 (en) Method for manufacturing magnetic recording media
JPS62119732A (en) Production of vertically magnetized film
JPH04209312A (en) Magnetic recording medium
JPH01319119A (en) Magnetic recording medium