JPS60201019A - Apparatus for controlling timing of opening of valve in internal-combustion engine - Google Patents

Apparatus for controlling timing of opening of valve in internal-combustion engine

Info

Publication number
JPS60201019A
JPS60201019A JP59056079A JP5607984A JPS60201019A JP S60201019 A JPS60201019 A JP S60201019A JP 59056079 A JP59056079 A JP 59056079A JP 5607984 A JP5607984 A JP 5607984A JP S60201019 A JPS60201019 A JP S60201019A
Authority
JP
Japan
Prior art keywords
valve
hydraulic
opening
intake
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59056079A
Other languages
Japanese (ja)
Inventor
Yutaka Nishimura
豊 西村
Nobushige Ooyama
宣茂 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59056079A priority Critical patent/JPS60201019A/en
Publication of JPS60201019A publication Critical patent/JPS60201019A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0031Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of tappet or pushrod length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To control the timing of opening of a valve, by interposing a hydraulic apparatus, whose power transmitting length is variable, between a rocker arm and a sucking and exhausting valve driving cam, and controlling the hydraulic apparatus by a computer. CONSTITUTION:A hydraulic apparatus 23 mainly consisting of a piston 24 and a hydraulic chamber 26 is interposed between a cam 22 for driving a suction and exhaust valve 4 and a rocker arm 20. By variably controlling the power transmitting length of the hydraulic apparatus 23, the lift and the time of the opening of the suction and exhaust valve 4 are controlled. The control of the power transmitting length is performed by comparing the position signal of the piston 24 with the output signal from the computer 16 into which engine operation conditions such as the rotational frequency of the engine, the opening of the throttle valve, the angle of the crank, etc. are inputted so that a hydraulic change-over apparatus 29 is controlled thereby setting the piston 24 at the target position. Thus, the timing of the opening of the valve and the lift suitable for the engine operation conditions can be controlled precisely.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内燃機関の吸排気弁の開閉時期を制御する開弁
時期制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a valve opening timing control device that controls the opening and closing timing of intake and exhaust valves of an internal combustion engine.

(発明の背景) 周知のように、通常の自動車エンジンの吸排気弁は1回
転数や負荷等のエンジンの運転条件によらず一定のクラ
ンク角で開閉する構成となっている。しかし、吸排気弁
の開閉時期は、各種運転条件で最適な時期があることが
実験室的に確がめられており、この開閉時期の制御によ
って次のような効果が認められている。
(Background of the Invention) As is well known, the intake and exhaust valves of a typical automobile engine are configured to open and close at a constant crank angle regardless of engine operating conditions such as the number of revolutions and load. However, it has been confirmed in a laboratory that there is an optimum timing for opening and closing the intake and exhaust valves under various operating conditions, and the following effects have been recognized by controlling the timing for opening and closing the intake and exhaust valves.

(1)吸気に伴うポンプ仕事の低減による熱効率の改善
、 (2)充てん効率の改善(慣性過給の応用)による出力
の増大。
(1) Improved thermal efficiency by reducing pump work associated with intake air; (2) Increased output by improving charging efficiency (application of inertial supercharging).

(3)燃焼室内に強力なスワール要発生させることによ
る燃焼の促進などである。
(3) Promotion of combustion by generating a strong swirl inside the combustion chamber.

そこで従来、大別して次のような方法が提案されている
Therefore, the following methods have been proposed in the past.

(1)吸排気弁駆動用のカムを立体カムとして油圧駆動
する方式(特開昭57−148014号公報等)(2)
新規に制御カムを付加する方式(特開昭55−1489
10号公報等)、 (3)吸排気弁を直接油圧駆動する方式(特開昭57−
151011号公報等)。
(1) A method in which the cam for driving the intake and exhaust valves is hydraulically driven as a three-dimensional cam (Japanese Unexamined Patent Publication No. 57-148014, etc.) (2)
Method of adding a new control cam (Japanese Patent Application Laid-Open No. 55-1489
10, etc.), (3) A system in which the intake and exhaust valves are directly hydraulically driven (Japanese Unexamined Patent Publication No. 1987-
151011, etc.).

(4)クランク軸とカム軸の間に回転の位相差を付加す
る装置をもつ方式(特開昭58−165511号公報等
)、 (5)エンジン回転の低速、高速用として2段に切換え
る方式(特開昭57−110708号公報等)、などで
ある。
(4) A system that has a device that adds a rotational phase difference between the crankshaft and the camshaft (Japanese Patent Laid-Open Publication No. 165511/1984, etc.); (5) A system that switches to two stages for low and high engine rotation speeds. (Japanese Unexamined Patent Publication No. 57-110708, etc.).

しかし、いずれも制御精度や耐久性のうえで問題が残っ
ており、未だ実用化さ、hていない。
However, both methods still have problems with control accuracy and durability, and have not yet been put into practical use.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、耐久性を充分に備え、しかも実用に充
分に耐え得る制御精度が得られる内燃機関の開弁時期制
御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a valve opening timing control device for an internal combustion engine that is sufficiently durable and provides control accuracy sufficient for practical use.

〔発明の概要」 本発明は、動力伝達長が可変可能な油圧装置を介して弁
駆動カムの動きをロッカアームに伝達して吸排気弁を開
閉するように構成したものである。
[Summary of the Invention] The present invention is configured to open and close intake and exhaust valves by transmitting the movement of a valve drive cam to a rocker arm via a hydraulic device whose power transmission length is variable.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示すエンジンシステムの全
体構成図である。同図において、エンジンへの吸入空気
は、エアクリーナ1、エアフローメータ19、絞り弁1
8、コレクタチャンバ2、吸気マニホールド3、吸気弁
4を通って燃焼室5に入るように構成されている。
FIG. 1 is an overall configuration diagram of an engine system showing an embodiment of the present invention. In the figure, intake air to the engine is supplied to an air cleaner 1, an air flow meter 19, and a throttle valve 1.
8, it is configured to enter the combustion chamber 5 through the collector chamber 2, the intake manifold 3, and the intake valve 4.

また、冷却水室に設置された温度センサ(図示せず)、
アクセルペダルの開度センサ8.エアフローメータ19
、□酸素センサ7、クランク角センサおよび回転センサ
(図示せず)により冷却水温信号、アクセル開度信号、
吸入空気量信号、排ガス中の空燃比信号、クランク角信
号および回転数信号が取出されてマイクロコンピュータ
16に入力される。そして、ヒンピュータ16の演算に
よって所要の空気量を燃焼室5に吸入するための吸気弁
開閉時期、また必要な燃料費1点火時期、排気還流率が
められ、この算出結果に応じて吸気弁制御装置12、燃
料噴射弁9、点火回路IO1排気還流率制御回路13が
駆動される。なお、第1図において、11は点火コイル
、15はバッテリ、17は点火プラグである。
In addition, a temperature sensor (not shown) installed in the cooling water chamber,
Accelerator pedal opening sensor 8. Air flow meter 19
, □Oxygen sensor 7, crank angle sensor and rotation sensor (not shown) provide a cooling water temperature signal, an accelerator opening signal,
An intake air amount signal, an air-fuel ratio signal in exhaust gas, a crank angle signal, and a rotational speed signal are extracted and input into the microcomputer 16. Then, the intake valve opening/closing timing for sucking the required amount of air into the combustion chamber 5, the required fuel cost, the ignition timing, and the exhaust gas recirculation rate are calculated by the hindputer 16, and the intake valve control device 12, the fuel injection valve 9, the ignition circuit IO1, and the exhaust recirculation rate control circuit 13 are driven. In FIG. 1, 11 is an ignition coil, 15 is a battery, and 17 is a spark plug.

第2図は、吸気弁制御装置12の詳細例を示す図である
。同図において、クランク軸(図示せず)によってチェ
ーンやベルト等を介して駆動されるカム22の動きは、
油圧装置23を介してロッカアーム20、吸気弁4に伝
えられる。これによって、吸気弁4は開閉される。油圧
装置23は、油圧ピストン24、油圧室25,26.ピ
ストンリフト測定器27、油圧切り換え装置29によっ
て構成される。この油圧装置23はコンピュータ16に
エンジンの運転条件(エンジン回転数、絞り弁開度、エ
ンジン冷却水温等)を入力してテーブルルックアップ等
によりめた油圧ピストン−24の位置情報とピストンリ
フト測定器27でめた実際のピストンリフトとが等しく
なるように電磁弁28を駆動し、油圧切り換え装置29
を介して油圧室25.26の油量を増減することによっ
てカム22からロッカアーム20に対する動力伝達長が
可変される。
FIG. 2 is a diagram showing a detailed example of the intake valve control device 12. In the figure, the movement of a cam 22 driven by a crankshaft (not shown) via a chain, belt, etc. is as follows.
It is transmitted to the rocker arm 20 and the intake valve 4 via the hydraulic system 23. As a result, the intake valve 4 is opened and closed. The hydraulic system 23 includes a hydraulic piston 24, hydraulic chambers 25, 26 . It is composed of a piston lift measuring device 27 and a hydraulic pressure switching device 29. This hydraulic system 23 is configured to input engine operating conditions (engine speed, throttle valve opening, engine cooling water temperature, etc.) into a computer 16 and obtain position information of a hydraulic piston 24 by table lookup, etc., and a piston lift measuring device. The solenoid valve 28 is driven so that the actual piston lift determined in step 27 is equal to the hydraulic pressure switching device 29.
The length of power transmission from the cam 22 to the rocker arm 20 can be varied by increasing or decreasing the amount of oil in the hydraulic chambers 25 and 26 via the cam 22 and the rocker arm 20.

この場合、吸気弁4が開いている期間の油圧室26の圧
力は吸気弁4のバネ力により30〜100Kg/c11
2に達するが、吸気弁4が閉じている期間は1〜2Kg
/cd程度である。他方、油圧、油圧ポンプからの油圧
は、5Kg/al程度である。従って、油圧室25.2
6は油量制御は、コンピュータ16への入力信号である
クランク角信号により、吸気弁4が閉じている期間に行
う。
In this case, the pressure in the hydraulic chamber 26 during the period when the intake valve 4 is open is 30 to 100 kg/c11 due to the spring force of the intake valve 4.
2, but during the period when the intake valve 4 is closed, the weight is 1 to 2 kg.
/cd. On the other hand, the hydraulic pressure from the hydraulic pump is about 5 kg/al. Therefore, the hydraulic chamber 25.2
6, the oil amount control is performed during the period when the intake valve 4 is closed, using a crank angle signal that is an input signal to the computer 16.

さらに、ピストンリフト測定器27を用いない場合は、
コンピュータ16に入力されるエンジン運転条件を示す
各種信号(エンジン回転数、絞り弁角度、エンジン冷却
水温度等)から、設定吸入空気流量をテーブルルックア
ップ等によりめ、エアフローメータ19からまる真の空
気流量と等しくなるように油圧切換え装置29を用いて
油圧ピストン位置29を制御する。
Furthermore, if the piston lift measuring device 27 is not used,
The set intake air flow rate is determined from various signals indicating engine operating conditions inputted to the computer 16 (engine speed, throttle valve angle, engine cooling water temperature, etc.) by table lookup, etc., and the true air flow rate is determined by the air flow meter 19. The hydraulic piston position 29 is controlled using the hydraulic switching device 29 so that it is equal to .

第3図は、油圧ピストン24の位置を可変した場合の吸
気弁4のリフトク性を示した図であり、油圧室26の油
量が多い程、即ち油圧ピストン24の位置が高い位置に
ある程、開弁時間が長くなる。即ち、弁4の開閉時期を
ピストン4の位置を可変することによって制御できる。
FIG. 3 is a diagram showing the lift performance of the intake valve 4 when the position of the hydraulic piston 24 is varied. , the valve opening time becomes longer. That is, the opening and closing timing of the valve 4 can be controlled by varying the position of the piston 4.

第4図は、吸気弁制御装置12の他の実施例を示す図で
ある。第1図の場合と同様にカム22の動きは、油圧装
置3Iを介してロッカアーム2o、吸気弁4に伝えられ
る。これによって吸気弁4は開閉される。油圧装置13
は、タペットボデー34、プランジャ35、球弁36、
油圧抜き穴42、スリーブ33、スリーブ駆動装置43
によって構成されている。
FIG. 4 is a diagram showing another embodiment of the intake valve control device 12. As in the case of FIG. 1, the movement of the cam 22 is transmitted to the rocker arm 2o and the intake valve 4 via the hydraulic device 3I. This opens and closes the intake valve 4. Hydraulic system 13
are a tappet body 34, a plunger 35, a ball valve 36,
Hydraulic drain hole 42, sleeve 33, sleeve drive device 43
It is made up of.

この油圧装置31は、コンピュータ16にエンジンの運
転条件を入力してテーブルルックアップ等によりめたス
リーブ33の位置信号をスリーブ駆動装置43に入力す
ることにより、スリーブ:33が設定位置に固定される
。この後、カム22が回転してタペットボデー34がカ
ム22の突起部44に接触し始めると、タペットボデー
34゜プランジャ35は上昇を始め、ロッカアーム20
を押し上げ、吸気弁4を開く。さらに、タペットボデー
34、プランジャ35がカム22により押し上げられる
と、スリーブ33はスリーブ駆動装置43により固定さ
れているので、タペットボデー34にあげられた油圧抜
き六42がスリーブ33により閉じられた状態から開か
れた状態になり、油圧室32の油が油圧抜き穴42から
噴出し、プランジャ35は低下する。すると、ロッカア
ーム20を押し上げる力が小さくなるので吸気弁4は閉
じる。さらに、カム22が回転してタペットボデー34
がカム22のベース内に接触するようになると、ロッカ
アーム20によりプランジャ35を押し下げる力が小さ
くなり、油圧室32のバネ37によりプランジャ35が
押し」二げられ、油圧室32の圧力が小さくなり、球弁
36が開いて油圧通路38から油圧通路穴39,40、
球弁36を通って油圧室32に油が供給される。以上の
行程が繰り返される結果、第5図に示すように、スリー
ブ33の位置に応じて吸気弁4の開弁時間が変化する。
This hydraulic system 31 fixes the sleeve 33 at a set position by inputting engine operating conditions into the computer 16 and inputting a position signal of the sleeve 33 determined by table lookup etc. to the sleeve drive device 43. . Thereafter, when the cam 22 rotates and the tappet body 34 begins to come into contact with the protrusion 44 of the cam 22, the tappet body 34° plunger 35 begins to rise, and the rocker arm 20
Push up to open intake valve 4. Further, when the tappet body 34 and the plunger 35 are pushed up by the cam 22, the sleeve 33 is fixed by the sleeve drive device 43, so that the oil pressure release six 42 raised on the tappet body 34 is released from the closed state by the sleeve 33. In the open state, oil in the hydraulic chamber 32 is ejected from the hydraulic vent hole 42, and the plunger 35 is lowered. Then, the force pushing up the rocker arm 20 becomes smaller, so the intake valve 4 closes. Further, the cam 22 rotates and the tappet body 34
When it comes into contact with the inside of the base of the cam 22, the force of pushing down the plunger 35 by the rocker arm 20 becomes smaller, the plunger 35 is pushed down by the spring 37 of the hydraulic chamber 32, and the pressure in the hydraulic chamber 32 becomes smaller. The ball valve 36 opens and the hydraulic passage holes 39, 40 are opened from the hydraulic passage 38,
Oil is supplied to the hydraulic chamber 32 through the ball valve 36. As a result of repeating the above steps, the opening time of the intake valve 4 changes depending on the position of the sleeve 33, as shown in FIG.

なお、スリーブ33の位置は、第4図では間ループによ
って制御されているが、エンジンの運転条件より、コン
ピュータ】6で設定吸入空気流量をめ、エアフローメー
タ19からの空気流量信号がこの設定空気流量となるよ
うにスリーブ33の位置を閉ループによって制御するよ
うにしてもよい。なお、4】はプランジャ35内の油に
生じる気泡を抜く穴である。
The position of the sleeve 33 is controlled by an intermediate loop in FIG. 4, but based on the operating conditions of the engine, the set intake air flow rate is determined by the computer 6, and the air flow rate signal from the air flow meter 19 is adjusted to the set air flow rate. The position of the sleeve 33 may be controlled in a closed loop to achieve the desired flow rate. Note that 4] is a hole for removing air bubbles generated in the oil inside the plunger 35.

第6図は、第4図に示した吸気弁制御装置i’j12の
変形例を示す図であり、吸気弁開閉時期制御用のスリー
ブ33、油圧室32の油圧抜き穴42をプランジャ35
に設けたものである。従って、第4図と同一部分は同一
記号で表している。第6図において、カム22によって
タペットボデー34、プランジャ35が押し上げられる
と、ロッカアーム20を介して吸気弁4が開かれるが、
さらにタペットボデー34、プランジャ35が押し上げ
られると、スリーブ33によって閉じられていた油圧抜
き六42が開放となり、油圧室32の油がこの油圧抜き
穴42から排気される。しかし、油圧抜き穴42から油
が排出されると油圧室32の油の暇が少なくなり、プラ
ンジャ35はタペツ1−ボデー34に対して相対的に下
がる。その結果、油圧抜き六42のスリーブ33によっ
て閉じられる。
FIG. 6 is a diagram showing a modification of the intake valve control device i'j12 shown in FIG.
It was established in Therefore, the same parts as in FIG. 4 are represented by the same symbols. In FIG. 6, when the tappet body 34 and plunger 35 are pushed up by the cam 22, the intake valve 4 is opened via the rocker arm 20.
When the tappet body 34 and plunger 35 are further pushed up, the oil pressure bleed hole 42, which had been closed by the sleeve 33, is opened, and the oil in the hydraulic chamber 32 is exhausted from the oil pressure bleed hole 42. However, when the oil is discharged from the oil pressure drain hole 42, the amount of oil in the oil pressure chamber 32 decreases, and the plunger 35 is lowered relative to the tappet 1-body 34. As a result, the sleeve 33 of the hydraulic vent 642 closes.

従って、吸気弁4の開閉特性は、第7図に示すようにな
り、スリーブ33が下がると吸気弁4が開いた時のバル
ブリフトは小さくなり、スリーブ33を上げると、吸気
弁4が開いた時のバルブリフトは大きくなる。
Therefore, the opening/closing characteristics of the intake valve 4 are as shown in FIG. 7. When the sleeve 33 is lowered, the valve lift when the intake valve 4 opens becomes smaller; When the valve lift increases.

第8図は、第4図に示した吸気弁制御装置12の他の変
形例を示す図であり、油圧室32の壁に設けられた油圧
抜き穴42A、42Bの開閉を、逆止弁46および電磁
弁48に設けた弁47により行うようにし、油圧室32
の油を適宜抜き去り、油圧装置31の高さをコンピュー
タ16からの指令により設定値に保って吸気弁4の開閉
時期を制御するものである。従って、この場合の吸気弁
の開弁特性は第3図に示したのと同様の特性になる。
FIG. 8 is a diagram showing another modification of the intake valve control device 12 shown in FIG. and the valve 47 provided in the solenoid valve 48, and the hydraulic chamber 32
The timing of opening and closing of the intake valve 4 is controlled by draining the oil as appropriate and maintaining the height of the hydraulic device 31 at a set value according to a command from the computer 16. Therefore, the opening characteristics of the intake valve in this case are similar to those shown in FIG.

即ち、コンピュータ16にエンジンの運転条件を示す各
種信号(エンジン回転数は、絞り弁開度。
That is, various signals indicating engine operating conditions are sent to the computer 16 (engine speed, throttle valve opening, etc.).

冷却水温度等)を入力し、テーブル等によりプランジャ
35の設定高さをめ、この設定高さになるように、プラ
ンジャリフト測定器(図示せず)の信号を参照しながら
電磁弁48により弁47を開閉して油圧室32の油を適
宜抜き取るものである。なお、油圧室32への油は、タ
ペットボデー34がカム22のベース円上にある時に、
バネ37によりプランジャ35が押し上げられ油圧室3
2の圧力が低くなり球弁3Gが開き、油圧通路38より
油圧通路穴39.ノ10、球弁36を通って油圧室32
に供給される。
(cooling water temperature, etc.), determine the set height of the plunger 35 using a table, etc., and adjust the valve using the solenoid valve 48 while referring to a signal from a plunger lift measuring device (not shown) to reach this set height. 47 is opened and closed to drain oil from the hydraulic chamber 32 as appropriate. Note that oil is supplied to the hydraulic chamber 32 when the tappet body 34 is on the base circle of the cam 22.
The plunger 35 is pushed up by the spring 37 and the hydraulic chamber 3
2 becomes lower, the ball valve 3G opens, and the hydraulic passage hole 39.2 is opened from the hydraulic passage 38. No. 10, the hydraulic chamber 32 through the ball valve 36
is supplied to

第9図は、油圧室32の油を抜くための逆止弁46の構
造図である。同図に′おいて、電磁弁48によって弁4
7を示じると、油圧通路45の油圧により、逆止弁46
は、油圧抜き穴42B側に押しつけられ、油圧抜き穴4
2Bは閉じる。一方、弁47を開くと油圧通路45の油
圧が低下し、逆止弁46のばね作用と、油圧室32の油
圧により、油圧抜き穴42Bは開く。なお、吸気弁4が
開いている状況では、弁ばねの作用により油圧室32の
圧力は30〜100にg/cJに達するが、弁47がI
Iじていれば、油圧通路の油圧は、油圧ポンプにより5
Kg/cJ程度になっており、しかも油圧抜き穴42B
の内面積が逆止弁46の面積に比べ十分小さいので、油
圧室32の圧力が30〜100にg/a#に達しても逆
止4r46により油圧抜き穴42Bを閉じていることが
できる。弁47を開くと、油圧通路45の圧力がIKg
/c+#に低下するので、油圧室32の油圧により逆止
弁46は開く。
FIG. 9 is a structural diagram of a check valve 46 for draining oil from the hydraulic chamber 32. In the figure, valve 4 is operated by solenoid valve 48.
7, the hydraulic pressure in the hydraulic passage 45 causes the check valve 46 to open.
is pressed against the hydraulic vent hole 42B side, and the hydraulic vent hole 4
2B is closed. On the other hand, when the valve 47 is opened, the oil pressure in the oil pressure passage 45 decreases, and the spring action of the check valve 46 and the oil pressure in the oil pressure chamber 32 open the oil pressure drain hole 42B. Note that when the intake valve 4 is open, the pressure in the hydraulic chamber 32 reaches 30 to 100 g/cJ due to the action of the valve spring;
If so, the hydraulic pressure in the hydraulic passage will be increased by the hydraulic pump.
It is about Kg/cJ, and there is a hydraulic vent hole 42B.
Since the inner area of the check valve 46 is sufficiently smaller than the area of the check valve 46, the hydraulic vent hole 42B can be closed by the check 4r46 even if the pressure in the hydraulic chamber 32 reaches 30 to 100 g/a#. When the valve 47 is opened, the pressure in the hydraulic passage 45 increases to IKg.
/c+#, so the check valve 46 opens due to the oil pressure in the oil pressure chamber 32.

さらに、吸気弁4の開弁特性を第5図に示した特性にす
るためには、弁47を電磁弁48により閉じておき、タ
ペットボデー34がカム22の突起部44に接触を始め
て、油圧装置31がロッカアーム20を押し上げ、吸気
弁4を開き始めた適切な時期に、電磁弁48により弁4
7を開くと、油圧室32の油が油圧抜き穴42A、42
Bより流出し、プランジャ35が低下して吸気弁4が閉
じる。従って、コンピュータ16からの信号により吸気
弁4の開弁動作の1回毎に5電磁弁48を開弁すること
により、第5図のような開弁特性を得ることができる。
Furthermore, in order to make the opening characteristics of the intake valve 4 as shown in FIG. At the appropriate time when the device 31 pushes up the rocker arm 20 and begins to open the intake valve 4, the solenoid valve 48 closes the valve 4.
7 is opened, the oil in the hydraulic chamber 32 flows into the hydraulic vent holes 42A, 42.
B, the plunger 35 is lowered, and the intake valve 4 is closed. Therefore, by opening the solenoid valve 48 every time the intake valve 4 is opened in response to a signal from the computer 16, the valve opening characteristics shown in FIG. 5 can be obtained.

第】0図は、第4図の吸気弁制御装置12の他の変形例
を示す図であり、油圧室32の壁に設けられた油圧抜き
穴42によって回転弁51により油圧室32内の油を抜
き取り、第11図に示すような開弁特性を得るものであ
る。この場合、回転弁51は、カム22と一体になって
回転するブーIJ54からベルト53によって回転位相
変化機構50を介して回転する。回転位相変化機構50
は例えば特開昭58−165511号公報に開示されて
いる機構等を用いる。この実施例では、コンピュータ1
−6にエンジンの運転条件を入力し、コンピュータ16
内でテーブルルックアップ等により回転位相変化信号を
め、該(jff号を回転位相変化機構50に入力し、カ
ム22の軸と回転ブ151の軸との回転に位相差を旬月
する。この状態で、カム22が回転してタペットボデー
34がカム22のベース内から力11突起部44に接触
を始めると、タペツ1−ボデー34、プランジャ35は
上昇を始め、ロッカアーム21〕を押し」−げ、吸気弁
4を開−く。さらにカム22が回転すると、回転弁51
もベルb !; 3により回転し、この結果油圧抜き穴
52が油圧排出通路45に一致すると、油圧室32の油
が油排出通路55に1ト出され、プランジャ35が低下
し、吸気弁4は閉じる。従って、回転弁51どカム20
の位相を適切に設定することにより第11図のように吸
気弁4の開弁特性を得ることができる。
FIG. 0 is a diagram showing another modification of the intake valve control device 12 shown in FIG. The valve opening characteristics shown in FIG. 11 are obtained by extracting the following. In this case, the rotary valve 51 is rotated by the belt 53 from the boo IJ54 that rotates integrally with the cam 22 via the rotational phase changing mechanism 50. Rotational phase change mechanism 50
For example, a mechanism disclosed in Japanese Unexamined Patent Publication No. 58-165511 is used. In this example, computer 1
-6, input the engine operating conditions into computer 16.
Find the rotational phase change signal by table lookup or the like, input the signal (jff) to the rotational phase change mechanism 50, and calculate the phase difference between the rotations of the shaft of the cam 22 and the shaft of the rotary block 151. In this state, when the cam 22 rotates and the tappet body 34 starts contacting the protrusion 44 of the force 11 from within the base of the cam 22, the tappet 1 body 34 and plunger 35 begin to rise and push the rocker arm 21. and opens the intake valve 4. When the cam 22 further rotates, the rotary valve 51 opens.
Mobell b! ; As a result, when the hydraulic pressure release hole 52 is aligned with the hydraulic pressure discharge passage 45, the oil in the hydraulic chamber 32 is discharged to the oil discharge passage 55, the plunger 35 is lowered, and the intake valve 4 is closed. Therefore, the rotary valve 51 and the cam 20
By appropriately setting the phase of , the opening characteristics of the intake valve 4 as shown in FIG. 11 can be obtained.

なお、実施例では吸気弁の制御について説明したが4J
1=気−11の制御にも全く同様に適用できる。
In addition, although the control of the intake valve was explained in the example, 4J
It can be applied in exactly the same way to the control of 1=Ki-11.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明は動力伝達長がコ
ンピュータ等からの制御信号によって可変可能な油圧装
置を介して弁駆動カムの動きをロッカアームに伝達して
吸排気弁を制御するものであるため、十分な制御精度お
よび耐久性が得らJしるという効果がある。
As is clear from the above description, the present invention controls the intake and exhaust valves by transmitting the movement of the valve drive cam to the rocker arm via a hydraulic device whose power transmission length can be varied by control signals from a computer or the like. Therefore, there is an effect that sufficient control accuracy and durability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すエンジンシステムの構
成図、第2図は吸気弁制御装置の実施例を示す図、第3
図はその量弁特性図、第4図〜第5図は吸気弁制御装置
の変形例および開弁特性を示す図、第6図〜第7図は吸
気弁制御装置の変形例および開弁特性を示す図、第8図
〜第9図は吸気弁制御装置の他の変形例を示す図、第1
0図へ第11図は吸気弁制御装置の他の変形例および開
弁特性を示す図である。 l・・・エアクリーナ、4・・・吸気弁、12・・・吸
気力制御装置、20・・・ロッカアーム、22・・・力
11.23゜居 6ヅ
Fig. 1 is a configuration diagram of an engine system showing an embodiment of the present invention, Fig. 2 is a diagram showing an embodiment of an intake valve control device, and Fig. 3 is a diagram showing an embodiment of an intake valve control device.
The figure is a flow valve characteristic diagram, Figures 4 and 5 are diagrams showing a modified example of the intake valve control device and its valve opening characteristics, and Figures 6 and 7 are diagrams showing a modified example of the intake valve control device and its valve opening characteristics. Figures 8 to 9 are diagrams showing other modified examples of the intake valve control device.
FIG. 0 to FIG. 11 are diagrams showing other modifications of the intake valve control device and the valve opening characteristics. l... Air cleaner, 4... Intake valve, 12... Intake force control device, 20... Rocker arm, 22... Force 11.23° 6ヅ

Claims (1)

【特許請求の範囲】[Claims] ■、吸排気弁駆動カムの動きをロッカアームに伝達して
吸排気弁を開閉する内燃機関において、前記吸排気弁駆
動カムとロッカアームとの間に介在し、これらの間の動
力伝達長を可変可能な油圧装置を備え、前記動力伝達長
の可変制御によって開弁時期を制御することを特徴とす
る内燃機関の開弁時間制御装置。
■In an internal combustion engine that opens and closes the intake and exhaust valves by transmitting the movement of the intake and exhaust valve drive cam to the rocker arm, it is interposed between the intake and exhaust valve drive cam and the rocker arm, and the power transmission length between them can be varied. What is claimed is: 1. A valve opening time control device for an internal combustion engine, comprising: a hydraulic device; the valve opening timing is controlled by variable control of the power transmission length;
JP59056079A 1984-03-26 1984-03-26 Apparatus for controlling timing of opening of valve in internal-combustion engine Pending JPS60201019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59056079A JPS60201019A (en) 1984-03-26 1984-03-26 Apparatus for controlling timing of opening of valve in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59056079A JPS60201019A (en) 1984-03-26 1984-03-26 Apparatus for controlling timing of opening of valve in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60201019A true JPS60201019A (en) 1985-10-11

Family

ID=13017075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59056079A Pending JPS60201019A (en) 1984-03-26 1984-03-26 Apparatus for controlling timing of opening of valve in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60201019A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445555A2 (en) * 1990-03-06 1991-09-11 Bayerische Motoren Werke Aktiengesellschaft Method for the regulation of the camshaft phasing, continuously variable according to RPM
JP2008517202A (en) * 2004-10-14 2008-05-22 ジェイコブス ビークル システムズ、インコーポレイテッド System and method for variable valve actuation in an internal combustion engine
GB2508501A (en) * 2013-10-16 2014-06-04 Daimler Ag Valve train facilitating adjustable valve lift via a hydraulic plunger
JP2014202079A (en) * 2013-04-01 2014-10-27 スズキ株式会社 Variable valve gear control device for internal combustion engine
GB2617166A (en) * 2022-03-31 2023-10-04 Cummins Inc Systems and methods for lash adjustment and cylinder deactivation for internal combustion engines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445555A2 (en) * 1990-03-06 1991-09-11 Bayerische Motoren Werke Aktiengesellschaft Method for the regulation of the camshaft phasing, continuously variable according to RPM
EP0445555A3 (en) * 1990-03-06 1995-12-27 Bayerische Motoren Werke Ag Method for the regulation of the camshaft phasing, continuously variable according to rpm
JP2008517202A (en) * 2004-10-14 2008-05-22 ジェイコブス ビークル システムズ、インコーポレイテッド System and method for variable valve actuation in an internal combustion engine
JP2014202079A (en) * 2013-04-01 2014-10-27 スズキ株式会社 Variable valve gear control device for internal combustion engine
GB2508501A (en) * 2013-10-16 2014-06-04 Daimler Ag Valve train facilitating adjustable valve lift via a hydraulic plunger
GB2617166A (en) * 2022-03-31 2023-10-04 Cummins Inc Systems and methods for lash adjustment and cylinder deactivation for internal combustion engines

Similar Documents

Publication Publication Date Title
US5588411A (en) Method for controlling an internal combustion engine with external ignition system and with a fuel injection system
US4716863A (en) Internal combustion engine valve actuation system
EP2199582B1 (en) Engine intake quantity control apparatus
JP4186613B2 (en) Intake control device for internal combustion engine
JP4672220B2 (en) Combustion control device for compression ignition engine
KR20100053461A (en) Variable valve driving device of internal combustion engine
JP5116465B2 (en) Method for operating an internal combustion engine and internal combustion engine implementing the method
JPH0758050B2 (en) Intake control device for exhaust turbocharged engine
WO2017145554A1 (en) Internal combustion engine control apparatus
JPS60201019A (en) Apparatus for controlling timing of opening of valve in internal-combustion engine
JP2001329871A (en) Intake valve driving control device for internal combustion engine
JPS6125905A (en) Variable valve timing controller
EP1211402A2 (en) Internal EGR quantity estimation for controlling intake/exhaust valves and ignition timing
JP3074763B2 (en) 2-stroke engine
JP2750800B2 (en) Intake valve control device for internal combustion engine
JPS61185628A (en) Controlling method of variable valve timing engine
JPS59194058A (en) Idling revolution number control device for engine
JPS61187543A (en) Control method of variable valve-timing engine
JP3824375B2 (en) Diesel engine control device
JPH062550A (en) Intake control device for internal combustion engine
JP2002221014A (en) Internal combustion engine and control system therefor
JP3536519B2 (en) Intake valve control device and control method for internal combustion engine
JPH10238383A (en) Operation controller of two-cycle diesel engine
JP4343954B2 (en) Engine control device
JPS6316803Y2 (en)