JPS60195429A - Temperature detecting cable - Google Patents

Temperature detecting cable

Info

Publication number
JPS60195429A
JPS60195429A JP59050676A JP5067684A JPS60195429A JP S60195429 A JPS60195429 A JP S60195429A JP 59050676 A JP59050676 A JP 59050676A JP 5067684 A JP5067684 A JP 5067684A JP S60195429 A JPS60195429 A JP S60195429A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
shape memory
cable
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59050676A
Other languages
Japanese (ja)
Other versions
JPH0333214B2 (en
Inventor
Yoshinobu Kitayama
北山 佳延
Kyo Ichikawa
経 市川
Katsuhiko Kuroishi
黒石 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59050676A priority Critical patent/JPS60195429A/en
Publication of JPS60195429A publication Critical patent/JPS60195429A/en
Publication of JPH0333214B2 publication Critical patent/JPH0333214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/483Measuring temperature based on the expansion or contraction of a material the material being a solid using materials with a configuration memory, e.g. Ni-Ti alloys

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To detect a specified temp. along the longitudinal direction of a cable by bringing a shape memory alloy capable of giving the side pressure at a detecting temp. into contact with an optical fiber partially or perfectly. CONSTITUTION:The composn. of the shape memory alloy 1 such as Ti-Ni system is varied, and the martensite transformation starting temp. is set as the detecting temp. The alloy 1 is allowed to memorize so that it assumes e.g. linear state at the detecting temp. and wound on the optical fiber core wire 2. Light is then made incident from one side of the wire 2 to enable the monitoring of the back scattered light. If the detecting temp. is attained, the side pressure is applied to the core wire 2 by the alloy 1 and the transmission loss quantity at the part is increased. Consequently, said quantity is detected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は温度検知ケーブルに関する。更に詳しくは、あ
る特定の温度を長手方向に沿って検知するための温度検
知ケーブルに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to temperature sensing cables. More specifically, the present invention relates to a temperature detection cable for detecting a specific temperature along the longitudinal direction.

従来技術 光通信用の新媒体として開発された光ファイバは近年そ
の伝送損失が著しく改良され減少してきたことにより光
フアイバ自体を長光路干渉計として応用する方向が開か
れつつある。即ち、光ファイバをセンサそのものとして
利用しようとする動向がみられる。
BACKGROUND OF THE INVENTION Optical fibers, which have been developed as new media for optical communication, have been significantly improved and reduced in recent years in their transmission loss, which has opened up the possibility of applying the optical fibers themselves as long-path interferometers. That is, there is a trend toward using optical fibers as sensors themselves.

例えば、光ファイバを温度センサとして使用する方法と
して、光ファイバに光を入射し、その後方散乱光の距離
特性から光ファイバに沿った長手方向の温度変化に関す
る情報を得ることからなる方法が知られている。この方
法は更に、第1図に示すように後方散乱光強度の差から
温度情報を得る場合と、第2図に示すように後方散乱特
性の傾きに着目し、これから温度情報を得るという2つ
の方法に大別される。
For example, a known method of using an optical fiber as a temperature sensor consists of injecting light into the optical fiber and obtaining information about longitudinal temperature changes along the optical fiber from the distance characteristics of the backscattered light. ing. This method further has two methods: one is to obtain temperature information from the difference in backscattered light intensity, as shown in Figure 1, and the other is to obtain temperature information from the slope of the backscattering characteristics, as shown in Figure 2. It is broadly divided into methods.

前者の場合には光ファイバのコアとしては温度依存性の
高いレーリー散乱係数を有する材質が選ばれる。一方、
後者の場合には光フアイバ自体に温度に依存する側圧ま
たは曲げを強制的にりえて歪をもたせておき、光ファイ
バの伝送損失を部分的に増加させている。
In the former case, a material having a highly temperature-dependent Rayleigh scattering coefficient is selected for the core of the optical fiber. on the other hand,
In the latter case, the optical fiber itself is forcibly subjected to temperature-dependent lateral pressure or bending to cause strain, thereby partially increasing the transmission loss of the optical fiber.

また、Au−Cd合金について初めて見出されて以来、
最近「形状記憶合金」と呼ばれる興味ある挙動を示す合
金について種々の研究がなされ、各種応用開発が盛んに
なってきている。中でも可逆的に変形するいわゆる可逆
形状記憶効果を有するものが応用範囲が広く、特に疲労
強度が高いものが作られるようになっており、例えば1
01〜1()5回程度の形状記憶効果の繰り返しにも耐
え得るものが得られるようになってきている。
Furthermore, since the Au-Cd alloy was first discovered,
Recently, various studies have been conducted on alloys that exhibit interesting behavior called "shape memory alloys," and various applications are being developed. Among them, those with a so-called reversible shape memory effect that deform reversibly have a wide range of applications, and those with particularly high fatigue strength are being manufactured.For example, 1
It has become possible to obtain materials that can withstand the repetition of the shape memory effect about 5 times.

このような光ファイバ並びに形状記憶合金の最近の動向
に照らして、これらの特性を組合せる、−とにより、新
たな応用分野を開拓することは光ファイバ並びに形」大
記憶合金の両分野において極めて意義あることといえよ
う。
In light of recent trends in such optical fibers as well as shape memory alloys, it is extremely important to explore new fields of application by combining these properties in both the fields of optical fibers and shape memory alloys. It can be said that it is significant.

発明の目的 そこで、本発明の目的はある特定の温度をケーブルの長
手方向に沿って検知することを可能とする温度検知ケー
ブルを提供することにある。
OBJECTS OF THE INVENTION Therefore, an object of the present invention is to provide a temperature detection cable that allows a specific temperature to be detected along the length of the cable.

名yの構成 本発明者等は上記のような光ファイバをセンサそのもの
として利用しようとする動向並びに可逆的形状記憶効果
の繰り返しに対する耐疲労特性の優れた形状記憶合金の
開発に着目し、これらの新たな応用技術を開発すべく鋭
意検討した結果、光ファイバをこれに側圧が加わるよう
な形状を記憶させた形状記憶合金と組合せ、該側圧に基
づく光ファイバの伝送損失を検知することにより新規な
温度検知ケーブルを得ることができることを見出し、本
発明を完成した。
The present inventors focused on the trend of using optical fibers as sensors themselves as described above and the development of shape memory alloys with excellent fatigue resistance against repeated reversible shape memory effects. As a result of intensive study to develop a new application technology, we discovered a new technology by combining an optical fiber with a shape memory alloy that memorizes the shape of the optical fiber to which lateral pressure is applied, and detecting the transmission loss of the optical fiber based on the lateral pressure. It was discovered that a temperature detection cable can be obtained, and the present invention was completed.

即ち、本発明の温度検知ケーブルは、検知すべき温度に
おいて、部分的もしくは完全に接触している光ファイバ
に側圧を11えるような形状を記憶させた形状記憶合金
と、これと前記の如く接触している光ファイバとで構成
されていることを特徴とする。
That is, the temperature detection cable of the present invention makes contact with a shape memory alloy that has a shape that exerts a lateral pressure of 11 on the optical fiber that is partially or completely in contact with it at the temperature to be detected, as described above. It is characterized by being composed of optical fibers.

本発明の温度検知ケーブルを用いた検知方法は従来法に
関して前記した第2図の場合、即ち光ファイバに強制的
な側圧あるいは曲げをIJ、えて伝送損失を増大させる
ことからなる温度検知法に属するが、本発明では光フア
イバ自身に側圧あるいは曲げを与える代わりに、光ファ
イバをそのままとし、特定のM3点(マルテンサイト変
態開始温度)を有する形状記憶合金の変形により光ファ
イバに対する側圧を発生させているので光ファイバの長
手方向の局所的な温度変化でさえも検知可能であり、測
定精度も高くなる。
The detection method using the temperature detection cable of the present invention belongs to the case of FIG. 2 described above with respect to the conventional method, that is, the temperature detection method that involves applying forced lateral pressure or bending to the optical fiber to increase transmission loss. However, in the present invention, instead of applying lateral pressure or bending to the optical fiber itself, the optical fiber is left as it is, and lateral pressure is generated on the optical fiber by deforming a shape memory alloy having a specific M3 point (martensitic transformation start temperature). This makes it possible to detect even local temperature changes in the longitudinal direction of the optical fiber, and increases measurement accuracy.

本発明で使用する形状記憶合金としては、例えば、へg
−Cd系、Au−Cd系、Cu−^1−N1系、CII
−AIj−Zn系、Cu−Zn系、CLI−3n系、C
u−2n −X (X =S1、Sn、 AI、 Ga
)系、In−Tl系、Ni−^1系、Ti −Ni系、
Pe −Pt系、lie −Pd系各合金等従来公知の
各種のものを使用することができる。特に、現在実用化
が芹しくかつ人手容易であることからTi −Ni系お
よびCu −In−Al系合金を使用することが好まし
い。
Examples of the shape memory alloy used in the present invention include Heg
-Cd system, Au-Cd system, Cu-^1-N1 system, CII
-AIj-Zn series, Cu-Zn series, CLI-3n series, C
u-2n -X (X = S1, Sn, AI, Ga
) system, In-Tl system, Ni-^1 system, Ti-Ni system,
Various conventionally known alloys such as Pe--Pt alloys and lie--Pd alloys can be used. In particular, it is preferable to use Ti--Ni alloys and Cu--In--Al alloys because they are currently difficult to put into practical use and are easy to handle.

これら形状記憶合金はその組成を適当に変化させること
によりMs点即ちマルテンサイト変態開始温度を調節す
ることができる。例えば、上記Ni −T1系合金では
50〜100℃、Cu−Zn−Al系合金では一180
〜100℃の範囲でMsを変え得ることがわかっている
。従って、合金組成を適当に選び、Ms点を調節するこ
とによりかなり広い温度範囲に亘り、検知温度を設定す
ることが可能となる。
By appropriately changing the composition of these shape memory alloys, the Ms point, that is, the temperature at which martensitic transformation begins, can be adjusted. For example, the Ni-T1 alloy has a temperature of 50 to 100°C, and the Cu-Zn-Al alloy has a temperature of -180°C.
It has been found that Ms can be varied in the range of ~100°C. Therefore, by appropriately selecting the alloy composition and adjusting the Ms point, it is possible to set the detection temperature over a fairly wide temperature range.

更に、本発明の温度検知器において使用する光ファイバ
としては従来公知のいかなるものであってもよく、従っ
てシングルモード型もしくはマルチモード型でも、ステ
ップインデックス型もしくはグレートインデックス型で
あってもよい。
Furthermore, the optical fiber used in the temperature sensor of the present invention may be of any conventionally known type, and therefore may be of single mode or multimode type, step index type or great index type.

本発明の温度検知ケーブルの組立てに当たっては、まず
検知すべき温度において例えば直線状態をとるように形
状記憶合金に形状を記憶させ、これをルーノな状態で光
フアイバ心線の回りに巻き付けて完成される。
When assembling the temperature detection cable of the present invention, the shape memory alloy is first memorized so that it assumes a straight state at the temperature to be detected, and then this is wrapped around the optical fiber in a looped state to complete the process. Ru.

本発明の温度検知器ケーブルのとり得る構成は、上記の
ようにルーノな状態で心線に巻き付ける他に、位置精度
が余り要求されない場合には適当な間隔で不連続状に形
状記憶合金を心線に巻き付けた構成とすることも可能で
ある。
Possible configurations of the temperature sensor cable of the present invention include, in addition to winding the core wire in a looped state as described above, if positional accuracy is not required, shape memory alloy may be wound discontinuously at appropriate intervals. It is also possible to have a configuration in which it is wound around a wire.

形状記憶合金と光フアイバ心線とをこのような構成で組
合せることにより、被測定体の温度が検知温度でない場
合には、形状記憶合金は光ファイバに何隻影響をLj・
えず、むしろ外圧から心線としての光ファイバを保護す
る機能を果たすが、被測定温度が検知温度と一致した場
合には該形状記憶合金は記憶させた直線状態に戻ろうと
する結果、光ファイバに側圧を及ばずことになり、側圧
を受けた光ファイバはその部分において伝送損失量を増
大させる。この際、光ファイバに光が入射されていれば
、その後方散乱光をモニタすることにより第2図に示し
たように、検知温度(To)となった部分のみに段差を
生じ、この段差の位置から被検体の温度Toにある部分
の位置を推定することができる。
By combining the shape memory alloy and the optical fiber in this configuration, when the temperature of the object to be measured is not the detection temperature, the shape memory alloy has no effect on the optical fiber.
Rather, it functions to protect the optical fiber as a core from external pressure, but when the measured temperature matches the detected temperature, the shape memory alloy tries to return to the memorized straight state, and as a result, the optical fiber As a result, the optical fiber subjected to the lateral pressure increases the amount of transmission loss in that portion. At this time, if light is incident on the optical fiber, by monitoring the backscattered light, a step will be created only in the part where the detected temperature (To) is reached, as shown in Figure 2. From the position, the position of the part of the subject at the temperature To can be estimated.

尚、検知温度を異にする複数の上記の如き本発明の温度
検知ケーブルを組合せて使用し、被検体の温度分布を知
ることもできる。
It is also possible to use a combination of a plurality of temperature detection cables of the present invention having different detection temperatures to determine the temperature distribution of the subject.

更に、本発明の温度検知ケーブルは、これを収納するこ
とができ、スペーサの長手方向に沿ってその表面上に設
けられた溝を有するスペーサで支持し、この状態で使用
することもできる。
Further, the temperature detection cable of the present invention can be housed, supported by a spacer having a groove provided on its surface along the length of the spacer, and used in this state.

このようなスペーサを利用することにより、形状記憶合
金に検知温度にて螺旋形状をとるように形状記憶させ、
これを直線状態で前記スペーサの溝内に光ファイバと一
緒に収納することにより、被検体の温度が検知温度とな
った際に形状記憶合金を螺旋形状に変形させることがで
き。これによって光ファイバに側圧を与えるという構成
をとることも可能となる。
By using such a spacer, the shape memory alloy is made to memorize a spiral shape at the detected temperature,
By storing the shape memory alloy in a linear state together with the optical fiber in the groove of the spacer, the shape memory alloy can be deformed into a spiral shape when the temperature of the object reaches the detection temperature. This also makes it possible to adopt a configuration in which lateral pressure is applied to the optical fiber.

更に、スペーサに複数のケーブル収納用溝を形成し、夫
々の溝に検知温度の異なる温度検知ケーブルを1つ当て
収納することにより、複数の異なる温度を検知できる温
度検知ケーブルを肖る、1とも可能である。
Furthermore, by forming multiple cable storage grooves in the spacer and storing one temperature detection cable with a different detection temperature in each groove, a temperature detection cable that can detect multiple different temperatures is created. It is possible.

ス簿舅 以下、添付図面を参照しつつ記載する実施例により、本
発明を一層具体的に説明する。ただし、本発明の範囲は
これら実施例により何隻制限されない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be explained in more detail with reference to embodiments described with reference to the accompanying drawings. However, the scope of the present invention is not limited by these Examples.

第1図及び第2図は夫々光ファイバ長に対して後方散乱
光強度をプロットしたものである。第1図は温度センサ
として光フアイバ自身を使用し、光フアイバコア材とし
て温度依存性の高いレーリー散乱係数を有するものを使
用した場合の後方散乱光強度差の変動を示している。こ
のような構成の方法によれば一般的に後方散乱光強度は
光ファイバ長の増大に伴って直線的に巾調減少するが温
度変化があった場合には、例えば温度T、−T。
FIGS. 1 and 2 are plots of backscattered light intensity versus optical fiber length, respectively. FIG. 1 shows the variation in the backscattered light intensity difference when the optical fiber itself is used as the temperature sensor and an optical fiber core material having a Rayleigh scattering coefficient with high temperature dependence is used. According to a method with such a configuration, the backscattered light intensity generally decreases in width linearly as the optical fiber length increases, but when there is a temperature change, for example, the temperature T, -T.

なる変化に対応して後方散乱光強度に変動を生ずる。The backscattered light intensity varies in response to the change in the intensity of the backscattered light.

一方、第2図のような後方散乱光強度の挙動、即ぢ段差
の出現は、温度変化を圧力変化として検知する従来の方
法(強制的に光ファイバに温度に依存する側圧あるいは
曲げを与えた場合)および以下で説明する本発明の温度
検知ケーブルを使用した場合に相当する。
On the other hand, the behavior of the backscattered light intensity as shown in Figure 2, and the appearance of a step, are similar to the conventional method of detecting temperature changes as pressure changes (forcibly applying temperature-dependent lateral pressure or bending to the optical fiber). ) and the case where the temperature detection cable of the present invention described below is used.

第3図〜第5図は本発明の温度検知ケーブルの構成を説
明するだめの模式的な図である。まず、第3図では形状
記憶合金lに検知温度T。において直線状態を記憶させ
、次いでこれをルーズな状態で光フアイバ心線2上に巻
き付けた状態を示している。これは検知温度To以外の
温度に置かれた状態を示すものである。このような構成
にある温度検出ケーブルが検知温度Toの状態に置かれ
た場合には、第4図に示すように形状記憶合金lは記憶
させられた直線状態に戻ろうとして光ファイバに密に接
し側圧を及ぼす。光を入射しその後方散乱光をモニタす
れば第2図に示すように検知温度T。にさらされた部分
のみにおいて後方散乱光強度に段差を生じる。
FIGS. 3 to 5 are schematic diagrams for explaining the structure of the temperature detection cable of the present invention. First, in Fig. 3, the shape memory alloy l is at a detected temperature T. The straight state is memorized in , and then this state is shown in which it is loosely wound around the optical fiber core wire 2 . This indicates a state where the sensor is placed at a temperature other than the detected temperature To. When a temperature detection cable with such a configuration is placed at a detection temperature To, the shape memory alloy l tries to return to the memorized straight state and tightly wraps around the optical fiber, as shown in Figure 4. Apply tangential pressure. If light is incident and the backscattered light is monitored, the detected temperature is T as shown in FIG. A step difference occurs in the intensity of backscattered light only in the portion exposed to the irradiation.

更に第5図は第3図に示したと同様な形状記憶合金並び
に光ファイバを用いた別の態様を示ずL)のであり、こ
の態様では第3図及び第4図に示しされたと同様な形状
記憶合金合金ビが断続的に所定の間隔で光ファイバ2に
巻き付けられている。これは前述のように検知位置の精
度がさほど重要でない場合に利用できる。
Furthermore, FIG. 5 does not show another embodiment using the same shape memory alloy and optical fiber as shown in FIG. Memory alloy alloy B is intermittently wound around the optical fiber 2 at predetermined intervals. This can be used when the accuracy of the detected position is not so important as described above.

第6図及び第7図は本発明の温度検知ケーブルを、収納
用溝を有するスペーサに収納した状態を断面図で示した
ものである。第61ツ1では1〕記第3図並びに第5図
に示したような態様の温度検知ケーブル3がスペーサ4
にその長手方向に沿って設けられた溝5内に収納された
状態を示している。
FIGS. 6 and 7 are sectional views showing the temperature detection cable of the present invention housed in a spacer having a housing groove. In the 61st part 1, the temperature detection cable 3 as shown in Figure 3 and Figure 5 is connected to the spacer 4.
It is shown in a state where it is accommodated in a groove 5 provided along its longitudinal direction.

また、第7図では第6図と同様なスペー−IJ4の溝5
に直線状に形状記憶合金6と光ファイバ2とが収納され
ている。この態様では形状配子へ合金1と光ファイバ2
とが第3図及び第5図どけ異なった態様で組合されて温
度検知ケーブルを構成している。即ち、検知温度T +
1において螺旋形状を自するように形状を記憶させ、そ
の他の温度においては直線となるようにした形状記憶合
金を使用している。この形状記憶合金が検知温度T。に
置かれた場合には、記憶された螺旋形に戻ろうとして横
方向に占有空間を増大させるので、光ファイバに側圧が
かかるようになっている。
In addition, in FIG. 7, the groove 5 of the spacer IJ4 similar to that in FIG. 6 is shown.
A shape memory alloy 6 and an optical fiber 2 are housed in a straight line. In this embodiment, the alloy 1 and the optical fiber 2 are
are combined in different manners as shown in FIGS. 3 and 5 to constitute a temperature detection cable. That is, the detected temperature T +
A shape memory alloy is used which is made to memorize the shape so that it takes on a spiral shape at No. 1 and becomes a straight line at other temperatures. This shape memory alloy has a detection temperature T. When the optical fiber is placed in the helical shape, it attempts to return to the memorized helical shape and increases the space it occupies in the lateral direction, so that lateral pressure is applied to the optical fiber.

第6図および第7図に示した態様においては、スペーサ
4に設けられた複数の溝の各々に検知温度の異なる形状
記憶合金(6,〜6.)を夫々1個当て光ファイバ2と
組合せた別種の複数の温度検知ケーブルを挿入する態様
も可能である。
In the embodiments shown in FIGS. 6 and 7, one shape memory alloy (6, to 6.) having different detection temperatures is applied to each of the plurality of grooves provided in the spacer 4, and combined with the optical fiber 2. It is also possible to insert a plurality of different types of temperature detection cables.

発明の効果 本発明の形状記憶合金と光ファイバとを組合せた新規温
度検知ケーブルを使用すれば、従来の光ファイバのみに
よる温度検知法と比較して、光ファイバの長手方向にお
ける局所的な温度変化でさえも高精度で測定することが
できる。即ち、形状記憶合金はその組成を適当に調節し
てM5点を変化させることにより、広範な温度範囲で、
しかも特定の温度を確実に検知することが可能となるか
らである。
Effects of the Invention By using the new temperature detection cable that combines the shape memory alloy of the present invention and optical fiber, local temperature changes in the longitudinal direction of the optical fiber can be reduced compared to the conventional temperature detection method using only optical fiber. even can be measured with high precision. In other words, shape memory alloys can be used over a wide temperature range by appropriately adjusting their composition and changing the M5 point.
Moreover, it is possible to reliably detect a specific temperature.

2

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は光ファイバを利用した温度検知法に
おける後方散乱光強度を光ファイバの長さに対してプロ
ットしたグラフを示す図であり、第3図〜第5図は本発
明の温度検知ケーブルの構成並びに作用を説明するだめ
の図であり、第6図及び第7図は本発明の温度検知ケー
ブルを、スペーサの収納溝に収納した態様を示す断面図
である。 (主な参照番号) 1.1°、61〜63 ・・・形状記憶合金、2・・・
光ファイバ、 3・・・温度検知ケーブル、 4・・・スペーサ、 5・・・ケーブル収納用溝 特許出願人 住友電気工業株式会社 代 理 人 弁理士 新居 正彦 光7アイハ゛(し 第2図 第5図
FIGS. 1 and 2 are graphs showing backscattered light intensity plotted against the length of the optical fiber in a temperature detection method using an optical fiber, and FIGS. FIG. 6 is a diagram for explaining the structure and function of the temperature detection cable, and FIGS. 6 and 7 are cross-sectional views showing a mode in which the temperature detection cable of the present invention is stored in a storage groove of a spacer. (Main reference numbers) 1.1°, 61-63...shape memory alloy, 2...
Optical fiber, 3...Temperature detection cable, 4...Spacer, 5...Cable storage groove Patent applicant Sumitomo Electric Industries Co., Ltd. Representative Patent attorney Masahiko Arai figure

Claims (7)

【特許請求の範囲】[Claims] (1)部分的もしくは完全に接触している光ファイバに
、検知温度において側圧を5えることのできる形状を記
憶させた形状記憶合金と、これと前記の如く接触してい
る光ファイバとから構成される温度検知ケーブル。
(1) Consisting of a shape memory alloy that has a shape memorized that can apply lateral pressure at the detection temperature to the optical fiber that is partially or completely in contact with it, and the optical fiber that is in contact with this as described above. temperature sensing cable.
(2)前記形状記憶合金が検知温度において直線状態を
とるように形状記憶されており、これが光ファイバにゆ
るく巻き付けられていることを特徴とする特許請求の範
囲第1項記載のケーブル。
(2) The cable according to claim 1, wherein the shape memory alloy has a shape memorized so as to assume a linear state at the detection temperature, and is loosely wound around an optical fiber.
(3)前記形状記憶合金が不連続状に所定の間隔を置い
て光ファイバに巻き付けられていることを特徴とする特
許請求の範囲第2項記載のケーブル。
(3) The cable according to claim 2, wherein the shape memory alloy is discontinuously wound around an optical fiber at predetermined intervals.
(4)前記ケーブルが、その収納用溝を71するスペー
サ内に収納されていることを特徴とする特許請求の範囲
第1〜3項のいずれか1項に記載のケーブル。
(4) The cable according to any one of claims 1 to 3, wherein the cable is housed in a spacer that defines a housing groove 71.
(5)前記温度検知ケーブルが、検知温度において螺旋
形をとるように形iノ(記1.へさせた形状記憶合金合
金と、光ファイバとを直線状に並置した構成を有してい
ることを特徴とする特許請求の範囲第4項記載のケーブ
ル。
(5) The temperature detection cable has a configuration in which an optical fiber and a shape memory alloy formed into a helical shape at the detection temperature are arranged in a straight line. The cable according to claim 4, characterized in that:
(6)前記スペーサが複数のケーブル収納用溝を有して
おり、検知温度を異にする複数のケーブルを収納してい
ることを特徴とする特許請求の範囲第4項または第5項
記載のケーブル。
(6) The spacer has a plurality of cable storage grooves and stores a plurality of cables having different detection temperatures. cable.
(7)前記形状記憶合金がTi−Ni系およびC++ 
Zn^1系合金からなる群から選ばれることを特徴とす
る特許請求の範囲第1〜6項のいずれか1項記載のケー
ブル。
(7) The shape memory alloy is Ti-Ni based and C++
The cable according to any one of claims 1 to 6, characterized in that the cable is selected from the group consisting of Zn^1 alloys.
JP59050676A 1984-03-16 1984-03-16 Temperature detecting cable Granted JPS60195429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59050676A JPS60195429A (en) 1984-03-16 1984-03-16 Temperature detecting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59050676A JPS60195429A (en) 1984-03-16 1984-03-16 Temperature detecting cable

Publications (2)

Publication Number Publication Date
JPS60195429A true JPS60195429A (en) 1985-10-03
JPH0333214B2 JPH0333214B2 (en) 1991-05-16

Family

ID=12865537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59050676A Granted JPS60195429A (en) 1984-03-16 1984-03-16 Temperature detecting cable

Country Status (1)

Country Link
JP (1) JPS60195429A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221628A (en) * 1985-03-28 1986-10-02 Japan Steel & Tube Constr Co Ltd Temperature detecting device for disaster prevention system
JPH01285828A (en) * 1988-05-13 1989-11-16 Yazaki Corp Cable for detection of temperature
WO2010056353A3 (en) * 2008-11-17 2010-08-19 SensorTran, Inc High spatial resolution fiber optic temperature sensor
GB2509530A (en) * 2013-01-07 2014-07-09 Kidde Tech Inc Optical fiber temperature sensing system having a deformable shape memory alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966133B2 (en) * 2002-09-13 2007-08-29 株式会社デンソー Pump abnormality diagnosis device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090640U (en) * 1983-11-28 1985-06-21 古河電気工業株式会社 Optical composite cable for temperature detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090640U (en) * 1983-11-28 1985-06-21 古河電気工業株式会社 Optical composite cable for temperature detection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221628A (en) * 1985-03-28 1986-10-02 Japan Steel & Tube Constr Co Ltd Temperature detecting device for disaster prevention system
JPH01285828A (en) * 1988-05-13 1989-11-16 Yazaki Corp Cable for detection of temperature
WO2010056353A3 (en) * 2008-11-17 2010-08-19 SensorTran, Inc High spatial resolution fiber optic temperature sensor
GB2509530A (en) * 2013-01-07 2014-07-09 Kidde Tech Inc Optical fiber temperature sensing system having a deformable shape memory alloy
GB2509530B (en) * 2013-01-07 2015-11-11 Kidde Tech Inc Optical fibre distributed LHD with SMA element for discrete alarm
EP2752648A3 (en) * 2013-01-07 2017-08-23 Kidde Technologies, Inc. Optical fibre distributed temperature detector with SMA element with discrete alarm

Also Published As

Publication number Publication date
JPH0333214B2 (en) 1991-05-16

Similar Documents

Publication Publication Date Title
Cavaleiro et al. Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers
Patrick et al. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination
US8123400B2 (en) Multi-core fiber grating sensor
Carmo et al. Application of fiber Bragg gratings to wearable garments
CN207147667U (en) A kind of back-shaped strip sensor of carbon fiber prepreg encapsulation
US20180252556A1 (en) Distributed pressure, temperature, strain sensing cable
JPS60195429A (en) Temperature detecting cable
WO2014186908A1 (en) Multi-parameter optical sensor and method for optical sensor manufacturing
US5672008A (en) Reconfigurable multipoint temperature sensor
US5641955A (en) Reconfigurable birefringent fiber-optic sensor with shape-memory alloy elements
Kim et al. Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair
Cusano et al. Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors
CN110596837B (en) Stress-packaging-free temperature-sensing optical fiber cable and preparation method thereof
CN209820658U (en) FBG pressure sensing head based on temperature compensation
CN210572929U (en) Ultra-weak fiber grating optical cable for water temperature monitoring
US3487709A (en) Axially drivable member and method of making
CN210572930U (en) Temperature-sensing optical fiber cable free of stress packaging
Seo et al. In line plastic-optical-fiber temperature sensor
JPH0138506Y2 (en)
JPH0127071Y2 (en)
JPS6269131A (en) Optical fiber temperature sensor
Falate et al. Bending sensitivity dependent on the phase shift imprinted in long-period fibre gratings
JP2006029878A (en) Optical fiber for radiation sensor, and optical fiber type radiometer
KR101223105B1 (en) Multi-points Temperature Measuring Equipment by using Optical Fiber Censor
CN213902467U (en) Temperature and humidity sensor based on fiber bragg grating