JPS60195309A - Granulated slag waste heat recovery generating set - Google Patents

Granulated slag waste heat recovery generating set

Info

Publication number
JPS60195309A
JPS60195309A JP59051891A JP5189184A JPS60195309A JP S60195309 A JPS60195309 A JP S60195309A JP 59051891 A JP59051891 A JP 59051891A JP 5189184 A JP5189184 A JP 5189184A JP S60195309 A JPS60195309 A JP S60195309A
Authority
JP
Japan
Prior art keywords
cooling water
water
slag
hot water
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59051891A
Other languages
Japanese (ja)
Inventor
Fumio Koshio
小塩 文雄
Itsuo Umagoe
馬越 逸雄
Noriaki Nishi
紀昭 西
Yuichi Terada
雄一 寺田
Motonori Yamaguchi
山口 元紀
Hidemi Gotoda
後藤田 秀実
Shiro Hosoda
細田 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Kawasaki Motors Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Kawasaki Heavy Industries Ltd, Nippon Steel Corp, Nippon Steel Chemical Co Ltd, Kawasaki Jukogyo KK filed Critical Shin Etsu Chemical Co Ltd
Priority to JP59051891A priority Critical patent/JPS60195309A/en
Publication of JPS60195309A publication Critical patent/JPS60195309A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/032Separating slag from liquid, e.g. from water, after quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/066Receptacle features where the slag is treated
    • C21B2400/072Tanks to collect the slag, e.g. water tank
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To stabilize the transfer of heat energy in a gas with a heat medium as well as to generate power continuously in a stable state with an intermittent feed heat source by equalizing a temperature rise in cooling water. CONSTITUTION:Simultaneously with melting slag being led into a blow-making device 2 from a blast furnace 1, a cooling water regulating valve 16 is opened, and cooling water is fed to the blow-making device 2 according to quantity or discharge of the melting slag and an exhaust pattern. The cooling is heated and fed to a stirring tank 3 together with the slag, and when it reaches to a certain amount, a level switch 17 operates whereby a water granulating pump 4 stops any operation of the blow-making device 2 till slurry inside the stirring tank 3 comes to being below a certain level, and feeds the slurry to a dewatering bin 5. Here, the slag is taken out, and warm water is led into a receiving tank 12. This warm water flow is subject to intermittent variations but regulated to the warm water flow averaged, driving a warm water pump 18, while the cooling water heat-exchanged at a heat exchanger 13 for dichlorodifluoromethane is returned to the blow-making device 2 by way of a water feed pipe 11. The receiving tank 12 precipitates dust in the warm water.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、水砕スラグの排熱全利用する発電装置に関
するもので、さらにくわしくは、高炉からの溶融スラグ
全吹製装置で冷却したのち、攪拌槽から脱水槽に導いて
スラグを回収する水砕スラグ処理設備における温水の保
有熱を利用して発電全行う発電装置に関するものである
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a power generation device that makes full use of the exhaust heat of granulated slag, and more specifically relates to a power generation device that makes full use of the exhaust heat of granulated slag, and more specifically, after cooling the molten slag from a blast furnace with a full blowing device. This invention relates to a power generation device that generates electricity entirely by utilizing the heat retained in hot water in a granulated slag treatment facility that collects slag by guiding it from a stirring tank to a dehydration tank.

(従来技術) か\る技術分野における従来技術としては、たとえば特
願昭!j−/3073に号(特開昭67−.563θ/
号)の「水砕スラグ製造過程における発電方法」がある
。いまこの先願技術をその明細書の記載に基いて簡単に
説明すると、高炉等から排出した溶融スラグを該溶融ス
ラグに冷却水を噴射する吹製手段によって冷却破砕し、
この吹製過程で冷却水が高温度となった温水を利用して
、この温水とフロン類等の熱媒体との間に熱交換を行な
わせ、この熱交換によって高温高圧となった上記熱媒体
をタービンに噴射し、発電機を駆動して発電させること
に%徴とするもので、それKよって系内を循環する温水
を冷却するための負担は著しく低減され、従来は廃熱と
して大気中に放出されていた熱エネルギーを電力として
有効に回収できる点と相俟って、該電力によって水砕ス
ラグ製造設備で消費される電力をまかなうことができ、
水砕スラグの製造コストを大巾に低減することができる
などの効果が得られるとするものである。
(Prior art) As a conventional technology in this technical field, for example, Tokugansho! No. j-/3073 (JP-A-67-.563θ/
``Method of generating electricity in the granulated slag manufacturing process'' Now, to briefly explain this prior art based on the description of the specification, molten slag discharged from a blast furnace or the like is cooled and crushed by blowing means that injects cooling water to the molten slag,
Using the hot water whose cooling water has reached a high temperature in this blowing process, heat exchange is performed between this hot water and a heat medium such as fluorocarbons, and the heat medium becomes high temperature and high pressure due to this heat exchange. The system is designed to inject K into a turbine and drive a generator to generate electricity, thereby significantly reducing the burden of cooling the hot water circulating within the system, which was previously released into the atmosphere as waste heat. Coupled with the fact that the thermal energy that would have been released in
It is said that effects such as being able to significantly reduce the manufacturing cost of granulated slag can be obtained.

(従来技術の問題点) しかし、上記の従来技術は、従来は廃熱として大気中に
放出されていた温水の保有エネルギーを、フロン類など
t熱媒体としてフロンタービンなどを駆動することによ
ってこれを電力として回収することが可能でsb、これ
を実施すれば省エネルギー化に貢献する。ところが大で
あるという原則論を開示するもので6って、実施上の構
成、および実施上の操作などに関して間隙するところが
なく、とくに本方法全高炉などの水砕スラグ処理設備に
適用する場合に問題となる次の諸点について、なんら示
唆するところがない。
(Problems with the prior art) However, the above-mentioned prior art utilizes the retained energy of hot water, which was conventionally released into the atmosphere as waste heat, by using it as a heat medium such as fluorocarbons to drive a fluorocarbon turbine. It is possible to recover it as electricity sb, and if this is implemented, it will contribute to energy conservation. However, it discloses the principle theory that is very important6, and there is no gap in terms of practical configuration and practical operation, especially when this method is applied to granulated slag processing equipment such as a full blast furnace. There is no suggestion whatsoever regarding the following points.

すなわちオ/の問題点として、高炉などの水砕スラグの
排熱を利用する場合、排熱の発生は間欠的であシ、連続
的でない点があげられる。
In other words, the problem with O/ is that when exhaust heat from granulated slag from a blast furnace is used, the generation of exhaust heat is intermittent and not continuous.

このため、上記従来技術を単純に該処理設備に適用しよ
うとしても、熱媒体としてのフロン類などとの熱交換が
均一に行われず、タービン躯動用の動力源としての利用
が不可能である。また、オノの問題点として、該先願公
報に示されるような装置では、水砕スラグの冷却水圧含
まれるダスト、の完全除去は望まれず、上記二つの問題
点を技術的に解決しない限り、先願技術の提示するアイ
デアを実施に移すことはきわめて困雌である。
For this reason, even if the above-mentioned conventional technology is simply applied to the processing equipment, heat exchange with fluorocarbons or the like as a heat medium cannot be performed uniformly, making it impossible to use the equipment as a power source for a turbine. Furthermore, as a problem, it is not desirable to completely remove the dust contained in the cooling water pressure of the granulated slag with the device shown in the earlier application publication, and unless the above two problems are technically solved, It is extremely difficult to implement the ideas proposed by the prior art.

(本発明の目的) 本発明は、上記従来装置の問題点を解決するためfcな
されたもので、水砕スラグの排熱全利用して発゛1を行
なう発電装置に対し、冷却水の温度上昇を均一化して熱
媒体との間の熱エネルギーの授受ヲ簀定的に行わしめ、
もって間欠的の供給熱源を用いて連続的かつ安定的な発
電全実施することのできる発電装置を提供することを目
的とするものである。
(Objective of the present invention) The present invention has been developed in order to solve the problems of the conventional device described above. Uniformizes the rise and uniformly transfers thermal energy to and from the heat medium,
The object of the present invention is to provide a power generation device that can perform continuous and stable power generation using an intermittent heat source.

(目的達成のための手段) 本発明は上記目的達成のための手段として、高炉から排
出した溶融スラグを水で急冷して水砕化する装置におい
て、急冷した水砕スラグを分離した後の温水を冷却塔で
冷却するまでの温水管路の途中から温水を取9出して該
温水を貯留するだめの受入貯槽を設け、受入貯槽から連
続的に取り出される温水を導入することにより発生せし
めたフロン蒸気によって駆動される発電用タービンをそ
なえる水砕スラグ排熱利用発電装置において、吹製装置
への冷却水の供給流量を高炉からの溶融スラグの量に応
じて流量調itすることができあるいはあらかじめ決め
られた溶融スラグの排出パターンに合わせて流量を変化
させることができる冷却水調整弁を吹製装置に循環して
送給される冷却水の送水管に介設したこと全特徴とし、
あるいは溶融スラグの排出時に対応して交互に操業する
二基以上の吹製装置をそなえる水砕スラグ処理設備のそ
れぞれの吹製装置に対して冷却水VJ佐用兼流推調整用
の弁を各吹製装置に分岐する冷却水送水管のそれぞれに
介設し、操業中の吹製装置に対してのみ冷却水t−供給
するとともに供給冷却水の量の調整を高炉の溶融スラグ
の排出時における吹製装置の選択2よび溶融スラグの排
出量あるいは排出パターンと連動せしめた構成よシなる
(Means for Achieving the Object) As a means for achieving the above object, the present invention provides an apparatus for quenching molten slag discharged from a blast furnace with water to granulate it. CFCs are generated by taking hot water from the middle of the hot water pipeline until it is cooled in a cooling tower, installing a receiving storage tank to store the hot water, and introducing the hot water that is continuously taken out from the receiving storage tank. In a granulated slag waste heat power generation system equipped with a power generation turbine driven by steam, the flow rate of cooling water supplied to the blowing device can be adjusted or adjusted in advance according to the amount of molten slag from the blast furnace. The main feature is that a cooling water regulating valve that can change the flow rate according to the determined molten slag discharge pattern is installed in the cooling water pipe that circulates and supplies the blowing equipment.
Or, for each blowing device of a granulated slag treatment facility equipped with two or more blowing devices that operate alternately in response to the discharge of molten slag, install a cooling water VJ control valve and a flow thrust adjustment valve for each blowing device. The system is installed in each of the cooling water water pipes that branch to the blast furnace, and supplies cooling water only to the blowing equipment in operation. The configuration is linked to the selection of the manufacturing equipment 2 and the discharge amount or discharge pattern of molten slag.

(実施例の説明) つぎに本発明装置の一実施例を図面に基いて以下に詳細
に説明する。本例では吹製装置が2基の場合の例を示す
。高炉lからの溶融スラグは、吹製装置2(または21
)で冷却水によって急冷され、粒化して水砕スラグとな
ったのち、攪拌槽3(またはJ’)K入り、ここから水
砕ボンプダ(またはシ“)Kて脱水槽jに送られ、こ\
で水砕スラグは搬出装置(図示せず)によって取り出さ
れ、冷却水はシックナー6t−通って温水槽7に入れら
れ、ポンプににて冷却塔?VC導かれ、放熱後給水ポン
プ/θにて冷却水送水管//′Jk経て再び吹製装置2
(または2“)に戻され、このようにして循環使用され
る。/2は受入貯槽で、脱水槽Sを出た冷却水が貯蔵さ
れるところである。受入貯41172内に貯留された温
水は、温水ポンプ/gKより、連続的に取り出されてフ
ロン熱交換器/3に導かれ、フロン管路27との間で熱
交換を行ったのち、冷却水戻し管路2にを経て戻される
。受入貯槽/2の底部には、ダストの除去が未だ充分で
ない冷却水中のダストが滞留するよう圧され、これをド
レンポンプ2/によって再び脱水槽Sに注入するダスト
除去ライン管路2りが設けられる。フロン熱交換器/3
で熱ズ侯したフロン蒸気は、フロンポンプ〃によりフロ
ン循環管路、27ヲ循環してフロンタービン/グに入り
、動力を発生して発電機/jt−駆動し、発電する。/
りはフロン凝縮器である。
(Description of Embodiment) Next, an embodiment of the apparatus of the present invention will be described in detail below based on the drawings. This example shows an example in which there are two blowing devices. The molten slag from the blast furnace 1 is transferred to the blowing device 2 (or 21
), the slag is quenched with cooling water, granulated and becomes granulated slag, then enters a stirring tank 3 (or J')K, from where it is sent to a dehydration tank \
The granulated slag is taken out by a transport device (not shown), and the cooling water passes through a thickener 6t into a hot water tank 7, and is sent to a cooling tower by a pump. VC is led, and after heat dissipation, the water supply pump / θ cooled water supply pipe / / ' Jk and then back to the blowing device 2
(or 2") and is recycled in this way. /2 is a receiving storage tank, where the cooling water that has left the dehydration tank S is stored. The hot water stored in the receiving storage 41172 is , the hot water pump/gK continuously takes out the water, guides it to the fluorocarbon heat exchanger/3, exchanges heat with the fluorocarbon pipe line 27, and then returns it to the cooling water return pipe 2. A dust removal line conduit 2 is provided at the bottom of the receiving storage tank/2, which is pressurized so that dust in the cooling water whose dust has not been sufficiently removed remains and is injected into the dehydration tank S again by the drain pump 2/. Freon heat exchanger/3
The heated fluorocarbon vapor is circulated through the fluorocarbon circulation pipe 27 by the fluorocarbon pump and enters the fluorocarbon turbine, where it generates power and drives the generator to generate electricity. /
This is a Freon condenser.

/6(および/6°)は、冷却水送水管//と吹製装置
2(および2’)との間に介設した冷却水A整弁であり
、/7(および77′)はレベルスイッチで、攪拌槽3
(および3゛)に設けられ、水砕ポンプ4t(および1
ll)の憚動金制御する。また、受入貯槽/2にはレベ
ルスイッチLが付設され、それKよって冷却水戻し管路
Jの枝管30に介設されたメイクアップ弁23ヲ制御す
る。2’lは余剰蒸気管で、導入管Jによって受入貯伽
/2内に導かれ、その途中に制御弁26が介設される。
/6 (and /6°) is the cooling water A regulating valve installed between the cooling water water pipe // and blowing device 2 (and 2'), /7 (and 77') is the level control valve With a switch, stirring tank 3
(and 3゛), and a fracking pump 4t (and 1
ll) control the amount of money. Further, a level switch L is attached to the receiving storage tank /2, which controls a make-up valve 23 interposed in a branch pipe 30 of the cooling water return pipe J. Reference numeral 2'l denotes a surplus steam pipe, which is guided into the receiving tank/2 by an introduction pipe J, and a control valve 26 is interposed in the middle thereof.

つぎに本発明装置の作用につき、同じく上記実施例によ
って説明する。高炉/から溶融スラグが吹製装置2に導
かれるのと同時に冷却水調整弁16が開きはじめ、溶融
スラグの量に応じ、または排出量あるいは排出パターン
に応じて冷却水が吹製装置2に導かれる。冷却水は加熱
されてスラグと共に攪拌′4vi 3に導かれる。攪拌
槽3に貯留した温水とスラグとの混合水(以後スラリー
と称す)Fi、ある量に達するとレベルスイッチ/7が
働らき、水砕ポンプlIヲ稼動させ、つづいて吹製装置
2の稼動が停止して攪拌槽3に貯留されたスラリーkが
あるレベル以下となるまで水砕ポンプダは稼動を続ける
・この間、冷却水調整弁/6“、吹製装置ll 2’ 
、攪拌槽3°、および水砕ポンプ4tlは、吹製装置2
1に溶融スラグが導かれるまで停止状mt−保つ。
Next, the operation of the device of the present invention will be explained using the above embodiments. At the same time as the molten slag is introduced into the blowing device 2 from the blast furnace, the cooling water regulating valve 16 begins to open, and cooling water is introduced into the blowing device 2 according to the amount of molten slag, the discharge amount, or the discharge pattern. It will be destroyed. The cooling water is heated and led together with the slag to the agitator '4vi3. When the mixed water (hereinafter referred to as slurry) of hot water and slag stored in the stirring tank 3 reaches a certain amount, the level switch /7 is activated, the granulation pump II is activated, and the blowing device 2 is activated. The granulation pumper continues to operate until the slurry k stored in the agitation tank 3 stops and the slurry k stored in the stirring tank 3 falls below a certain level. During this time, the cooling water adjustment valve / 6", the blowing device ll 2'
, stirring tank 3°, and granulation pump 4tl are blowing device 2.
1. Hold the molten slag at a standstill until the molten slag is introduced.

水砕ボンプグで送水された上記スラリーは脱水槽svc
導かれ、スラグは製品スラグとして別に取り出され、一
方濾過された温水は受入貯槽/2に導かれる。受入貯槽
/2に導かれる温水流量には変動があり、間欠的である
。この温水量の時間的変化を積分し、平均した温水流量
となるようあらかじめ調整された流盆のもとて温水ポン
プ/ざが駆動される。フロン熱交換器/3に供給されて
熱交換したらとの冷却水は、冷却水戻し管路2gにより
シックナー6の手前に戻される。
The above slurry sent through the granulated water pump is sent to the dewatering tank SVC.
The slag is removed separately as product slag, while the filtered hot water is directed to receiving tank/2. The flow rate of hot water introduced into the receiving tank/2 varies and is intermittent. The hot water pump is driven based on a flow basin that is pre-adjusted to provide an average hot water flow rate by integrating the temporal change in the amount of hot water. The cooling water supplied to the fluorocarbon heat exchanger/3 and subjected to heat exchange is returned to the front of the thickener 6 through the cooling water return pipe 2g.

そのあと温水はシックナー6、温水槽7を通り、ポンプ
gt−経て冷却塔2をバイパスし、給水ポンプ/θによ
り再び溶融スラグの冷却水として冷却水送水管//f通
り、吹製装置f2へ戻される。フロン熱交換器/3で熱
交換したフロン蒸気は、フロンタービン/グで仕事をし
、フロン凝縮器/9で液化されたあとフロンポンプ〃で
ふた\びフロン熱交換器/3に導かれるいわゆるランキ
ンサイクルを組み、発電機/jによる先電に用いられる
After that, the hot water passes through the thickener 6 and the hot water tank 7, passes through the pump gt-, bypasses the cooling tower 2, and is again used as cooling water for the molten slag by the water supply pump /θ to the cooling water supply pipe //f and to the blowing device f2. be returned. The fluorocarbon vapor heat-exchanged in the fluorocarbon heat exchanger/3 performs work in the fluorocarbon turbine/g, is liquefied in the fluorocarbon condenser/9, and is then led to the lid/fluorocarbon heat exchanger/3 by the fluorocarbon pump. A Rankine cycle is constructed and used for first power generation by generator /j.

受入貯槽/2は、温水中に残存する微細なダスト全沈殿
させ、これをドレンポンプ2/により、温水とともに再
び脱水槽Sに導くダスト除去ライン29を設け、間欠的
に、または微少量全連続的に循環させる。このようにし
て、フロン熱交換器/3に導かれるおそれのある微少な
ダストが完全に自動的に排除される。
The receiving storage tank /2 is equipped with a dust removal line 29 that completely precipitates the fine dust remaining in the hot water and leads it to the dewatering tank S again together with the hot water by the drain pump 2/, and the dust removal line 29 is installed intermittently or in small amounts completely continuously. circulate it. In this way, minute dust that could be introduced into the Freon heat exchanger/3 is completely automatically eliminated.

温水ポンプ/との流量と、脱水槽jから受入貯槽/2に
導かれる温水量との間に、長時間の間に差異が生じた場
合のことを考慮し、受入貯槽12の温水量があるレベル
以下となると、レベルスイッチ〃が働らき、上限レベル
になるまで温水のメイクアップ弁23が働らき、温水ポ
ンプ/とが支障なく稼動できるよう圧しである。
The amount of hot water in the receiving tank 12 is set in consideration of the case where a difference occurs over a long period of time between the flow rate with the hot water pump/2 and the amount of hot water led from the dehydration tank j to the receiving tank 12. When the temperature falls below this level, the level switch is activated, and the hot water make-up valve 23 is activated until the upper limit level is reached, so that the hot water pump can operate without any trouble.

以上が代表的水砕スラグ装置システムにおける排熱発電
の7例であるが、この他水砕ポンプ、脱水槽を用いない
システムにおいては、温水の取出口をシステムに合わせ
て設置する。
The above are seven examples of waste heat power generation in typical granulated slag equipment systems, but in other systems that do not use a granulated slag pump or dehydration tank, a hot water outlet is installed in accordance with the system.

また、たとえは余剰蒸気などのように、他の工場排熱の
熱源がろる場合K、図示のように余剰蒸気の配管2グを
導入管、お゛によって受入水槽/!へ導入することを可
能に装置しておくと、きわめて経済的である。なお、こ
の場合は、受入針ia/2内で温水が沸騰することを避
けるため・貯槽内の温水温度を検出し、それKよって排
熱源の入口に設けた制御弁26を調節するように装置す
ることが望ましい。上記のような受入貯@/2を設ける
ことKよって、間欠的に生成される温水を連続的K、且
つ清浄化された加熱流体として利用し発電することがで
きるとともに、他の余剰蒸気がある場合には、これも合
せて発電能力源として有効−利用することができるもの
である。
In addition, if there is no other heat source for factory waste heat, such as surplus steam, the surplus steam is introduced into the 2-g pipe as shown in the figure, and is received by the receiving water tank/! It is extremely economical to have a device that can be introduced into the system. In this case, in order to prevent the hot water from boiling inside the receiving needle IA/2, a device is installed to detect the temperature of the hot water in the storage tank and adjust the control valve 26 provided at the inlet of the exhaust heat source accordingly. It is desirable to do so. By providing the above-mentioned receiving storage @/2, the intermittently generated hot water can be continuously used as a purified heating fluid to generate electricity, and there is also other surplus steam. In some cases, this can also be effectively used as a power generating capacity source.

一例として、高炉生産量lθ、θθθ%、スラグ発生量
3.θθθ4の製鉄グランドにおける排熱全利用しての
フロンタービン発電による年平均回収電力は、 発電端出力・・・・・j、グ00xw(補機動カ全除く
)送電端出力・・・・・グ、に!;0KVIである。
As an example, blast furnace production volume lθ, θθθ%, slag generation amount 3. The annual average recovered power from front turbine power generation using all the exhaust heat in the steelmaking ground at θθθ4 is: Generating end output...j, g00xw (excluding all auxiliary motors) Transmitting end output... g , to! ;0KVI.

なお、この場合の路数値は次の通りである・フロン熱交
換器入口温水温度 = 27°C温水流量 =2,70
0強 冷却水温度 : /に、38C(年平均)冷却水量 =
6.θθθ1 (発明の効果) 本発明装置は以上のように構成され、脱水設備から出た
温水を貯留するための受入貯槽および吹製装置への適量
の冷却水を供給する冷却水調整弁を設け、あるいは二基
以上の吹製装置を備えるものに対しては、上記受入貯槽
を設けるほか、さらに各吹製装置へ冷却水を供給する送
水管の途中圧それぞれ冷却水調整弁を設けて操業中の吹
製装置に対してのみ適量の冷却水を供給するように装置
したので、冷却水の温度上昇全均一化して熱媒体との間
の熱エネルギーの授受を安定的に行わしめ、もって間欠
的の供給熱源を用いて安定した状態のもとに連続して発
電をすることが可能となり、従来装置では到底望み得な
いすぐれた効果を発揮するものである。
In addition, the path values in this case are as follows: Freon heat exchanger inlet hot water temperature = 27°C Hot water flow rate = 2,70
0+ Cooling water temperature: 38C (annual average) Cooling water amount =
6. θθθ1 (Effects of the Invention) The device of the present invention is constructed as described above, and includes a receiving storage tank for storing hot water discharged from the dewatering equipment and a cooling water regulating valve that supplies an appropriate amount of cooling water to the blowing equipment. Alternatively, for equipment equipped with two or more blowing devices, in addition to providing the above-mentioned receiving storage tank, a cooling water regulating valve may be installed in the middle of the water pipe that supplies cooling water to each blowing device to control the pressure during operation. Since the device is designed to supply an appropriate amount of cooling water only to the blowing equipment, the temperature rise of the cooling water is completely uniformized, and thermal energy is stably exchanged with the heat medium, thereby eliminating intermittent problems. It becomes possible to continuously generate electricity in a stable state using a supplied heat source, and it exhibits excellent effects that could not be expected with conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明装置の一実施例の配置系統図である。 /・・・高炉、2.2’・・・吹製装置、 3.31・
・・攪拌槽、9.4t+・・・水砕ポンプ、S・・・脱
水槽、6・・・シックナー、7・・・温水槽、に・・・
ポンプ、?・・・冷却塔、/θ・・・給水ポンプ、l/
・・・冷却水送水管、/2・・・受入貯槽、/3・・・
フロン熱交換器、/グ・・・フロンタービン、7.5・
・・発電機、/l、、/6’・・・冷却水調整弁、/7
./7’ ・・・攪拌槽レベルスイッチ、II・・・温
水ポンプ、/P・・・70ン凝mN、21)・・・フロ
ンポンプ、2/・・・ドレンポンプ、。υ・・・レベル
スイッチ、23・・・温水メイクアップ弁、2グ・・・
余剰蒸気管、Jl・・導入管、26・・・制御弁、〃・
・・フロン管路、d・・・冷却水戻し管路、29・・・
ダスト除去ライン管路、3θ・・・枝管・ 出願人 新日本製鉄株式会社 ・−1ぐ、/− 第1頁の続き @発明者 寺1)雄− @発明者山口 元紀 O発明者 後藤1)秀実 @発明者細1)史朗 北九州市へ幡東区枝光1丁目1番1号 新日本製鉄株式
会社八幡製鉄所内 中間市中間通谷37−61 神戸市中央区東用崎町3丁目1番1号 川崎重工業株式
会社神戸工場内 神戸市中央区東用崎町3丁目1番1号 川崎重工業株式
会社神戸工場内
The drawing is a layout diagram of an embodiment of the device of the present invention. /...Blast furnace, 2.2'...Blowing equipment, 3.31.
... Stirring tank, 9.4t+... Granulation pump, S... Dehydration tank, 6... Thickener, 7... Hot water tank,...
pump,? ...Cooling tower, /θ...Water pump, l/
...Cooling water pipe, /2...Reception storage tank, /3...
Freon heat exchanger, /G... Freon turbine, 7.5.
... Generator, /l,, /6'... Cooling water adjustment valve, /7
.. /7'...Stirring tank level switch, II...Hot water pump, /P...70 mN condensation, 21)...Freon pump, 2/...Drain pump. υ...Level switch, 23...Hot water makeup valve, 2g...
Surplus steam pipe, Jl...introduction pipe, 26...control valve,
... Freon pipe, d... Cooling water return pipe, 29...
Dust removal line conduit, 3θ...branch pipe Applicant: Nippon Steel Corporation・-1gu,/- Continued from page 1 @ Inventor: Tera 1) Yu- @ Inventor: Motonori Yamaguchi O Inventor: Goto 1 ) Hidemi @ Inventor Details 1) Shiro To Kitakyushu City 1-1-1 Edamitsu, Hato-ku Nippon Steel Co., Ltd. Yawata Works 37-61 Nakadoriya, Nakama City 3-1 Higashiyosaki-cho, Chuo-ku, Kobe City No. 1 Kawasaki Heavy Industries, Ltd. Kobe Factory 3-1-1 Higashiyosaki-cho, Chuo-ku, Kobe City Kawasaki Heavy Industries, Ltd. Kobe Factory

Claims (1)

【特許請求の範囲】[Claims] (1)高炉から排出した溶融スラグを水で急冷して水砕
化する装置において、急冷した水砕スラグを分離した後
の温水を取り出し温水を貯留するための受入貯槽を設け
、受入貯槽から連続的に取9出される温水を導入するこ
とにより発生せしめたフロン蒸気によって駆動される発
電用タービンをそなえる水砕スラグ排熱利用発電装置に
おいて、吹製装置への冷却水の供給流量を高炉からの溶
融スラグの量に応じて流量調整をすることができあるい
はあらかじめ決められた溶融スラグの排出パターンに合
わせて流量を変化させることができる冷却水調整弁を吹
製装置に循環して送給される冷却水の送水管に介設した
ことヲ脣徴とする水砕スラグ排熱利用発電装置。 (乃 溶融スラグの排出時に対応して交互に操業する二
基以上の吹製装置をそなえる水砕スラグ処理設備のそれ
ぞれの吹製装置に対して冷却水切替用兼流量調整用の弁
を各吹製装置に分岐する冷却水送水管のそれぞれ罠介設
し、操業中の吹製装置に対してのみ冷却水を供給すると
ともに供給冷却水の量の調整を閤炉の溶融スラグの排出
時における吹製装置の選択および溶融スラグの排出量お
るいは排出パターンと連動せしめた特許請求の範四オ(
1)項記載の水砕スラグ排熱利用発電装置。
(1) In a device that quenches molten slag discharged from a blast furnace with water to granulate it, a receiving storage tank is provided to take out hot water after separating the quenched granulated slag and store the hot water, and a receiving storage tank is installed to continuously flow from the receiving storage tank. In a power generation system using granulated slag waste heat, which is equipped with a power generation turbine driven by fluorocarbon steam generated by introducing hot water extracted from The cooling water is circulated through the blowing equipment through a cooling water regulating valve that can adjust the flow rate according to the amount of molten slag or change the flow rate according to a predetermined molten slag discharge pattern. A power generation device that uses waste heat from granulated slag because it is installed in a cooling water pipe. (No. In a granulated slag treatment facility equipped with two or more blowing devices that operate alternately in response to the discharge of molten slag, a valve for switching cooling water and adjusting the flow rate shall be installed for each blowing device. A trap is installed in each of the cooling water water pipes that branch to the blowing equipment, and cooling water is supplied only to the blowing equipment in operation, and the amount of supplied cooling water can be adjusted by controlling the blowing water pipes when discharging molten slag from the furnace. Claim 4O(
The power generation device using granulated slag exhaust heat as described in item 1).
JP59051891A 1984-03-16 1984-03-16 Granulated slag waste heat recovery generating set Pending JPS60195309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59051891A JPS60195309A (en) 1984-03-16 1984-03-16 Granulated slag waste heat recovery generating set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59051891A JPS60195309A (en) 1984-03-16 1984-03-16 Granulated slag waste heat recovery generating set

Publications (1)

Publication Number Publication Date
JPS60195309A true JPS60195309A (en) 1985-10-03

Family

ID=12899503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051891A Pending JPS60195309A (en) 1984-03-16 1984-03-16 Granulated slag waste heat recovery generating set

Country Status (1)

Country Link
JP (1) JPS60195309A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533557A (en) * 2014-11-19 2015-04-22 鞍山钢铁集团公司矿渣开发公司 Method for generating electricity through recovering metallurgical slag afterheat
KR20160147889A (en) 2014-06-23 2016-12-23 가부시키가이샤 아이에이치아이 Water-granulated-slag manufacturing device and water-granulated-slag manufacturing method
WO2020135660A1 (en) * 2018-12-27 2020-07-02 中冶京诚工程技术有限公司 Environmentally friendly and energy-saving blast furnace slag intelligent treatment system
CN111378798A (en) * 2020-05-20 2020-07-07 南京华电节能环保设备有限公司 High-temperature slag waste heat recovery device
CN111549189A (en) * 2020-05-07 2020-08-18 南京华电节能环保设备有限公司 High-efficiency recycling device for waste heat of high-temperature molten slag
CN114057371A (en) * 2020-07-31 2022-02-18 宝山钢铁股份有限公司 Sludge drying treatment method based on particle heat source
WO2022118187A1 (en) * 2020-12-02 2022-06-09 White Black Slag Technology S.R.L. An improved cooling apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755391A (en) * 1980-09-22 1982-04-02 Nippon Steel Corp Recovery of heat of molten slag
JPS5755301A (en) * 1980-09-22 1982-04-02 Rasa Corp Power generation method in granulated slag production process
JPS5740611B2 (en) * 1972-10-11 1982-08-28

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740611B2 (en) * 1972-10-11 1982-08-28
JPS5755391A (en) * 1980-09-22 1982-04-02 Nippon Steel Corp Recovery of heat of molten slag
JPS5755301A (en) * 1980-09-22 1982-04-02 Rasa Corp Power generation method in granulated slag production process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147889A (en) 2014-06-23 2016-12-23 가부시키가이샤 아이에이치아이 Water-granulated-slag manufacturing device and water-granulated-slag manufacturing method
CN104533557A (en) * 2014-11-19 2015-04-22 鞍山钢铁集团公司矿渣开发公司 Method for generating electricity through recovering metallurgical slag afterheat
WO2020135660A1 (en) * 2018-12-27 2020-07-02 中冶京诚工程技术有限公司 Environmentally friendly and energy-saving blast furnace slag intelligent treatment system
CN111549189A (en) * 2020-05-07 2020-08-18 南京华电节能环保设备有限公司 High-efficiency recycling device for waste heat of high-temperature molten slag
CN111378798A (en) * 2020-05-20 2020-07-07 南京华电节能环保设备有限公司 High-temperature slag waste heat recovery device
CN114057371A (en) * 2020-07-31 2022-02-18 宝山钢铁股份有限公司 Sludge drying treatment method based on particle heat source
CN114057371B (en) * 2020-07-31 2023-11-14 宝山钢铁股份有限公司 Sludge drying treatment method based on particle heat source
WO2022118187A1 (en) * 2020-12-02 2022-06-09 White Black Slag Technology S.R.L. An improved cooling apparatus

Similar Documents

Publication Publication Date Title
CN103981306B (en) The waste heat recycle method of blast furnace slag water quenching granulation and device
JPS60195309A (en) Granulated slag waste heat recovery generating set
CN106536419A (en) Waste heat water purifier and cooling system
WO2021204609A1 (en) Process for the supercritical oxidation of sewage sludge and other waste streams
US11767249B2 (en) Method and system for treatment of organic waste
CN103993109A (en) Blast furnace slag waste heat recovery system and recovering control method for blast furnace slag waste heat recovery system
KR100391562B1 (en) Steam production system using molten slag sensible heat
CN106643230B (en) A kind of heat-exchange device for sludge carbonization technique
CN206616128U (en) A kind of Treatment of Sludge heat-exchange system
CN104696946A (en) Process and process system for steam exhaust liquid heat energy recovery and desalted water recovery
KR101682897B1 (en) A potable water feeding apparatus for ship using waste heat from cooling water and a potable water feeding method therewith
CN104654015B (en) A kind of multistage matching powering device and technique
CN203960236U (en) Blast furnace slag residual neat recovering system
CN220288259U (en) Device for cooling and waste heat recovery of high-temperature pellets of rotary hearth furnace
CN218455216U (en) Water replenishing system of high-pressure deaerator for utilizing waste heat of hot backwater contained in back pressure machine
CN217877171U (en) Calcium carbide production waste heat recovery system
CN206158808U (en) Utilize slag to have device of pressing heat steam electric power that vexed process is produced
CN116772593A (en) Device and method for cooling and waste heat recovery of high-temperature pellets of rotary hearth furnace
CN217031143U (en) Complete equipment of heat conduction oil waste heat conversion steam system
CN106746438A (en) A kind of Treatment of Sludge heat-exchange system
JP2842186B2 (en) Heat recovery equipment for cooler for hot granular mass and heat recovery method
JPS5770182A (en) Heat recovery from coke oven gas
JPS5594405A (en) Waste heat recovery apparatus of slag
JPS5523803A (en) Cooling and heating apparatus
SU1537356A1 (en) Method of regulating temperature of working walls of mould for continuous casting of blanks