JPS60195043A - Steel fiber for concrete reinforcement - Google Patents

Steel fiber for concrete reinforcement

Info

Publication number
JPS60195043A
JPS60195043A JP4965184A JP4965184A JPS60195043A JP S60195043 A JPS60195043 A JP S60195043A JP 4965184 A JP4965184 A JP 4965184A JP 4965184 A JP4965184 A JP 4965184A JP S60195043 A JPS60195043 A JP S60195043A
Authority
JP
Japan
Prior art keywords
steel fiber
concrete
steel
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4965184A
Other languages
Japanese (ja)
Inventor
亀井 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4965184A priority Critical patent/JPS60195043A/en
Publication of JPS60195043A publication Critical patent/JPS60195043A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はコンクリートの強度を補強する目的で混入す
る鋼繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to steel fibers mixed in for the purpose of reinforcing the strength of concrete.

(従来技術) 古来から土壁に麦藁を入れて補強する例がみられたよう
に、ここ数年来材料を複合化させて使用する技術が台頭
し始め、従来の個々の材料には全くなかったような新し
い特性を持つ利料、所謂複合材料が多く現れてきている
(Conventional technology) Just as there have been examples of reinforcing clay walls by adding straw to them since ancient times, in recent years the technology of using composite materials has begun to emerge, which was completely absent from conventional individual materials. Many materials, so-called composite materials, with new characteristics such as these are appearing.

そこで、土木建築材料として用−いられる安価で多くの
長所をもつ反面、脆くてひび割れし易いと言う宿命的な
欠陥のあるコンクリートに対しても、直径0.4〜0.
6鶴程度で短尺なm繊維を容積百分率で1〜2%程度(
重量で80〜160kg / rd )を混入させるこ
とによって引張り強度の高い極めて靭性に富んだ鋼繊維
補強コンクリート(以下、補強コンクリ−1・という)
が得られることが判明し、この補強コンクリートも本格
的実用化の段階に入ってきており、鋼繊維の製造技術、
施工技術、並びに用途開発等では多くの研究開発が行わ
れている。
Therefore, concrete with a diameter of 0.4 to 0.0 mm is used as a civil engineering and construction material, and although it is cheap and has many advantages, it also has the fatal flaw of being brittle and prone to cracking.
The volume percentage of short m-fibers of about 6 cranes is about 1 to 2% (
Steel fiber-reinforced concrete (hereinafter referred to as reinforced concrete 1) that has high tensile strength and extremely toughness by incorporating
It has been found that this reinforced concrete can be obtained, and this reinforced concrete has entered the stage of full-scale practical use, and the manufacturing technology of steel fibers,
Much research and development is being conducted on construction technology and application development.

ところで、実際の作業で上記の容積比をもとに、コンク
リートに対し混入すべき鋼繊維の使用量を換算すると、
コンクリート単位容量(I11?)当たりに混入すべき
鋼繊維は80〜160 kgにも達し、実際のコンクリ
ート打ち込みには大量のex織繊維必要とする。
By the way, when converting the amount of steel fiber to be mixed into concrete based on the above volume ratio in actual work, it is as follows:
The amount of steel fibers to be mixed per unit volume of concrete (I11?) reaches 80 to 160 kg, and a large amount of EX-woven fibers is required for actual concrete pouring.

さて、プレストレスを入れない通常のコンクリートにお
ける補強用絹繊維の役割は、先づコンリフリートと付着
した上でコンクリートに作用する荷重を分担し、コンク
リートのひび割れを発生しに<<シ、且つコンクリート
が破壊しにくくなることを目的としている。
Now, the role of reinforcing silk fibers in ordinary concrete that is not prestressed is to first adhere to the concrete and then share the load acting on the concrete, preventing cracks in the concrete and preventing concrete from forming. The purpose is to make it difficult to destroy.

この目的を達成せんとする場合、鋼繊維としては、その
引張強度特性、及びコンクリートとの付着特性を充分に
発揮させ、ひいては高性能、且つ安価となる鋼繊維を得
るためには、鋼繊維の引張強度特性とコンクリートとの
f=J着特性とがバランスしていることが必要である。
In order to achieve this purpose, steel fibers must be used in order to fully demonstrate their tensile strength characteristics and adhesion characteristics with concrete, and to obtain steel fibers that have high performance and are inexpensive. It is necessary that the tensile strength characteristics and f=J adhesion characteristics with concrete are balanced.

今、鋼繊維に引張力が作用すると、理論的には次式で説
明される。
Now, when a tensile force is applied to steel fibers, it is theoretically explained by the following equation.

、f−7上 ここに、d:鋼繊維直径 I:鋼繊維の長さ τ:鋼繊維とコンクリートとの付着 強度 σf:鋼繊維の引張強度 尚、上式のτとσfは鋼繊維の持つ物性値であり、その
値によっては上式は不等式となる。
, f-7, where, d: Steel fiber diameter I: Steel fiber length τ: Adhesive strength between steel fiber and concrete σf: Tensile strength of steel fiber In addition, τ and σf in the above equation are the values possessed by the steel fiber. It is a physical property value, and depending on the value, the above equation becomes an inequality.

然して、上式が不等式となるのは次の2通りであり、各
々wim繊維特性を充分に発揮しないこととなる。
However, the above equation becomes an inequality in the following two ways, and the wim fiber properties are not fully exhibited in each case.

(a)付着強度が過大な場合 となる場合であり、補強コンクリートに荷重が作用した
時、鋼繊維の引張強度が小さいため付着特性を充分に発
揮させない内に鋼繊維が切断してしまい、耐力が急速に
低下する。
(a) This is a case where the adhesive strength is excessive, and when a load is applied to the reinforced concrete, the steel fibers break before they can fully demonstrate their adhesive properties because the tensile strength of the steel fibers is small, and the yield strength decreases rapidly.

(b) 付着強度が過小な場合 となる場合であり、補強コンクリートに荷重が作用した
時、鋼繊維の付着強度が小さいため、鋼繊維の引張強度
を充分に発揮させない内に鋼繊維がコンクリートから引
抜けてしまうため、補強コンクリートの耐方向上がない
。 −従来技術に於いては、m繊維の引張強度σfは、
m繊維の製法や鋼種から定まる値に対して、鋼繊維の付
着強度τを考慮していないため、上記の(a)、及び(
b)の状態を呈していた。
(b) This is a case where the adhesive strength is too low, and when a load is applied to the reinforced concrete, the adhesive strength of the steel fibers is small, so the steel fibers separate from the concrete before the tensile strength of the steel fibers is fully exerted. Since it pulls out, there is no improvement in the direction resistance of the reinforced concrete. - In the prior art, the tensile strength σf of m fibers is
Since the adhesion strength τ of the steel fiber is not taken into account for the value determined from the manufacturing method and steel type of the m-fiber, the above (a) and (
The patient was exhibiting the condition b).

(発明の目的) この発明は、鋼tdh維を製造する際の異形加工に於い
て、特に鋼繊維の引張強度と付着特性のバランスのとれ
た鋼繊維を提供することを目的とし、ひいては高性能に
して安価な鋼繊維を提供しようとするものである。
(Object of the Invention) The purpose of the present invention is to provide a steel fiber with a well-balanced tensile strength and adhesion properties, particularly in the process of shaping steel TDH fibers, and to achieve high performance. The aim is to provide inexpensive steel fibers.

(発明の背景) さて、伸線切断法に於ける異形加工を施した鋼繊維を用
いて、鋼繊維引張強度と付着特性の最適組合わせを選定
するに当たり、多数の鋼繊維供試品を作り、該鋼繊維の
異形加工率を変化させて実験したところ、鋼繊維の支圧
面積係数が0.0042〜0.025の範囲である場合
、鋼繊維の引張強度の低下もなく、この引張強度に見合
った付着特性が得られた。
(Background of the Invention) In order to select the optimal combination of steel fiber tensile strength and adhesion properties using steel fibers that have been subjected to deformation processing using the wire drawing and cutting method, a large number of steel fiber samples were prepared. An experiment was conducted by changing the deformation processing rate of the steel fibers, and it was found that when the bearing area coefficient of the steel fibers was in the range of 0.0042 to 0.025, there was no decrease in the tensile strength of the steel fibers, and this tensile strength Adhesion characteristics commensurate with that were obtained.

この結果、鋼繊維によって補強された補強コンクリート
の曲げ強度も曲げ靭性係数(タフネス)も共に、大きな
値となり、上記範囲の鋼繊維とすることにより最も高性
能となる補強コンクリートが得られることを見出したも
のである。
As a result, the flexural strength and flexural toughness coefficient (toughness) of reinforced concrete reinforced with steel fibers were both large values, and it was discovered that reinforced concrete with the highest performance could be obtained by using steel fibers within the above range. It is something that

(実施例) 以下、この発明の具体的実施例を図面を参照しながら具
体的に説明する。
(Embodiments) Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

第1図は伸線切断法によって得られた鋼繊維の斜視図、
第2図は第1図a−a線、並びにb−b線に於ける拡大
断面図である。
Figure 1 is a perspective view of steel fiber obtained by wire drawing cutting method.
FIG. 2 is an enlarged sectional view taken along lines aa and b-b in FIG. 1.

図において、■は基体部、2は異形部を示す。In the figure, ■ indicates the base portion, and 2 indicates the irregularly shaped portion.

基体部1、及び異形部2は交互に現れ、w1繊維全長を
β、直径をd、基体部1と異形部2が交互に現れるピッ
チをPで示す。
The base portion 1 and the irregularly shaped portion 2 appear alternately, the total length of the w1 fiber is denoted by β, the diameter is denoted by d, and the pitch at which the base portion 1 and the irregularly shaped portion 2 alternately appear is denoted by P.

鋼繊維のコンクリート中からの引抜けに対する抵抗性(
−コンクリートとの付着特性)は、第2図に示すように
鋼繊維の断面に於ける張出面積(SOや、51.52 
)と、この張出部が軸線上に何回現れるかによって影響
される。
Resistance to pull-out of steel fibers from concrete (
- adhesion characteristics with concrete) is determined by the overhang area (SO, 51.52
) and how many times this overhang appears on the axis.

張出面積には張出面積を基円断面積で除した張出面積比
率を用い、ピッチ間隔には1ピツチ長を用い、無次元と
なる支圧面積係数を以下の如く定める。
For the overhang area, the overhang area ratio obtained by dividing the overhang area by the cross-sectional area of the base circle is used, and for the pitch interval, one pitch length is used, and the dimensionless bearing pressure area coefficient is determined as follows.

即ち、支圧面積係数とは、1ピンチの円筒表面積光たり
の支圧面積の比率として算出される。
That is, the bearing pressure area coefficient is calculated as the ratio of the bearing pressure area per one pinch of cylindrical surface area.

つまり、支圧面積係数B、Aは、次のようにしてめられ
る。
That is, the bearing pressure area coefficients B and A can be determined as follows.

g、A = −ξバコーi(−ξ→二iJラノ4)−−
2x(St+ Sz )1)XLcl pXLcj SO= s+ +52=d+−dt X 4 d’=(
会〜か×(αl−α7) 刀− 1sO=s1+s2= (α〜α)×−d1α=10%
〜α=20%が張出面積比率の最1適範囲 ’P=4d〜12d・・・1ピツチ長の最適範囲Jム=
 ”−= 00042 424 第3図はこの発明の鋼繊維の持つ特性の範囲を決める特
性図であり、供試品の実験結果よりしてめたもので、図
中の斜線範囲をこの発明の鋼繊維とする。
g, A = −ξ Bako i (−ξ → 2 i J Rano 4) --
2x(St+ Sz)1) XLcl pXLcj SO= s+ +52=d+-dt X 4 d'=(
Kai~ka×(αl−α7) Sword−1sO=s1+s2= (α〜α)×−d1α=10%
~ α = 20% is the optimum range of overhang area ratio'P = 4d to 12d...optimum range of 1 pitch length Jm =
”-= 00042 424 Figure 3 is a characteristic diagram that determines the range of properties of the steel fiber of this invention, which was drawn from the experimental results of sample products. Fiber.

第4図a、bは曲げ強度、並びに靭性(タフネス)を示
す特性図である。
FIGS. 4a and 4b are characteristic diagrams showing bending strength and toughness.

尚、この発明の実施に当たって、鋼繊維は軸線方向に直
状をなし、また引張強度は100〜140kg/lIf
、鋼繊維直径は0.3〜1.01111の範囲にあるこ
とが最適である。
In carrying out this invention, the steel fibers are straight in the axial direction, and the tensile strength is 100 to 140 kg/lIf.
, the steel fiber diameter is optimally in the range of 0.3 to 1.01111.

(効 果) この発明に於いては、伸線切断法によって得られる鋼繊
維を、異形加工によってその引張強度特性とコンクリー
トとの付着特性とがバランスするように、wi繊細に於
いて、その基体部と異形部とが交互に現れる1ピンチの
円筒表面積光たりの支圧面積の比率として算出される支
圧面積係数の最適範囲をめたものであって、この発明の
mW維をコンクリートに混入することによって、コンク
リートと付着した上で、鋼繊維の持つ引張り強度特性、
コンクリートとの付着特性を充分に発揮させ、ひいては
高性能且つ安価となる補強コンクリートを提示するもの
で、鋼繊維にめられる要求を最大に発揮する優れた作用
効果を奏する。
(Effects) In this invention, the steel fiber obtained by the wire drawing cutting method is shaped into a substrate in a delicate manner so that its tensile strength characteristics and adhesion characteristics with concrete are balanced by shaping. The objective is to find the optimum range of the bearing area coefficient, which is calculated as the ratio of the bearing area of one pinch of cylindrical surface area and the irregularly shaped part, in which parts and irregularly shaped parts appear alternately. By doing this, the tensile strength characteristics of steel fibers are improved after adhering to concrete.
The present invention provides reinforced concrete that fully exhibits adhesion characteristics with concrete and is high-performance and inexpensive, and exhibits excellent functions and effects that maximize the requirements placed on steel fibers.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示すもので、第1図は鋼繊維
の斜視図、第2図a、bは第1図a−a線、及びb−b
線に於ける拡大断面図、第3図は張出面積比率−ピッチ
長−支圧面積係数の関係の概略図、第4図a、bは鋼繊
維の曲げ強度、並びに曲げ靭性の関係を示す特性図であ
る。 1・・・基体部、2・・・異形部。
The drawings show an embodiment of the present invention, and FIG. 1 is a perspective view of a steel fiber, and FIG. 2 a and b are lines a-a and b-b in FIG.
Fig. 3 is a schematic diagram of the relationship between overhang area ratio - pitch length - bearing area coefficient; Fig. 4 a and b show the relationship between bending strength and bending toughness of steel fibers. It is a characteristic diagram. 1... Base part, 2... Irregularly shaped part.

Claims (1)

【特許請求の範囲】 (11基体部及び異形部が交互に連続し、且つ軸線方向
に直状に形成したコンクリート補強用鋼繊維において、
支圧面積係数を0.0042〜0.025の範囲に設定
したことを特徴とするコンクリート補強用鋼繊維。 (2)前記鋼繊維の引張強度は100〜140 kg/
即2の範囲にあることを特徴とする特許請求の範囲第1
項記載のコンクリート補強用鋼繊維。 (3)前記鋼繊維の直径は0.3〜1.0龍、長さが1
5〜80flの範囲にあることを特徴とする特許請求の
範囲第1項記載のコンクリート補強用鋼繊維。
[Claims] (11) A steel fiber for reinforcing concrete in which base portions and irregularly shaped portions are alternately continuous and formed straight in the axial direction,
A steel fiber for reinforcing concrete, characterized in that the bearing area coefficient is set in the range of 0.0042 to 0.025. (2) The tensile strength of the steel fiber is 100 to 140 kg/
Claim 1 characterized in that it falls within the scope of 2.
Steel fibers for concrete reinforcement as described in . (3) The diameter of the steel fiber is 0.3 to 1.0, and the length is 1.
The steel fiber for reinforcing concrete according to claim 1, characterized in that the steel fiber is in the range of 5 to 80 fl.
JP4965184A 1984-03-14 1984-03-14 Steel fiber for concrete reinforcement Pending JPS60195043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4965184A JPS60195043A (en) 1984-03-14 1984-03-14 Steel fiber for concrete reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4965184A JPS60195043A (en) 1984-03-14 1984-03-14 Steel fiber for concrete reinforcement

Publications (1)

Publication Number Publication Date
JPS60195043A true JPS60195043A (en) 1985-10-03

Family

ID=12837094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4965184A Pending JPS60195043A (en) 1984-03-14 1984-03-14 Steel fiber for concrete reinforcement

Country Status (1)

Country Link
JP (1) JPS60195043A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311554A (en) * 1986-06-30 1988-01-19 株式会社神戸製鋼所 Steel fiber for reinforcing concrete
JPH053597U (en) * 1991-02-12 1993-01-19 新日軽株式会社 Right angle connecting device for round pipe materials and gate using the same device
JP2002154852A (en) * 2000-11-14 2002-05-28 Taiheiyo Cement Corp Metallic fiber for reinforcing cementitious hardened body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181439A (en) * 1982-04-16 1983-10-24 Yoshitomo Tezuka Steel fiber for reinforcing concrete and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181439A (en) * 1982-04-16 1983-10-24 Yoshitomo Tezuka Steel fiber for reinforcing concrete and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311554A (en) * 1986-06-30 1988-01-19 株式会社神戸製鋼所 Steel fiber for reinforcing concrete
JPH0550459B2 (en) * 1986-06-30 1993-07-29 Kobe Steel Ltd
JPH053597U (en) * 1991-02-12 1993-01-19 新日軽株式会社 Right angle connecting device for round pipe materials and gate using the same device
JP2002154852A (en) * 2000-11-14 2002-05-28 Taiheiyo Cement Corp Metallic fiber for reinforcing cementitious hardened body

Similar Documents

Publication Publication Date Title
JP2004504485A5 (en)
US4600661A (en) Composite material with carbon reinforcing fibers and magnesium alloy matrix including zinc
JPS6287466A (en) High tenacity ceramic base composite material one-body bonded with metal fiber to ceramic matrix
JPS60195043A (en) Steel fiber for concrete reinforcement
CN101724795B (en) Method for improving strength and plasticity of whisker reinforced pure aluminium-based composite material
US4999256A (en) Microstructurally toughened metal matrix composite article
US4808485A (en) Microstructurally toughened metal matrix composite article and method of making same
JPH01272738A (en) Corrosion-resistant and wear-resistant alloy
Cooper The work-to-fracture of brittle-fibre ductile-matrix composites
JPH06510714A (en) Directional graphite pultrusion rod and its manufacturing method
DE3586162T2 (en) SHAFTED REINFORCEMENT WIRE.
JP2003002708A (en) Steel fiber for concrete reinforcement
JP3185349B2 (en) Overhead transmission line
CN218372993U (en) Composite structure type fiber of polypropylene-coated steel fiber core column
JPS59127753A (en) Composite material having excellent high-temperature characteristic
JPS60235751A (en) Steel fiber for concrete reinforcement
EP0236729B1 (en) Composite material including silicon nitride whisker type short fiber reinforcing material and aluminum alloy matrix metal with moderate copper and magnesium contents
JP3190178B2 (en) Steel fiber for concrete reinforcement
WO2001015178A1 (en) Auxiliary material for superconductive material
JPH10194802A (en) Steel fiber for reinforcing concrete and its production
CN207049296U (en) The heavy quality loop of external ceramic inoxidzable coating
JPS62119172A (en) High toughness ceramic composite material which metal fiber is one body bonded to ceramic matrix
JPS62119173A (en) High-strength composite material which metal fiber is one body bonded to ceramic matrix
EP0213528A3 (en) Composite material including alumina-silica short fibers as reinforcing material and copper in its aluminum alloy matrix metal with the proportions thereof being related
Grünthaler et al. Contribution to the Manufacture and Characteristics of Steel-Wire-Reinforced Aluminum