JPS6019917A - Auxiliary air supply device for exhaust turbo- supercharger - Google Patents

Auxiliary air supply device for exhaust turbo- supercharger

Info

Publication number
JPS6019917A
JPS6019917A JP58125575A JP12557583A JPS6019917A JP S6019917 A JPS6019917 A JP S6019917A JP 58125575 A JP58125575 A JP 58125575A JP 12557583 A JP12557583 A JP 12557583A JP S6019917 A JPS6019917 A JP S6019917A
Authority
JP
Japan
Prior art keywords
supercharger
engine
steam
turbine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58125575A
Other languages
Japanese (ja)
Inventor
Kenji Fujimoto
謙二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58125575A priority Critical patent/JPS6019917A/en
Publication of JPS6019917A publication Critical patent/JPS6019917A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To replenish insufficient rotating energy for a supercharger under low load operation of an engine, by providing a steam suction nozzle on the supercharger turbine side. CONSTITUTION:When a main engine is operated above a constant load, exhaust gas flows from a cylinder liner 2 through an exhaust port 10 and a exhaust passage 11 into a supercharger turbine 5 from which exhaust gas is discharged to the outside of the engine compartment. air enters in a supercharger blower 6, an air-cooler 7 and a scavenging chamber 8, and then flows through a filter 13 and into the cylinder liner 2 through a scavenging port 12. When the main engine is operated under a low load, exhaust gas and air are in the same condition as that of the operation above the constant load. Upon low load operation steam generated in an auxiliary boiler is introduced into the supercharger turbine 5 through a steam pipe 15 and a suction nozzle 14 to replenish insufficient rotating energy for the supercharger turbine 5.

Description

【発明の詳細な説明】 関する。[Detailed description of the invention] related.

従来よりディーゼル機関等では一般に過給機を装備して
燃焼効率を高めると共に出力増大及び燃費改善等をはか
つている。
Conventionally, diesel engines and the like have generally been equipped with a supercharger to increase combustion efficiency, increase output, and improve fuel efficiency.

このような過給機の一つの型式として機関の排気通路に
設置されたタービンにより、このタービンの回転軸と同
軸にブロアを連結させて、ブロアを駆動し、吸気過給す
る排気タービン過給機も知られている。
One type of supercharger is an exhaust turbine supercharger, which uses a turbine installed in the exhaust passage of the engine to connect a blower coaxially with the rotating shaft of the turbine to drive the blower and supercharge the intake air. is also known.

上記機関に排気タービン過給機を装備したものは、第1
図に示すように、機関の爆発工程でシリンダヘッド1を
有し、エンジン架橋4に設けられたシリンダライナ2内
のピストン3が下降し、下死点に近づくと排気口10が
開き、排気ガスはシリンダライナ2に流出する。ついで
シリンダライナ2内に発生した排気ガスは、第1図太実
矢印で示すようにシリンダライナ2内から排気口lOを
通り排気通路11、過給機タービン5側を経て機関室外
に排出される。との際、排気ガスが過給機のタービン5
を回転することにより、排気ガスのうちの何割かのエネ
ルギーが吸収される。このタービン5の回転運動は、タ
ービン軸と同軸に連結された過給機のブロア6に伝達さ
れ、給気を圧縮するのに利用される。
If the above engine is equipped with an exhaust turbine supercharger,
As shown in the figure, during the explosion process of the engine, the piston 3 in the cylinder liner 2 that has the cylinder head 1 and is provided on the engine bridge 4 descends, and when it approaches the bottom dead center, the exhaust port 10 opens and the exhaust gas flows out into the cylinder liner 2. Next, the exhaust gas generated in the cylinder liner 2 is discharged from the cylinder liner 2 through the exhaust port 1O, the exhaust passage 11, and the supercharger turbine 5 side to the outside of the engine room, as shown by the thick arrow in FIG. . When the exhaust gas flows into the turbocharger's turbine 5
By rotating the engine, a percentage of the energy in the exhaust gas is absorbed. This rotational motion of the turbine 5 is transmitted to a blower 6 of a supercharger connected coaxially with the turbine shaft, and is used to compress air supply.

即ち、ブロア6からの空気の流れは、機関が一定負荷以
上にて運転される場合は、第1図の実矢印で示すように
機関室内又は外から過給機のブロアロと空気冷却器7を
経て掃気室8に入り、掃気口12を経てシリンダライナ
2へと流れる。
That is, when the engine is operated at a load above a certain level, the air flow from the blower 6 is controlled by the blower blower of the supercharger and the air cooler 7 from inside or outside the engine room, as shown by the solid arrow in Fig. 1. The air then enters the scavenging chamber 8 and flows through the scavenging port 12 to the cylinder liner 2.

しかしながら、機関が低負荷にて運転される場合には、
過給機で回収されるエネルギのみでは充分でないため、
給気の圧縮が円滑に出来立く々るので、機関内での燃焼
状態は当然ながら不完全燃焼となる。そこで不完全燃焼
を解消するため、給気側に電動補助ブロア9を主機の一
端に設け、給気の圧縮を補助しているものが多い。
However, when the engine is operated at low load,
Since the energy recovered by the turbocharger alone is not sufficient,
Since the supply air is compressed smoothly, the combustion inside the engine is naturally incomplete. Therefore, in order to eliminate incomplete combustion, an electric auxiliary blower 9 is often provided at one end of the main engine on the air supply side to assist in compressing the air supply.

上記のように補助ブロア9を設けた場合の空気の流れは
、第1図の点矢印に示すように機関室内又は外から過給
機のブロア6と空気冷却器7を経て掃気室8に入る。こ
こまでは前記一定負荷での運転と同じ空気の流れである
が、他方補助ブロア9からの空気を掃気室8を経て掃気
口12からシリンダライナ2に流す点が異なっている。
When the auxiliary blower 9 is installed as described above, the air flows from the engine room or outside through the turbocharger blower 6 and air cooler 7 and enters the scavenging air chamber 8 as shown by the dotted arrow in FIG. . Up to this point, the air flow is the same as in the constant load operation described above, but the difference is that the air from the auxiliary blower 9 is passed through the scavenging chamber 8 and flows from the scavenging port 12 to the cylinder liner 2.

即ち前記一定負荷での運転での空気の流れに、補助ブロ
ア9からの空気の流れを付加して給気の圧縮の補助をし
て完全燃焼させる。
That is, the air flow from the auxiliary blower 9 is added to the air flow during operation under the constant load to assist in compressing the air supply and achieve complete combustion.

従って低負荷域において補助ブロア9のモータを回転す
るために多大の電力が必要であり、し2がも、例えば舶
用ディーゼル機関にあっては出入港時の主機関低負荷時
に電力がピークとなる場合が多いだめ、発電機の容量が
必然的に大きくなる。
Therefore, a large amount of electric power is required to rotate the motor of the auxiliary blower 9 in a low load range, and in the case of a marine diesel engine, for example, the electric power reaches its peak when the main engine is under low load when entering or exiting a port. In many cases, the capacity of the generator inevitably increases.

一方、航海中での需要電力は省エネルギが進んでいる現
在、比較的小さくなり、電力の使用に矛盾が生じこれが
船舶のコストアップの一因となっている。
On the other hand, the power demand during a voyage has become relatively small due to advances in energy conservation, leading to inconsistencies in the use of power, which is one of the causes of increased costs for ships.

本発明は上記従来装置の有する欠点を解消するためにな
されたものであり、主FA関の低負荷時における補助ブ
ロアによる電力ピーク値の減少を計るために、補助ブロ
アを廃止した新規な排気タービン過給機を提供すること
を目的とするものである。
The present invention has been made in order to eliminate the drawbacks of the above-mentioned conventional devices, and in order to reduce the peak power value by the auxiliary blower during low load of the main FA, a new exhaust turbine that eliminates the auxiliary blower is provided. The purpose is to provide a supercharger.

即ち、本発明は、排気タービン過給機のタービン側に蒸
気吸込みノズルを設けるとともに、吸込み蒸気の流量を
制御する蒸気量制御弁を前記蒸気吸込みノズルに連通ず
る蒸気管に設けることにより構成される。
That is, the present invention is constructed by providing a steam suction nozzle on the turbine side of an exhaust turbine supercharger, and providing a steam flow control valve for controlling the flow rate of intake steam in a steam pipe communicating with the steam suction nozzle. .

上記のように既設の過給機を大幅に改造するとと々く、
過給機のタービン側に蒸気吸込みノズルを付設するだけ
で機関の低負荷運転時における過給機の回転エネルギ不
足を補充し、機関の燃焼状態の悪化を防止できると共に
2サイクルの補助ブロア付機関においてはこの補助ブロ
アを廃止することができる。そして供給蒸気は舶用開設
ボイラから供給を受けるので別の設備を必要とし々い。
As mentioned above, if you significantly modify the existing supercharger,
By simply attaching a steam suction nozzle to the turbine side of the supercharger, it is possible to replenish the lack of rotational energy in the supercharger during low-load operation of the engine, and prevent deterioration of the combustion condition of the engine. In some cases, this auxiliary blower can be abolished. Since the supplied steam is supplied from a marine boiler, separate equipment is often required.

以下、図面を参照して本発明の実施例について説明する
Embodiments of the present invention will be described below with reference to the drawings.

ここにおいて、上記従来装置と同−又は均等な構成部分
には、同一符号を用いて説明する。第2図の排気タービ
ン過給機は装備した主機関において、エンジン架橋4上
に設置され、シリンダヘッド1を頂部に有するシリンダ
ライナ2内にピストン3を備えた主機関には排気口10
が形成されている。排気口10は排気通路11に連通さ
れ、排気通路]1出口に過給機タービン5が連設されて
いる。過給機タービン5の回転軸と同軸にブロア6が連
結され、ブロア6の出口側はダクトによって空気冷却器
7を経て掃気室8と連通している。
Here, the same reference numerals are used to describe the same or equivalent components as those of the conventional device described above. The exhaust turbine supercharger shown in FIG. 2 is installed on an engine bridge 4 in a main engine equipped with a piston 3 in a cylinder liner 2 having a cylinder head 1 at the top.
is formed. The exhaust port 10 communicates with an exhaust passage 11, and a supercharger turbine 5 is connected to an exit of the exhaust passage 11. A blower 6 is connected coaxially with the rotating shaft of the supercharger turbine 5, and the outlet side of the blower 6 communicates with a scavenging chamber 8 via an air cooler 7 via a duct.

掃気室8はフィルタ13で仕切らね、ビスt−73が下
死点にある時ピストンの頂面に接して全開する掃気口1
2がシリンダライナ2に形成されている。
The scavenging chamber 8 is separated by a filter 13, and has a scavenging port 1 that fully opens in contact with the top surface of the piston when the screw T-73 is at the bottom dead center.
2 is formed on the cylinder liner 2.

まだ、主機関のシリンダライナ2の近傍にある過給機の
タービン5側に蒸気吸込みノズル14を設けると共に/
蒸気吸込みノズル14に連通ずる蒸気管15に吸込み蒸
気の流量を制御する蒸気量5制御弁16を設ける。
Still, a steam suction nozzle 14 is provided on the turbine 5 side of the supercharger near the cylinder liner 2 of the main engine.
A steam flow rate control valve 16 is provided in a steam pipe 15 communicating with the steam suction nozzle 14 to control the flow rate of the suction steam.

上記実施例による作用について説明する3、主機関が一
定や荷以上で運転される場合(り1、排気ガス及び空気
の流れは、第1図に示した従来装置のものと全く同じで
ある。即ち、排気ガスの流れは、第2図の太矢印で示す
ように、シリンダライナ2から排気口10、排気通路1
1を通り過給機のタービン5を経て機関室外へと排出さ
れる。
The operation of the above embodiment will be explained in 3. When the main engine is operated at a constant load or above (1) The flow of exhaust gas and air is exactly the same as that of the conventional system shown in FIG. That is, the flow of exhaust gas is from the cylinder liner 2 to the exhaust port 10 to the exhaust passage 1, as shown by the thick arrow in FIG.
1 and is discharged to the outside of the engine room via the turbine 5 of the supercharger.

一方、空気の流れは機関室内又は外から過給機のブロア
6と空気冷却器7と掃気室8に入りフィルタ13を通り
、掃気口12を経てシリンダライナ2に流れる。主機関
が低負荷にて運転される場合も、排気ガス及び空気の流
れは上記一定負荷以上で運転される場合と全く同じであ
るが、但し、低負荷の場合は補助ボイラ(図示せず)に
て発生された蒸気を蒸気管15を経て過給機タービン5
内へ吸込みノズル14により吸込むことによりタービン
5の回転エネルギの不足分を補充する。
On the other hand, air flows from inside or outside the engine room into the turbocharger blower 6, air cooler 7, and scavenging chamber 8, passes through the filter 13, passes through the scavenging port 12, and flows into the cylinder liner 2. Even when the main engine is operated at a low load, the flow of exhaust gas and air is exactly the same as when the main engine is operated at a constant load or above.However, in the case of a low load, an auxiliary boiler (not shown) The steam generated in is passed through the steam pipe 15 to the supercharger turbine 5.
The lack of rotational energy of the turbine 5 is replenished by suction into the turbine 5 through the suction nozzle 14.

この際、蒸気量は機関掃気室8の圧力及び機関負荷を検
出することにより、蒸気制御弁16にて自動的にコント
ロールされるものとする。
At this time, the amount of steam is automatically controlled by the steam control valve 16 by detecting the pressure in the engine scavenging chamber 8 and the engine load.

上記のように既設の過給機タービン側に蒸気吸込みノズ
ルを付設するだけで、機関の低負荷運転時における過給
機の回転エネルギ不足を補充し、機関の不完全燃焼を防
止することができる。また、補助ブロアを装備した2サ
イクル機関の場合は、上記補助ブロアを廃止することに
より、船舶の出入港時の消費電力を大幅に減少し、ひい
ては発電機の容量減少にもつながり省エネルギ省コスト
を計ることができる。そして供給蒸気も既設のボイラか
らの蒸気を使用できこれによる余分の装備を必要としな
い等の顕著な効果を奏する。
By simply installing a steam intake nozzle on the existing turbocharger turbine side as described above, it is possible to replenish the lack of rotational energy in the turbocharger during low-load operation of the engine and prevent incomplete combustion in the engine. . In addition, in the case of a two-cycle engine equipped with an auxiliary blower, by eliminating the auxiliary blower, the power consumption when the ship enters and exits the port is significantly reduced, which in turn reduces the capacity of the generator, resulting in energy and cost savings. can be measured. Furthermore, steam from an existing boiler can be used as the supply steam, which has remarkable effects such as eliminating the need for extra equipment.

本発明は、上記した実施例にのみ限定されるものではな
く、その他の内燃機関に装備した憫給機等、要旨を逸脱
し々い範囲で適宜実施しうろことは勿論である。
It goes without saying that the present invention is not limited to the above-described embodiments, and may be implemented in other ways, such as a pump equipped with an internal combustion engine, without departing from the scope of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の排気タービン過給機を装備したディーゼ
ル機関の概略図、第2図は本発明による排気タービン過
給機の補助給気装置を備えたディーゼル機関の実施例を
示す概略図である。 1・・シリンダヘッド、2・・シリンダライナ、3・・
ピストン、4・・エンジン架構、5・・過給機タービン
、6・・ブロア、7・・空気伶却器、8・・掃気室、9
・・補助ブロア、】0・・排気口、11・・排気通路、
12・・掃気口、13・・フィルタ、I4・・蒸気吸込
みノズル、15・・蒸気管、16・・蒸気量制御弁 体1図
FIG. 1 is a schematic diagram of a diesel engine equipped with a conventional exhaust turbine supercharger, and FIG. 2 is a schematic diagram showing an embodiment of a diesel engine equipped with an auxiliary air supply device for an exhaust turbine turbocharger according to the present invention. be. 1...Cylinder head, 2...Cylinder liner, 3...
Piston, 4. Engine frame, 5. Supercharger turbine, 6. Blower, 7. Air blower, 8. Scavenging chamber, 9
・・Auxiliary blower,】0・・Exhaust port, 11・・Exhaust passage,
12...Scavenging port, 13...Filter, I4...Steam suction nozzle, 15...Steam pipe, 16...Steam amount control valve body 1 diagram

Claims (1)

【特許請求の範囲】[Claims] 機関の排気通路に設けたタービンに連結するブロアを駆
動して吸気過給する排気タービン過給機において、同過
給機のタービン側に蒸気吸込みノズルを設けるとともに
、吸込み蒸気の流量を制御する蒸気量制御弁を前記蒸気
吸込みノズルに連通ずる蒸気管に設けたことを特徴とす
る、排気タービン過給機の補助給気装置。
In an exhaust turbine supercharger that supercharges intake air by driving a blower connected to a turbine installed in the exhaust passage of the engine, a steam intake nozzle is provided on the turbine side of the supercharger, and a steam intake nozzle is provided on the turbine side of the supercharger to control the flow rate of intake steam. An auxiliary air supply device for an exhaust turbine supercharger, characterized in that a quantity control valve is provided in a steam pipe communicating with the steam suction nozzle.
JP58125575A 1983-07-12 1983-07-12 Auxiliary air supply device for exhaust turbo- supercharger Pending JPS6019917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58125575A JPS6019917A (en) 1983-07-12 1983-07-12 Auxiliary air supply device for exhaust turbo- supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58125575A JPS6019917A (en) 1983-07-12 1983-07-12 Auxiliary air supply device for exhaust turbo- supercharger

Publications (1)

Publication Number Publication Date
JPS6019917A true JPS6019917A (en) 1985-02-01

Family

ID=14913571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58125575A Pending JPS6019917A (en) 1983-07-12 1983-07-12 Auxiliary air supply device for exhaust turbo- supercharger

Country Status (1)

Country Link
JP (1) JPS6019917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135964A (en) * 2018-06-25 2020-12-25 日本发动机股份有限公司 Internal combustion engine for ship

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112135964A (en) * 2018-06-25 2020-12-25 日本发动机股份有限公司 Internal combustion engine for ship

Similar Documents

Publication Publication Date Title
US6182449B1 (en) Charge air systems for two-cycle internal combustion engines
US6029452A (en) Charge air systems for four-cycle internal combustion engines
US6141965A (en) Charge air systems for four-cycle internal combustion engines
JP2010151140A (en) Operation method for two-stroke reciprocation internal combustion engine
JPS6138328B2 (en)
JP2000500544A (en) Supercharged air system for a four-stroke internal combustion engine
JP2011064201A (en) Method for operating reciprocating internal combustion engine
JPH01100319A (en) Mechanical supercharger
JPH11247665A (en) Nitrogen oxides reducing structure of two cycle diesel engine
US4781028A (en) Turbocharged diesel engine
JPS6019917A (en) Auxiliary air supply device for exhaust turbo- supercharger
JPS60212621A (en) Supercharger of internal-combustion engine
JP7308326B2 (en) Large turbocharged 2-stroke internal combustion engine with EGR system
CN2256940Y (en) Scavenging system for two-stroke engine
JPS5857020A (en) Intake controller of internal-combustion engine
JPH0748984Y2 (en) Engine with turbocharger
KR19980041133A (en) Automobile engine supercharge controller
JPS6170138A (en) Supercharged gas engine with additional function of gas pressure booster
JPS5930179Y2 (en) supercharger
JPH0526050A (en) Control device for two-four cycle switching engine
JPS5856333Y2 (en) diesel engine
SU954586A1 (en) Method of operation of two-stroke ic engine
JPS62199925A (en) Combustion improving apparatus for diesel engine
JPS62199924A (en) Combustion improving apparatus for diesel engine
JPS5896129A (en) Two-cycle internal-combustion engine