JPS60196986A - Magnetoresistance element and manufacture thereof - Google Patents

Magnetoresistance element and manufacture thereof

Info

Publication number
JPS60196986A
JPS60196986A JP59053731A JP5373184A JPS60196986A JP S60196986 A JPS60196986 A JP S60196986A JP 59053731 A JP59053731 A JP 59053731A JP 5373184 A JP5373184 A JP 5373184A JP S60196986 A JPS60196986 A JP S60196986A
Authority
JP
Japan
Prior art keywords
film
nickel
thin film
thin
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59053731A
Other languages
Japanese (ja)
Inventor
Yasunobu Iwanaga
岩永 康暢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59053731A priority Critical patent/JPS60196986A/en
Publication of JPS60196986A publication Critical patent/JPS60196986A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To reduce the dispersion of electrical characteristics by forming a nickel-cobalt thin-film, a nickel-iron thin-film, a metallic electrode and a protective film shaped on the nickel-iron thin-film onto an insulating substrate. CONSTITUTION:An Ni-Co thin-film 11 is formed on an insulating substrate, and an Ni-Fe thin-film 12 is shaped on the thin-film 11. Au is evaporated onto the whole surface on the Ni-Fe thin-film 12, and an electrode 13 for bonding having a predetermined electrode shape is formed. SiO2 is attached onto the whole surface of the substrate as a protective film 14, and SiO2 is removed only in the electrode section 13. The whole is cut in prescribed size, a lead frame 18 is bonded, and the electrode 13 and the lead frame 18 are connected by a bonding wire 17. Lastly, a resin 19 for buffer coating is applied on the surface of a chip and dried, and sheathing consisting of a thermosetting resin 20 is executed. Since processes up to the formation of an Au film from the formation of the Ni-Co thin-film is executed in the same vacuum, processes are simplified.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は強磁性材料を用いた磁気抵抗素子に関する。[Detailed description of the invention] (Technical field to which the invention pertains) The present invention relates to a magnetoresistive element using a ferromagnetic material.

(従来技術) 磁気抵抗素子は半導体材料を使用したものと薄膜化した
強磁性材料を使用したものとの二種類がある。前者はホ
ール効果を利用したものでsb、磁気抵抗素子として機
能させる場合には500ガウス以上の磁界強度が必要で
ある。これに対し、後者の強磁性材料(Ni Peまた
はN 1−co等)を使用した磁気抵抗素子は磁界によ
シミ子のエネルギーバンドが変化することを利用してお
シ、半導体材料を使用したものよシ小さな磁界強度で機
能する。
(Prior Art) There are two types of magnetoresistive elements: those using semiconductor materials and those using thin ferromagnetic materials. The former uses the Hall effect and requires a magnetic field strength of 500 Gauss or more to function as a magnetoresistive element. On the other hand, the latter magnetoresistive element using ferromagnetic material (NiPe or N1-co, etc.) takes advantage of the fact that the energy band of the shimiko changes depending on the magnetic field. It works with extremely small magnetic field strengths.

第1図(a)〜(C)は強磁性材料を用いた従来の磁気
抵抗素子を示す断面図、斜視図および主要部断面図であ
る。これらの図面を参照して製造方法について説明する
。まず、ガラス板等の絶縁基板あるいはSi(シリコン
)基板5上に8i0.膜4を形成して絶縁基板上にNi
Co薄膜1を真空蒸着法によシ形成する。次に、フォト
エツチングにょシ所定のパターンに形成後、電極金屑と
してAU(金)膜を、Ne Co薄膜上に真空蒸着法ま
だはスパッタリング法により形成する。さらに、フォト
エツチング法によシボンディング用電極2を形成する。
FIGS. 1A to 1C are a cross-sectional view, a perspective view, and a cross-sectional view of a main part of a conventional magnetoresistive element using a ferromagnetic material. The manufacturing method will be explained with reference to these drawings. First, 8i0. Ni film 4 is formed on the insulating substrate.
A Co thin film 1 is formed by vacuum evaporation. Next, after forming a predetermined pattern by photo-etching, an AU (gold) film is formed as electrode gold scraps on the Ne Co thin film by vacuum evaporation or sputtering. Furthermore, a bonding electrode 2 is formed by a photoetching method.

次に、保護膜3として5i02をスパッタリング法によ
シ基板全面に付着せしめ、再匿、フォトエツチング法に
よシを極部2のみ5i02t−除去する。
Next, as a protective film 3, 5i02 is deposited on the entire surface of the substrate by sputtering, and then 5i02t is removed from only the extreme portions 2 by re-hiding and photo-etching.

さらに、所定寸法に切断後、リードフレーム7を接着し
、ボンディングワイヤー6にょシミ極2とリードフレー
ム7とを接続する。最後に、表面にバッファーコート用
樹脂8を塗布・乾燥後、トランスファーモールド法にょ
多熱硬化性樹脂9からなる外装が施される。このような
従来方法において、AUのエツチング液としてKI(ヨ
ウ化カリウム)+L(ヨウ素)+H20(水)溶液が使
用されるが、このエツチング液はNi Co膜も多少エ
ツチングすをため膜厚が薄くなるとともにその表面に反
応物を生成する。このため、各素子の電気特性にバラツ
キが生じるという欠点がある。
Furthermore, after cutting to a predetermined size, the lead frame 7 is bonded, and the bonding wire 6 connects the stain electrode 2 and the lead frame 7. Finally, after applying and drying the buffer coating resin 8 on the surface, an exterior made of a polythermosetting resin 9 is applied by transfer molding. In such a conventional method, a solution of KI (potassium iodide) + L (iodine) + H20 (water) is used as an etching solution for AU, but this etching solution also etches the NiCo film to some extent, so the film thickness is thin. At the same time, reactants are generated on the surface. Therefore, there is a drawback that variations occur in the electrical characteristics of each element.

(発明の目的) 本発明の目的は上述の欠点を除去した磁気抵抗素子およ
びその製造方法を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a magnetoresistive element and a manufacturing method thereof that eliminate the above-mentioned drawbacks.

(発明の構成) 本発明の磁気抵抗は、絶縁基板と、該基板上に形成され
たニッケルーコバルト薄膜と、該ニッケルーコバルト薄
膜上に形成されたニッケルー鉄薄膜と、該ニッケルー鉄
薄膜上の予め定めた部分に形成した金属電極と、少なく
とも該金属電極が露出するよう前記ニッケルー鉄薄膜上
に形成した保護膜とを備えている。
(Structure of the Invention) The magnetic resistance of the present invention includes an insulating substrate, a nickel-cobalt thin film formed on the substrate, a nickel-iron thin film formed on the nickel-cobalt thin film, and a nickel-iron thin film formed on the nickel-iron thin film. The device includes a metal electrode formed on a predetermined portion, and a protective film formed on the nickel-iron thin film so that at least the metal electrode is exposed.

また、本発明の磁気抵抗素子の製造方法は、絶縁基板上
に真空蒸着法またはスパッタリング法によシニッケルー
コバルト薄膜る形成する第1の工逼と、賦ニッケルーコ
バルト薄膜上に真空蒸着法またはスパッタリング法によ
シニッケルー鉄薄膜を形成する第2の工程と、該ニッケ
ルー鉄薄膜上に真空蒸着法またはスパッタリング法によ
シ金属膜を形成する第3の工程と、該金属膜の不要部分
をフォトエツチング法によシ除去する第4の工程と、該
第4の工程で除去された部分の少なくとも一部に保護膜
を形成する第5の工程とを含む。
The method for manufacturing a magnetoresistive element of the present invention includes a first step of forming a nickel-cobalt thin film on an insulating substrate by vacuum evaporation or sputtering, and a vacuum evaporation method on the nickel-cobalt thin film. Alternatively, a second step of forming a nickel-iron thin film by a sputtering method, a third step of forming a metal film on the nickel-iron thin film by a vacuum evaporation method or a sputtering method, and removing unnecessary portions of the metal film. It includes a fourth step of removing by photoetching, and a fifth step of forming a protective film on at least a portion of the portion removed in the fourth step.

(実施例) 次に本発明について図面を参照して詳細に説明する。(Example) Next, the present invention will be explained in detail with reference to the drawings.

第2図(a)〜(C)は本発明の詳細な説明するための
断面図、斜視図および主要部断面図である。絶縁基板と
しては、従来と同様に、ガラス板あるいはSi基板16
に8i02絶縁膜15を形成した平滑基板が使用される
。まず、この絶縁基板上にN1−C。
FIGS. 2(a) to 2(C) are a sectional view, a perspective view, and a sectional view of main parts for explaining the present invention in detail. As the insulating substrate, a glass plate or a Si substrate 16 is used as in the conventional case.
A smooth substrate on which an 8i02 insulating film 15 is formed is used. First, N1-C is placed on this insulating substrate.

薄膜11を真空蒸着法によシ〜xoooA程度の厚さに
形成し、このあと、このN1−C,薄膜11上にNi−
Fe薄膜12を真空蒸着法またはスパッタリング法で〜
2ooA程度の厚さに形成する。このときの基板温度は
300℃以上が必要である。
A thin film 11 is formed by vacuum evaporation to a thickness of about 1~xoooA, and then Ni-
Fe thin film 12 is formed by vacuum evaporation method or sputtering method.
It is formed to a thickness of about 2ooA. The substrate temperature at this time needs to be 300° C. or higher.

120℃以下基板冷却後、AUをNe−F、薄膜12上
全1面に蒸着し、次に、フォトエツチング法によシ所定
の電極形状のボンディング用電極13を形成する0仄に
、保護膜14としてi(io、 iスパッタリング法に
よシ基板全面に付崩せしめ、内庭、フォトエツチング法
によシミ極部13の享8 io、を除去する。さらに、
所定寸法に切断後、リードフレーム18を接着し、ボン
ディングワイヤー17によりt極13とリードフレーム
18とを接続する。最後に、チップ表面にバッファーコ
ート用樹脂19を塗布・乾燥後、トランスファーモール
ド法によ多熱硬化性樹脂20からなる外装を施す。
After cooling the substrate below 120° C., AU is deposited on the entire surface of the thin film 12 using Ne-F, and then a protective film is applied to form the bonding electrode 13 having a predetermined electrode shape by photo-etching. As step 14, the entire surface of the substrate is broken down using a sputtering method, and the inner layer and the stain pole portion 13 are removed using a photoetching method.Furthermore,
After cutting to a predetermined size, the lead frame 18 is bonded, and the t-pole 13 and the lead frame 18 are connected by a bonding wire 17. Finally, a buffer coating resin 19 is applied to the chip surface and dried, and then an exterior made of a polythermosetting resin 20 is applied by transfer molding.

本実施例で用いるNi Fe薄膜はAUのエツチング溶
液KI+1.+H,0によシエッチングされないため、
本発明の方法によりi造される各素子の電気的特性は全
て均一になる。また、本発明の方法では、Ni−Co薄
膜の形成からAU膜の形成までを同一真空中で行えるた
め、工程が簡単、となる゛。
The NiFe thin film used in this example was prepared using AU etching solution KI+1. Since it is not etched by +H,0,
The electrical characteristics of each element manufactured by the method of the present invention are all uniform. Furthermore, in the method of the present invention, the steps from forming the Ni--Co thin film to forming the AU film can be performed in the same vacuum, which simplifies the process.

(発明の効果) 以上、本発明には、簡単な製造工程で電気的特性のバラ
ツキが少ない磁気抵抗素子金製竜できるという効果がめ
る。
(Effects of the Invention) As described above, the present invention has the advantage that a gold magnetoresistive element with less variation in electrical characteristics can be produced through a simple manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ta)〜ic)はそれぞれ従来の熟気抵抗素子を
示す断面図、斜視図および主要部所面I71ならびに第
2図(a)〜ic)はそれぞれ本発明の一実施例を示す
断面図、斜視図および主−央部断面図で、らる。 図において、1・・・・・・Ni−C0薄腺、2・・・
・・・ボンディング用電極、3・・・・・・保姓膜、4
・・・・・5i02博膜、5・・・・・・Si基板、6
・・・・・・ボンディングワイヤー、710101、リ
ードフレーム、8゛−−−−°バッファー1−ト樹脂、
9・・・・・・熱鋏化性樹脂、11・・・・・・Ni 
C。 薄膜、12・・・・・・Ni−Fe薄膜、13・・・・
・・ボンディング用電極、14・・・・・・保護膜、1
5・・・・・・8i0z薄膜、16・・・・・・Si基
板、 17・パ・・・ボンディングワイヤー、18・・
・・・・リードフレーム、19・・・・・・バッファー
コート樹脂、20・・・・・・熱硬゛化性樹脂。 C山) 第1図 c山) 第2図
FIGS. 1(a) to ic) are sectional views, perspective views, and main parts I71 showing a conventional resistor element, and FIGS. 2(a) to ic) are sectional views showing an embodiment of the present invention, respectively. Figures, perspective views and main-center sectional views. In the figure, 1...Ni-C0 thin gland, 2...
... Bonding electrode, 3 ... Protection film, 4
...5i02 Hakumei, 5...Si substrate, 6
・・・・・・Bonding wire, 710101, lead frame, 8゛----° buffer 1-to resin,
9...Thermal scissors-forming resin, 11...Ni
C. Thin film, 12...Ni-Fe thin film, 13...
...Bonding electrode, 14...Protective film, 1
5...8i0z thin film, 16...Si substrate, 17.Pa...bonding wire, 18...
... Lead frame, 19 ... Buffer coat resin, 20 ... Thermosetting resin. Mt. C) Fig. 1 Mt. C) Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1) 絶縁基板と、該基板上に形成されたニッケルー
鉄薄膜)薄Uと、Uニッケルーコバルト薄膜上に形成さ
れたニッケルー鉄薄膜と、該ニッケルー鉄薄膜上の予め
定めた部分に形成した金属電極と、少なくとも該金属電
極が露出するよう前記ニッケルー鉄薄膜上に形成した保
護膜とを備えたことを特徴とする磁気抵抗素子。
(1) An insulating substrate, a nickel-iron thin film formed on the substrate) a thin U, a nickel-iron thin film formed on the U nickel-cobalt thin film, and a nickel-iron thin film formed on a predetermined portion of the nickel-iron thin film. A magnetoresistive element comprising a metal electrode and a protective film formed on the nickel-iron thin film so that at least the metal electrode is exposed.
(2) 絶縁基板上に真空蒸着法またはスパッタリング
法によシニッケルーコバルト薄膜を形成する第1の工程
と、該ニッケルーコバルト薄膜上に真空蒸着法またはス
パッタリング法によシニックルー鉄薄膜を形成する第2
の工程と、該ニッケルー鉄薄膜上に真壁蒸着法またはス
パッタリング法によシ金属膜を形成する第3の工程と、
該金属膜の不要部分゛をフォトエツチング法によシ除去
する第4の工程と、該第4の工程で除去された部分の少
なくとも一部に保護膜を形成する第5の工程とを含むこ
とを特徴とする磁気抵抗素子の製造方法。
(2) A first step of forming a cynickel-cobalt thin film on an insulating substrate by vacuum evaporation or sputtering, and forming a cynickel-iron thin film on the nickel-cobalt thin film by vacuum evaporation or sputtering. Second
a third step of forming a metal film on the nickel-iron thin film by a true wall evaporation method or a sputtering method;
A fourth step of removing unnecessary portions of the metal film by photoetching, and a fifth step of forming a protective film on at least part of the portions removed in the fourth step. A method for manufacturing a magnetoresistive element characterized by:
JP59053731A 1984-03-21 1984-03-21 Magnetoresistance element and manufacture thereof Pending JPS60196986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59053731A JPS60196986A (en) 1984-03-21 1984-03-21 Magnetoresistance element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59053731A JPS60196986A (en) 1984-03-21 1984-03-21 Magnetoresistance element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60196986A true JPS60196986A (en) 1985-10-05

Family

ID=12950971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59053731A Pending JPS60196986A (en) 1984-03-21 1984-03-21 Magnetoresistance element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60196986A (en)

Similar Documents

Publication Publication Date Title
JPH09129944A (en) Galvanomagnetic device
JPS60196986A (en) Magnetoresistance element and manufacture thereof
US20020160548A1 (en) Magnetoelectric transducer and method for producing the same
JP2610083B2 (en) Ferromagnetic magnetoresistive element
JP3264962B2 (en) Manufacturing method of magnetoelectric conversion element
JPS6029914A (en) Thin film head
JP2586680B2 (en) Magnetoresistive element and manufacturing method thereof
JPS5786124A (en) Magnetic resistance effect type magnetic head and its manufacture
JPS60263484A (en) Magnetoresistance element
JPH09214017A (en) Hall device
JPS6135976Y2 (en)
JPH0372949B2 (en)
JPH0224347B2 (en)
JP3715380B2 (en) Hall element
JPH09331088A (en) Hole element
JPS60143681A (en) Manufacture of electromagnetic conversion element
JP3085147B2 (en) Magnetoelectric conversion element
JPS5934681A (en) Hall element
JPH0287585A (en) Manufacture of ferromagnetic magnetoresistance element
JPS6037183A (en) Manufacture of magnetoelectric conversion element
JPH03219683A (en) Magnetoresistance element
JPS5917290A (en) Magnetic sensor
JPS63277947A (en) Torque sensor
JPS63187675A (en) Hall element
JPH09191140A (en) Hall element