JPS60194606A - Adjusting method of frequency and frequency temperature characteristics of tuning fork type crystal oscillator - Google Patents

Adjusting method of frequency and frequency temperature characteristics of tuning fork type crystal oscillator

Info

Publication number
JPS60194606A
JPS60194606A JP4986184A JP4986184A JPS60194606A JP S60194606 A JPS60194606 A JP S60194606A JP 4986184 A JP4986184 A JP 4986184A JP 4986184 A JP4986184 A JP 4986184A JP S60194606 A JPS60194606 A JP S60194606A
Authority
JP
Japan
Prior art keywords
tuning fork
frequency
weight
vibration
fork arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4986184A
Other languages
Japanese (ja)
Inventor
Kunihiro Takahashi
邦博 高橋
Nobuyoshi Matsuyama
松山 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP4986184A priority Critical patent/JPS60194606A/en
Publication of JPS60194606A publication Critical patent/JPS60194606A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To adjust the frequency temperature characteristics and temperature of main oscillations easily and efficiently by fixing previously a weight atop a tuning fork arm and at a position sectioned in the width direction of the tuning fork arm, and reducing the weight in the tuning-fork arm width direction by laser irradiation, etc. CONSTITUTION:The weight 112 of the tuning fork type crystal oscillator which has positive frequency temperature characteristics (FT characteristics) is reduced by laser light irradiation to increase the frequency fF of torsional oscillations above the frequency fT of flexural oscillations and increase the difference deltaf between the two frequencies. Consequently, the coupling between flexural oscillations and torsional oscillations is weakened to flatten the FT characteristics of main oscillations, namely, reduce variation in frequency with temperature. Then, the weight 112 is reduced until the FT characteristics of main oscillations become completely flat. Lastly, a thin weight 114 is reduced by laser light irradiation, etc., to equalize the fF to a target value fF0.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は屈曲振動と捩れ振動の弾性結合を利用する音叉
型水晶振動子において、効率の良いしかも簡P:ae主
振動の周波数と周波数温度特性の調整に関するものであ
る。ここで、主振動とは発振回路にこの水晶振動子を組
みこんだ場合に発振する振動モードを言う。以下の説明
では、主振動が屈曲振動である場合について主に臘論す
るが、以下の説明から明らかになる様に、主振動が捩れ
振動の場合についても同等に同じ議論が成シ立つ。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a tuning fork type crystal resonator that utilizes elastic coupling of bending vibration and torsional vibration, which is efficient and simple, and which is capable of controlling the frequency and frequency temperature of P:ae main vibration. It concerns the adjustment of characteristics. Here, the main vibration refers to a vibration mode that oscillates when this crystal resonator is incorporated into an oscillation circuit. In the following explanation, we will mainly discuss the case where the main vibration is bending vibration, but as will become clear from the following explanation, the same argument holds equally true when the main vibration is torsional vibration.

〔従来技術〕[Prior art]

近年、屈曲振動と捩れ振動の弾性結合を利用して、屈曲
振動の周波数温度特性(以後FT特性と呼ぶ)を良好に
しようとする音叉型水晶振動子が提案されている。この
音叉型水晶振動子は、比較的低い周波数で年差表示可能
な高精度腕時計用水晶振動子になり得るため、注目され
ている。
In recent years, tuning fork type crystal resonators have been proposed that utilize elastic coupling of bending vibrations and torsional vibrations to improve the frequency-temperature characteristics (hereinafter referred to as FT characteristics) of bending vibrations. This tuning fork type crystal oscillator is attracting attention because it can be used as a high-precision wristwatch crystal oscillator that can display annual differences at a relatively low frequency.

ところで、二つの振動の弾性結合を利用し、屈曲振動の
FT%性を良好にする場合、二つの振動の周波数差(以
後δfと呼ぶ)t−適切な値にする必要がある。第1図
に示す様に音叉腕の長さをり。
By the way, when making use of the elastic coupling of two vibrations to improve the FT% property of bending vibration, it is necessary to set the frequency difference (hereinafter referred to as δf) t between the two vibrations to an appropriate value. Measure the length of the tuning fork arm as shown in Figure 1.

幅’((w、振動子の厚みをtとした時、屈曲振動の周
波数(以後fFと呼ぶ)はw/41”に、捩れ振動のJ
!!!−数(以後fTと呼ぶ)はt/(Aw)にそれぞ
れ比例する。故にδfを適切な値にするには、振動子の
厚みtを適切な値にすれば良い。ところが、厚みtによ
るfTの質化童は非常に大きいために、厚みtのみによ
りδft−適切な値にする事は殆んど不可能である。
Width '((w), when the thickness of the vibrator is t, the frequency of bending vibration (hereinafter referred to as fF) is w/41'', and the frequency of torsional vibration J
! ! ! - numbers (hereinafter referred to as fT) are each proportional to t/(Aw). Therefore, in order to set δf to an appropriate value, the thickness t of the vibrator should be set to an appropriate value. However, since the modification of fT due to the thickness t is very large, it is almost impossible to set δft to an appropriate value based only on the thickness t.

そこで、音叉型水晶撮動子上に、オモリの増減t−mこ
し、δfの調整即ち主揚動である屈曲振動の?T特注の
調整を行なうことが試みられている。
Therefore, on the tuning fork type crystal camera, the weight is increased/decreased by adjusting δf, that is, the bending vibration which is the main lifting motion. Attempts have been made to make custom adjustments.

又、オモリの増減により屈曲撮動の周波数を所望の値に
することが必要である。この様に、屈曲振動と捩れ振動
の弾性結合を利用する音叉型水晶撮動子によって、オモ
リの増減により屈曲振動の周波数と周波数温度特性の二
つの調整を行なうことが必要となる。
Furthermore, it is necessary to adjust the frequency of bending imaging to a desired value by increasing or decreasing the weight. In this way, with a tuning fork type crystal sensor that utilizes the elastic coupling of bending vibration and torsional vibration, it is necessary to adjust the frequency of bending vibration and frequency temperature characteristics by increasing or decreasing the weight.

第2図は、屈曲の二次振動と捩れの基本振動の弾性結合
を利用する音叉型水晶振動子において、増減するオモリ
の位置の従来例を示し友ものである。21は音叉型水晶
振動子、22と25は音叉腕先端に増減するオモリ、2
4と25は音叉腕の長さt−Aとした時、文部から17
741fDJ&’の位置に増減するオモリを示している
。!、7’。
FIG. 2 shows a conventional example of the position of the weight increasing and decreasing in a tuning fork type crystal resonator that utilizes elastic coupling of the secondary vibration of bending and the fundamental vibration of torsion. 21 is a tuning fork type crystal oscillator, 22 and 25 are weights that increase and decrease at the tip of the tuning fork arm, 2
When 4 and 25 are the length of the tuning fork arm t-A, 17 from the Bunbu
741f The weight increasing and decreasing is shown at the DJ&' position. ! , 7'.

2′はそれぞれ振動子の幅、長さ、厚み方向を示し、な
おかつ水晶の電気軸1機械軸y軸t−169に回転した
方向、光軸2軸をX軸の回りに回転した方向をも表わし
ている。第3図は音叉型水晶振動子の屈曲二次振動の変
位の様子を示すものである。
2' indicates the width, length, and thickness direction of the vibrator, respectively, and also indicates the direction in which the electric axis 1 of the crystal is rotated about the mechanical axis y-axis t-169, and the direction in which the optical axis 2 is rotated around the X-axis. It represents. FIG. 3 shows the displacement of secondary bending vibration of a tuning fork type crystal resonator.

第3図は、第2−の音叉腕上の直線AB上のX方向の変
位を表わしている。音叉腕の長さを1とすると、点Aか
ら約(L77Aのμ′の位置において変位はゼロになる
。故に、纂2図に示すオモリ24と25を増減する事に
より、flF’i殆んど変化させず、fT’1大きく変
化させる事ができる。
FIG. 3 shows the displacement in the X direction on the straight line AB on the second - tuning fork arm. Assuming that the length of the tuning fork arm is 1, the displacement from point A becomes approximately zero at the position μ' of L77A. Therefore, by increasing or decreasing weights 24 and 25 shown in Figure 2, flF'i can be almost It is possible to greatly change fT'1 without changing anything.

即ち、オモリ24と25を増減することによりδfを調
節することができるため、屈曲振動のFT特性を調整す
ることができる。
That is, since δf can be adjusted by increasing or decreasing the weights 24 and 25, the FT characteristics of bending vibration can be adjusted.

ところで、主振動のクリスタルインピーダンス0工([
含低くするためには、屈曲振動と捩れ振動を励振させる
ための振動子上に設けた励振電極が可能な限り音叉腕の
先端近く迄伸ばすことが望ましい。このため、主振動の
周波数及びFT特性を調整するための増減するオモリの
位置は、音叉腕先端に集中させることが望ましい。第2
図に示す従来例では、励振電極はオモリ24と25よシ
音叉腕先端側に伸ばすことができない。即ち、励振電極
の長さは音叉腕の畏さ2の約70チよシ長くすることは
できない。
By the way, the crystal impedance of the main vibration is 0 ([
In order to reduce the vibration density, it is desirable that the excitation electrode provided on the vibrator for exciting bending vibration and torsional vibration extend as close to the tip of the tuning fork arm as possible. For this reason, it is desirable that the positions of the weights that increase and decrease for adjusting the frequency and FT characteristics of the main vibration be concentrated at the tip of the tuning fork arm. Second
In the conventional example shown in the figure, the excitation electrode cannot be extended beyond the weights 24 and 25 toward the tip of the tuning fork arm. That is, the length of the excitation electrode cannot be made longer than about 70 times the length of the tuning fork arm.

又、屈曲振動の基本振動と捩れ振動の基本振動の弾性結
合を利用する音叉型水晶振動子の場合、第2図に示す屈
曲振動の二次振動と捩れ振動の基本振動の弾性結合を利
用する音叉型水晶振動子に比べ、同一のfFg実現する
場合、前者の音叉型水晶振動子の方がはるかに小型にな
る。第2図に示すオモリの配置では、屈曲振動の基本振
動と捩れ振動の基本振動の弾性結合を利用する音叉型水
晶振動子の主振動のFT特性を調整することはできない
。何故なら、オモリ24と25の位置は、屈曲振動の基
本振動の節部でヰないからである。
In addition, in the case of a tuning fork type crystal resonator that utilizes the elastic coupling of the fundamental vibration of bending vibration and the fundamental vibration of torsional vibration, the elastic coupling of the secondary vibration of bending vibration and the fundamental vibration of torsional vibration shown in Fig. 2 is used. Compared to a tuning fork type crystal resonator, the former tuning fork type crystal resonator is much smaller when realizing the same fFg. With the weight arrangement shown in FIG. 2, it is not possible to adjust the FT characteristics of the main vibration of a tuning fork crystal resonator that utilizes the elastic coupling of the fundamental vibration of bending vibration and the fundamental vibration of torsional vibration. This is because the positions of the weights 24 and 25 are not at the nodes of the fundamental vibration of bending vibration.

〔発明の目的〕[Purpose of the invention]

本発明はクリスタルインピーダンス0工値の低い屈曲の
二次振動と捩れの基本振動を利用する音叉型水晶振動子
及び振動子の小型化に有利な屈曲の基本振動と捩れの基
本振動の弾性結合を利用する音叉型水晶振動子の周波数
及びIF74?性の簡単かつ効率の良い調整を提供する
ことを目的とするものである。
The present invention is a tuning fork type crystal resonator that utilizes the secondary vibration of bending and the fundamental vibration of torsion with a low crystal impedance value of 0, and the elastic coupling of the fundamental vibration of bending and the fundamental vibration of torsion that is advantageous for miniaturization of the vibrator. Frequency and IF74 of tuning fork type crystal oscillator to be used? The purpose is to provide easy and efficient adjustment of gender.

〔実抛例〕[Actual example]

以下図面全参照し、本発明の詳細な説明する。 The present invention will be described in detail below with reference to all the drawings.

第4図は、屈曲の基本振動と捩れの基本振動の弾性結合
を利用する音叉型水晶振動子の平面図を示したものであ
る。41は音叉型水晶揚動子を示し、X*7’+”は第
2図において説明した定義と同じものである。
FIG. 4 shows a plan view of a tuning fork type crystal resonator that utilizes elastic coupling of the fundamental vibration of bending and the fundamental vibration of torsion. Reference numeral 41 indicates a tuning fork type crystal lifter, and X*7'+'' has the same definition as explained in FIG.

第5図は、捩れ振動の変位成分の白燈も大きい厚み方同
質位uz’の、#pJ4図に示す直線ODE上における
大きさを表わしたものである。この図からオモリを増減
する事によりfTが最も大きく変化する箇所は、音叉腕
先端の近傍である事が明らかである。
FIG. 5 shows the size on the straight line ODE shown in FIG. From this figure, it is clear that the area where fT changes the most by increasing or decreasing the weight is near the tip of the tuning fork arm.

第6図は音叉腕先端の断面における捩れ振動の変位の様
子′t−表わしたものである。実線は二つの音叉腕の先
端の断面形状を表わし、破線は捩れ振uz’は大きく、
幅方向中央部付近においてu zjは小さい。故に、音
叉腕先端においては等量のオモリの増減によって、音叉
型の幅方向端部の方が幅方向中央部よシもfTの変化は
大きいと予想できる。
FIG. 6 shows the displacement of torsional vibration in the cross section of the tip of the tuning fork arm. The solid lines represent the cross-sectional shapes of the tips of the two tuning fork arms, and the broken lines represent the torsional vibration uz', which is large.
u zz is small near the center in the width direction. Therefore, it can be expected that due to an equal amount of weight increase or decrease at the tip of the tuning fork arm, the change in fT will be greater at the widthwise ends of the tuning fork shape than at the widthwise center.

第7図は、屈曲の基本振動と捩れの基本振動の弾性結合
を利用する音叉型水晶振動子における増減するオモリの
位置71.71’を示している。
FIG. 7 shows the increasing and decreasing positions 71 and 71' of the weights in a tuning fork type crystal resonator that utilizes the elastic coupling of the fundamental vibration of bending and the fundamental vibration of torsion.

オモリを増減する音叉腕上の位置は、音叉腕長をμとす
る時、先痛から1’=ti4sとする、この位置にオモ
リを蒸着等で付着させた時のfTとfFIL:l)変化
量を第81に示す。第80において、横軸は第7図にH
,I、H’、工′で示す音叉腕先端のX軸方向の位置を
表わしている。縦軸はfFとfTo叢化率δf/fを表
わしている。
The position on the tuning fork arm where the weight is increased or decreased is, when the length of the tuning fork arm is μ, 1' = ti4s from the tip. When the weight is attached to this position by vapor deposition etc., fT and fFIL: l) Change The amount is shown in No. 81. 80, the horizontal axis is H in FIG.
, I, H', and I' represent the position of the tip of the tuning fork arm in the X-axis direction. The vertical axis represents fF and fTo clustering rate δf/f.

81はfFの82はfTの変化量を表わしている。81 represents the amount of change in fF, and 82 represents the amount of change in fT.

この結果は有限要素法による計算からめたものである。This result was obtained from calculation using the finite element method.

第8図から明らかなように、fFの変化量は音叉腕の幅
方向の位置に殆んど関係しないが、fTは予想どおシ、
音叉腕の幅方向中央部において殆表わしている。”+7
’s”は第2図において説明した定義と同じものである
。音叉腕の幅方向を三等分して、91と91’ 、92
と92/ 。
As is clear from Fig. 8, the amount of change in fF has almost no relation to the position of the tuning fork arm in the width direction, but fT changes as expected.
It is mostly shown at the center of the tuning fork arm in the width direction. ”+7
's' has the same definition as explained in Fig. 2. Dividing the width direction of the tuning fork arm into thirds, 91, 91', 92
and 92/.

95と95′の三つの領域に分ける。It is divided into three areas: 95 and 95'.

この三つの領域に、音叉腕の長さ方向に沿ってオモリを
蒸着等で付着した時のfFとfTの変化の様子を第10
因に示す。第10図において、横軸は音叉腕の長さ方向
、即ち、第9図に示すy′方向の位置を示す。音叉腕先
端はLの位置にあ)、結果も第8図同様、有限要素法に
より得られたものである。
The changes in fF and fT when weights are attached to these three regions along the length of the tuning fork arm by vapor deposition etc. are shown in the 10th section.
The reason is shown below. In FIG. 10, the horizontal axis indicates the length direction of the tuning fork arm, that is, the position in the y' direction shown in FIG. The tip of the tuning fork arm is at position L), and the results were obtained by the finite element method, as in FIG.

101は、第9図に示す音叉腕幅方向に分けた三つの領
域におけるfFの変化率を表わしておシ、三つの領域で
fFの変化に殆んど差は見られない。
101 represents the rate of change in fF in three regions divided in the width direction of the tuning fork arm shown in FIG. 9, and there is almost no difference in the change in fF in the three regions.

102は、第9因に示す91と91’ 、95と93′
の音叉腕幅方向両端部にオモリを蒸着した場合のfTの
変化率を示□している。103は、第9図に示す92と
92′の音叉腕幅方向中央部にオモリを蒸着した場合の
fTの変化率を示している。
102 is 91 and 91', 95 and 93' shown in the ninth factor
□ shows the rate of change in fT when weights are deposited on both ends of the tuning fork arm in the width direction. Reference numeral 103 indicates the rate of change in fT when a weight is deposited at the center in the width direction of the tuning fork arms 92 and 92' shown in FIG.

第10図から明らかな如く、fTの変化が最も犬きくな
るオモリの位置は音叉腕先泡の幅方向端部である。又、
fTとfFOi化率の比(δfT/fT)/(δfF/
fF′)が最も小さくなるオモリの位置は音叉腕先端の
幅方向中央部である事が分る。故に、音叉腕先端の幅方
向中央部にオモリを増減するとδfの調整、即ち屈曲振
動のFTq#性の調整を容易に行なうことができる。又
、第8図から明らかな様に、音叉腕先端の幅方向両端部
にオモリを増すとfF’とfTの変化量はほぼ等しく、
このオモリを増減してもfFとfTの差が殆んど変化し
ないことから主振動のFT%性も変化しない。
As is clear from FIG. 10, the position of the weight where the change in fT is the sharpest is at the end in the width direction of the tuning fork arm tip foam. or,
Ratio of fT and fFOi conversion rate (δfT/fT)/(δfF/
It can be seen that the position of the weight where fF') is the smallest is at the center in the width direction of the tip of the tuning fork arm. Therefore, by increasing or decreasing the weight at the center in the width direction of the tip of the tuning fork arm, it is possible to easily adjust δf, that is, the FTq# characteristic of the bending vibration. Also, as is clear from Fig. 8, when weights are added to both ends of the tuning fork arm in the width direction, the amount of change in fF' and fT is almost equal;
Even if this weight is increased or decreased, the difference between fF and fT hardly changes, so the FT% characteristic of the main vibration does not change either.

又、音叉腕先端の幅方向中央部と幅方向両端部のオモリ
の間にそれらの厚みより薄いオモリを増減すると、主振
動の周波数は僅かに変化する。
Furthermore, if weights thinner than those weights are added or removed between the weights at the widthwise center and both widthwise ends of the tip of the tuning fork arm, the frequency of the main vibration changes slightly.

第11図は、本発明の一実癩例を示す音叉型水晶振動子
の平面図である。111は音叉型水晶振動子、112は
音叉腕先端で音叉腕幅方向中央部に増減するオモリ、1
13は音叉腕先端で音叉腕幅方同両端部に増減するオモ
リ、114は112と113のオモリの中間位置に増減
する厚みの薄いオモリを表わしている。
FIG. 11 is a plan view of a tuning fork type crystal resonator showing an example of the present invention. 111 is a tuning fork type crystal oscillator; 112 is a weight that increases and decreases at the tip of the tuning fork arm in the center in the width direction of the tuning fork arm;
Reference numeral 13 represents a weight that increases or decreases at the tip of the tuning fork arm in the widthwise direction of the tuning fork arm, and 114 represents a thin weight that increases or decreases at an intermediate position between the weights 112 and 113.

第12図は、第11図に示す直線JJ′で切った音叉腕
の断面図を表わしている。@12図は音叉型水晶撮動子
の片面にのみオモリヲ増減する場合の実施例を示してい
る。121は音叉型水晶撮動子、122は第11図にお
いて112に、125は第11図において115に、1
24は第11図において114にそれぞれ対応する増減
するオモリを表わしている。
FIG. 12 shows a cross-sectional view of the tuning fork arm taken along the straight line JJ' shown in FIG. Figure @12 shows an example in which the weight is increased or decreased only on one side of a tuning fork type crystal sensor. 121 is a tuning fork type crystal camera, 122 is 112 in FIG. 11, 125 is 115 in FIG.
24 represents weights that increase and decrease, respectively corresponding to 114 in FIG.

第15図は、第11図に示す直線JJ’で切った音叉腕
の断面図t−表わしている。第13図は、音叉型水晶振
動子の両面にオモリヲ増減する場合の本発gAO実箔例
ヲ懺わしている。131は音叉型水晶振動子、132は
第11図において112に、153は第11因において
115に、134は第11図において114にそれぞれ
対応する増減するオモリを表わしている。
FIG. 15 shows a sectional view t of the tuning fork arm taken along the straight line JJ' shown in FIG. FIG. 13 shows an example of an actual gAO foil of the present invention in which weights are increased or decreased on both sides of a tuning fork type crystal resonator. Reference numeral 131 represents a tuning fork type crystal resonator, 132 represents an increasing and decreasing weight corresponding to 112 in FIG. 11, 153 represents 115 in the 11th factor, and 134 corresponds to 114 in FIG.

第14図と第15図は、本発明の屈曲振動と捩れ振動の
弾性結合を利用する音叉型水晶振動子の主撮動である屈
曲振動のFT特性及び周波数を調整する工程を表わした
グラフを示している。第14図と第15−に示す本発明
の工程は、あらかじめ水晶振動子に付着させておいたオ
モリにレーザー等を照射し、そのオモリヲ減少させて主
振動のF’T特性及び周波数t−調整する場合に対する
ものである。
FIGS. 14 and 15 are graphs showing the process of adjusting the FT characteristics and frequency of bending vibration, which is the main acquisition of the tuning fork crystal resonator that utilizes the elastic coupling of bending vibration and torsional vibration of the present invention. It shows. The process of the present invention shown in FIGS. 14 and 15 involves irradiating a weight attached to the crystal resonator with a laser or the like to reduce the weight and adjust the F'T characteristic and frequency t of the main vibration. This is for cases where

第14図において、横軸は温度を、縦軸は主振動である
屈曲振動の周波数fFを表わしている。
In FIG. 14, the horizontal axis represents temperature, and the vertical axis represents frequency fF of bending vibration, which is the main vibration.

fFoはfFの最終ねらい値を表わしている。又、第1
5図において、横軸は工程’を表わし、縦軸は屈曲撮動
と捩れ振動の周波数を表わしている。第15図において
、fF、は初期のfT’i、fT。
fFo represents the final target value of fF. Also, the first
In FIG. 5, the horizontal axis represents the process', and the vertical axis represents the frequency of bending imaging and torsional vibration. In FIG. 15, fF is initial fT'i, fT.

はねらいのf’fi、fF、は初期のfFを、fF。The aim f'fi, fF, is the initial fF, fF.

はねらいのfFlそれぞれ表わしている。フォトリング
ラフィ等により、数センチ角の水晶ウェハ上に多数の水
晶振動子を作製する場合、全ての振動子のFT特性は第
14図のグラフの最も下に示す正のFT特性、即ち温度
の上昇に伴い周波数が上昇する特性である様にする。即
ち、良好なFT特性が得られる場合のδfよシも小さい
δfにしておく。この様にすると、屈曲振動と捩れ振動
の結合は強くなり、捩れ撮動の影響を強く受けた屈曲振
動のFT%注は正のFT%性となる。何故なら、この音
叉型水晶振動子は、本来負のFT特性を持った屈曲振動
が、大きな正のFT%性を持った捩れ振動の影響を受け
て良好なFT%性を得ようとするものである。このため
、必要以上に捩れ撮動の影響が強いと、屈曲振動も正の
FT特性を持つ様になるのである。
represent the fFl of the aim. When a large number of crystal resonators are manufactured on a crystal wafer several centimeters square by photolithography, etc., the FT characteristics of all the resonators are positive FT characteristics shown at the bottom of the graph in Figure 14, that is, the temperature The characteristic should be such that the frequency increases as the frequency increases. That is, δf is set to be smaller than δf when good FT characteristics are obtained. In this way, the coupling between the bending vibration and the torsional vibration becomes stronger, and the FT% of the bending vibration, which is strongly influenced by the torsional imaging, becomes a positive FT%. This is because, in this tuning fork type crystal resonator, bending vibration, which originally had negative FT characteristics, is affected by torsional vibration, which has large positive FT characteristics, in order to obtain good FT characteristics. It is. Therefore, if the influence of torsional imaging is stronger than necessary, the bending vibration will also have a positive FT characteristic.

そこで、正のFT特性を持った音叉型水晶振動子を$1
1図に示す112のオモリをレーザー等で減少すること
によシ、fTよりもfFを大きく増大させ、δft大き
くする。その結果、屈曲振動と捩れ振動の結合は弱まシ
、主撮動のFT411F注は徐々に平坦な特性、即ち温
度による周波数の変化が小さくなる。そして、主振動の
FT特性が全く平坦になるまで、オモリ112を減少さ
せる。
Therefore, we purchased a tuning fork crystal resonator with positive FT characteristics for $1.
By reducing the weight 112 shown in FIG. 1 with a laser or the like, fF is increased more than fT, and δft is increased. As a result, the coupling between bending vibration and torsional vibration becomes weaker, and the main imaging FT411F has gradually flattened characteristics, that is, changes in frequency due to temperature become smaller. Then, the weight 112 is decreased until the FT characteristic of the main vibration becomes completely flat.

この工程が、第14図と第15図に示す工の工程である
This process is the process shown in FIGS. 14 and 15.

次に、第11図に示す113のオモリをレーザーの照射
等によシ減少させ、fFをねらい値fF。
Next, the weight 113 shown in FIG. 11 is reduced by laser irradiation, etc., and fF is set to the target value fF.

の極く近傍まで上昇させる。この時、第15図に示す様
に、fFとfTの変化はほぼ等しいため、第14図に示
す如く、屈曲振動のFT%性は平坦な特性を保つ7tま
まとなる。この工程が第14図及び第15−に示す厘の
工程となる。
Raise it to very close to . At this time, as shown in FIG. 15, since the changes in fF and fT are almost equal, the FT% characteristic of the bending vibration remains at 7t, which maintains a flat characteristic, as shown in FIG. 14. This process becomes the process shown in FIGS. 14 and 15-.

最後に、第11図に示す厚みの薄い114のオモリをレ
ーザー等の照射により減少させ、tyt−ねらい値のf
Foに一致させる。この工程が、第14図及び第15図
に示す■の工程となる。■の工程において、fFの変化
は極く少ないため、第14図に示す如く、屈曲振動のI
I′TIm性の変化は殆んどない。
Finally, the thin weight 114 shown in Figure 11 is reduced by irradiation with a laser, etc., and the tyt-target value f
Match Fo. This step becomes the step (3) shown in FIGS. 14 and 15. In the process (2), since the change in fF is extremely small, the bending vibration I
There is almost no change in I'TIm properties.

本発明の音叉型水晶振動子にあらかじめ付着させておく
オモリの厚みの一例tSげろと、第11図に示す112
及び113のオモリの厚みは約2μm程匪であり、11
4のオモリの厚みは112μm程度である。■と■の工
程におけるfFの変化量は各々数千ppm5 mの工程
においては100〜200 ppm程度である。この様
に、音叉腕先端において、音叉腕幅方向に区切ってオモ
U を増減する場合、最初に屈曲撮動のFT%性、次に
屈曲振動の周波数の粗調整、そして最後に屈曲撮動の周
波数の微調整の順序で調整を行なうと、屈曲振動のFT
#f性及び周波数の調整が簡単かつ効率よく行なえるの
である。
An example of the thickness of the weight that is attached in advance to the tuning fork crystal resonator of the present invention is 112 mm as shown in FIG. 11.
The thickness of the weight of 113 and 113 is about 2 μm, and 11
The thickness of weight No. 4 is approximately 112 μm. The amount of change in fF in the steps (1) and (2) is approximately 100 to 200 ppm in the steps of several thousand ppm and 5 m, respectively. In this way, when increasing or decreasing the weight U at the tip of the tuning fork arm in sections in the width direction of the tuning fork arm, first adjust the FT% of the bending imaging, then coarsely adjust the frequency of the bending vibration, and finally adjust the bending imaging frequency. By making adjustments in the order of fine-tuning the frequency, the FT of bending vibration
#f characteristics and frequency can be adjusted easily and efficiently.

ここ迄は、レーザー等の照射によりオモリを減少させる
場合に限って説明してきたが、真空蒸着やスパッタ等に
よりオモリを付着させて主振動のFT特性と周波数を調
整する場合も、あらかじめ水晶ウェハ上に作製した全て
の振動子のFT特性を負のFT特性にしておく点がpな
るだけで、工程の順序はオモIJ を減少させる場合と
全く同じである。
Up to this point, we have only explained the case where weight is reduced by irradiation with a laser, etc., but when adjusting the FT characteristics and frequency of the main vibration by attaching weight by vacuum evaporation or sputtering, etc., it is possible to The order of the steps is exactly the same as in the case of reducing IJ, except that the FT characteristics of all the vibrators manufactured in 1 are set to negative FT characteristics.

ところで、第8図に示す如く、音叉腕幅方向に沿って等
量のオモリを増減した時、fFは一定の変化をするが、
fTは異なった変化の仕方をする。
By the way, as shown in Fig. 8, when the weight is increased or decreased by the same amount along the width direction of the tuning fork arm, fF changes to a certain degree.
fT changes in different ways.

第16図は、音叉腕先端のオモリを拡大して表わし友、
一本の音叉腕の平面図を表わしている。
Figure 16 shows an enlarged view of the weight at the tip of the tuning fork arm.
It shows a plan view of one tuning fork arm.

161は音叉腕、162は音叉腕幅方同中央部に位置す
るオモリ、163は音叉腕幅方向両端部に位置するオモ
IJ tそれぞれ表わしている。X方向は音叉腕の幅方
向、y方向は音叉腕の長さ方向を表わしている。XI 
e X* + xfi t x41 ”6 ex6はX
方向の位ttyt s 7!はy方向の位置を表わして
いる。162や165の位置全体にオモIJ を真空蒸
着等で増大する場合には問題ないが、レーザーの照射に
よりオモリを減少する時には、オモリのとり方が問題と
なってくる。
Reference numeral 161 represents a tuning fork arm, 162 a weight located at the center in the width direction of the tuning fork arm, and 163 a weight IJt located at both ends in the width direction of the tuning fork arm. The X direction represents the width direction of the tuning fork arm, and the y direction represents the length direction of the tuning fork arm. XI
e X* + xfi t x41 ”6 ex6 is X
Direction position ttyt s 7! represents the position in the y direction. There is no problem when increasing the weight IJ over the entire position of 162 or 165 by vacuum evaporation, but when reducing the weight by laser irradiation, how to remove the weight becomes a problem.

162のオモリを減少させる時、x3点及びx4点とそ
れら二点の中間の位置で等量のオモIJ t−減少させ
る時、fTの変化量が異なるため、屈曲振動のFT特性
の変化の仕方が異なる。x1点と11点及び15点と1
6点についても、FT’lfF性の変化の仕方は小さい
が、同様なことが言える。他方、162と166のオモ
リが音叉腕の先端に集中してさえいれば、音叉腕の幅方
向のある定まった位置に対し、音叉腕の長さ方向の位置
、即ちyl及びylの間の如何なる位置のオモIJ を
減少させようと、FT特性の変化は殆んどない。
When reducing the weight of 162, the amount of change in fT is different when reducing the weight IJ t- by the same amount at the x3 point and x4 point and at a position between those two points, so the way the FT characteristics of bending vibration changes. are different. x1 point and 11 points and 15 points and 1
The same thing can be said about point 6, although the change in FT'lfF property is small. On the other hand, as long as the weights 162 and 166 are concentrated at the tip of the tuning fork arm, the position in the length direction of the tuning fork arm, that is, any position between yl and yl, for a certain fixed position in the width direction of the tuning fork arm, Even if the IJ of the position is decreased, there is almost no change in the FT characteristics.

第17図は第16図と同様に、音叉腕先端のオモリヲ拡
大して表わした一本の音叉腕の平面図を表わしている。
Similar to FIG. 16, FIG. 17 shows a plan view of one tuning fork arm with the weight at the tip of the tuning fork arm enlarged.

171は音叉腕、172は音叉胸幅方向中央部に位置す
るオモリ、173は音叉腕幅方同両端部に位置するオモ
リを表わしている。
Reference numeral 171 represents a tuning fork arm, reference numeral 172 represents a weight located at the center of the tuning fork in the width direction, and reference numeral 173 represents weights located at both ends of the tuning fork arm in the width direction.

オモリヲレーザーの照射等により減少させる場合、第1
7因に示す様に音叉腕の撓さ方向に沿って減少させると
、例えば172のオモリを1740列で減少させた場合
と175の列に沿って減少させた場合とでは、減少させ
たオモリの量が等しくとも、175の列で減少させた場
合の方が1’TfF性の変化量は大きい、何故なら、1
74と175の列では、両者共にfFo変化はほぼ等し
いが、fTの変化量が175の列の方が小さいからであ
る。即ち、オモリを減少させたことによるδfの変化量
が、二つの列で異なるからである。同様に音叉腕幅方向
両端部に位置するオモIJ 1731176と177の
異なる列で減少させた場合にも、172のオモリの時程
ではないが、FT特性の変化の程度が異なる。
When reducing by irradiation with Omoriwo laser, etc., the first
As shown in factor 7, if the weight is decreased along the direction of deflection of the tuning fork arm, for example, when the weight of 172 is decreased along the 1740 row and when it is decreased along the 175 row, the reduced weight will be different. Even if the amounts are the same, the amount of change in 1'TfF property is larger when decreasing in the 175 column, because 1
This is because although the changes in fFo are approximately the same in columns 74 and 175, the amount of change in fT is smaller in column 175. That is, the amount of change in δf due to the weight reduction is different between the two columns. Similarly, when weights IJ 1731176 and 177 located at both ends in the width direction of the tuning fork arm are reduced in different rows, the degree of change in the FT characteristics differs, although not to the same extent as weights 172.

第18図は、あらかじめ音叉腕先端に付着させたオモl
’を減少させる場合の本発明の一例を表わした、一本の
音叉腕の先端を拡大した平面図である。181は音叉腕
、182は音叉腕先端で音叉胸幅方向中央部にあらかじ
め設けられたオモリ、183は音叉腕先端で音叉腕幅方
同両端部にあらかじめ設けられたオモIJ t−それぞ
れ表わしている。
Figure 18 shows the oval attached to the tip of the tuning fork arm in advance.
1 is an enlarged plan view of the tip of one tuning fork arm, illustrating an example of the present invention in which `` is reduced. 181 represents a tuning fork arm, 182 represents a weight pre-installed at the center of the tuning fork in the width direction of the tuning fork at the tip of the tuning fork arm, and 183 represents a weight IJ t- previously provided at the end of the tuning fork arm at both ends of the tuning fork arm in the width direction. .

オモリfレーザーの照射等によυ減少する場合、第18
図に示す様に、音叉腕の幅方向に沿って減少させると、
例えば184,185,186等の列に沿って減少させ
ても、それらの間でFT411F性の電化の程度に差は
ない。何故なら、FT%性の変化の程度に差を生じる音
叉腕の幅方向の位置が等しく含まれているからである。
If υ decreases due to weight f laser irradiation, etc., the 18th
As shown in the figure, when decreasing along the width direction of the tuning fork arm,
For example, even if it decreases along the columns 184, 185, 186, etc., there is no difference in the degree of FT411F electrification among them. This is because the positions in the width direction of the tuning fork arms that cause differences in the degree of change in FT% are equally included.

このため、182のオモリを減少させることによるfI
Fの変化量と屈曲振動のFT特性の変化率は殆んど一対
一で対応する。その結果、現在のFT特性を知った後、
どれだけのオモVt減少させれば良好な11’T特性が
得られるかを容易に知ることができる。185のオモリ
に対しては、187,188,189等の列に沿ってオ
モリを減少させた場合、それらの間でFT特性の変化の
程度に差はないことは勿論のこと、どの列に沿ってオモ
リを減少させてもFT特性に変化はない。
Therefore, by reducing the weight of 182, fI
There is almost a one-to-one correspondence between the amount of change in F and the rate of change in the FT characteristics of bending vibration. As a result, after knowing the current FT characteristics,
It is easy to know how much Vt should be reduced to obtain good 11'T characteristics. Regarding the weight of 185, if the weight is decreased along columns such as 187, 188, 189, etc., it goes without saying that there is no difference in the degree of change in the FT characteristics among them, and there is no difference along which column. Even if the weight is reduced, there is no change in the FT characteristics.

この様に、音叉腕先端でかつ、音叉腕幅方向に区切られ
た位置にあらかじめ付着されたオモリをレーザーの照射
等により減少させて屈曲振動のFT特性及び周波数を調
整する場合、音叉腕幅方向に沿ってオモIJ t−減少
させると、それらの調整が容易かつ効率良く実行できる
In this way, when adjusting the FT characteristics and frequency of bending vibration by reducing the weights attached in advance at the tip of the tuning fork arm and at positions separated in the width direction of the tuning fork arm by laser irradiation, etc., By decreasing IJ t- along the lines, these adjustments can be carried out easily and efficiently.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した様に、本発明は、屈曲振動と捩れ
振動の弾性結合を利用した。しかも等価抵抗の低い音叉
型水晶振動子において、主振動のFT特性及び周波数を
簡単かつ効率良〈調整する上で非常に優れた方法を提供
することができる優れた性質を有する。
As described above in detail, the present invention utilizes elastic coupling of bending vibration and torsional vibration. Furthermore, the tuning fork type crystal resonator with low equivalent resistance has an excellent property that it can provide an extremely excellent method for adjusting the FT characteristics and frequency of the main vibration easily and efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は音叉型水晶振動子の斜視図。第2図は屈曲の二
次振動と捩れの基本振動の弾性結合を利用する音叉型水
晶振動子において、オモリの位置の従来例を示した音叉
型水晶振動子の平面図。第3図は、第2図の音叉腕上の
直線^B上における屈曲二次振動のX方向の変位を表わ
すグラフ。第4図は音叉型水晶振動子の平面図。185
図は、第4図に示す音叉型水晶振動子の直dODB上に
おける観れ振動の変位の大きさtiわしたグラフ。 第6図は、捩れ振動の変位1表わした音叉腕先端の断面
図。第7図は増減するオモリの位置を表わした音叉型水
晶振動子の平面図。第8図は、第7図に示した位置にオ
モリを増大させ九時の屈曲振動と捩れ振動の周波数の変
化を示すグラフ。第9図は、増減するオモリの位置を表
わした音叉型水晶振動子の平面図。第10図は、第9図
に示した位置にオモlJ’を増大させた時の屈曲振動と
捩れ振動の周波数の変化を示すグラフ。第11図は、本
発明の一実施例を示す音叉型水晶振動子の平面図。 第12図及び第15図は、本発明の一実施例を示す音叉
腕の断面図。第14図及び第15図は、本発明の屈曲振
動と捩れ振動の弾性結合を利用する音叉型水晶振動子に
おいて、屈曲振動の周波数及び周波数温度特性を調整す
る工程を表わすグラフ。 第16図は、オモリの位置を示した音叉型水晶振動子の
平面10第17図は、あらかじめ付着されたオモリの減
少の仕方の一例を示す音叉型水晶振動子の音叉腕の一部
の平面図。第18図は、あらかじめ付着されたオモリの
減少の仕方の本発明の一例を示す音叉型水晶振動子の音
叉腕の一部の平面図。 111:音叉型水晶振動子 112.12%、152:音叉腕先端でかつ音叉腕幅方
向中央部に増減するオモリ 115.123.133:音叉腕先端でかつ音叉脚幅方
向両端部に増減するオモリ 114.124.134 : 112と113のオモリ
の中間の位置に少量増減するオモリ I:屈曲振動の周波数温度特性を調整する工程厘:屈曲
振動の周波数を調整する工程 厘:屈曲振動の周波数を微調整する工程以上 出願人 セイコー電子工業株式会社 第1図 えJ y′ 第81創 第10図
FIG. 1 is a perspective view of a tuning fork type crystal resonator. FIG. 2 is a plan view of a tuning fork type crystal resonator that uses the elastic coupling of the secondary vibration of bending and the fundamental vibration of torsion, showing a conventional example of the position of the weight. FIG. 3 is a graph showing the displacement of secondary bending vibration in the X direction on the straight line ^B on the tuning fork arm of FIG. FIG. 4 is a plan view of a tuning fork type crystal resonator. 185
The figure is a graph showing the magnitude of the displacement of the viewing vibration on the direct dODB of the tuning fork type crystal resonator shown in FIG. FIG. 6 is a sectional view of the tip of a tuning fork arm showing displacement 1 of torsional vibration. FIG. 7 is a plan view of a tuning fork crystal resonator showing the position of the weight as it increases and decreases. FIG. 8 is a graph showing changes in frequency of bending vibration and torsional vibration at 9 o'clock when the weight is increased to the position shown in FIG. 7. FIG. 9 is a plan view of a tuning fork type crystal resonator showing the position of the weight increasing and decreasing. FIG. 10 is a graph showing changes in the frequencies of bending vibration and torsional vibration when the weight lJ' is increased to the position shown in FIG. 9. FIG. 11 is a plan view of a tuning fork type crystal resonator showing one embodiment of the present invention. 12 and 15 are cross-sectional views of a tuning fork arm showing an embodiment of the present invention. FIGS. 14 and 15 are graphs showing the process of adjusting the frequency and frequency temperature characteristics of bending vibration in a tuning fork crystal resonator that utilizes elastic coupling of bending vibration and torsional vibration according to the present invention. Fig. 16 is a plan view of a tuning fork type crystal resonator showing the position of the weights; Fig. 17 is a plan view of a part of the tuning fork arm of a tuning fork type crystal resonator showing an example of how to reduce the weight attached in advance. figure. FIG. 18 is a plan view of a part of a tuning fork arm of a tuning fork type crystal resonator, showing an example of the method of the present invention for reducing weights attached in advance. 111: Tuning fork type crystal oscillator 112.12%, 152: Weight that increases and decreases at the tip of the tuning fork arm and at the center in the width direction of the tuning fork arm 115.123.133: Weight that increases and decreases at the tip of the tuning fork arm and at both ends in the width direction of the tuning fork leg 114.124.134: Weight I that increases or decreases by a small amount between the weights 112 and 113: Process for adjusting the frequency temperature characteristics of bending vibration: Process for adjusting the frequency of bending vibration: Fine adjustment of the frequency of bending vibration Adjustment process and above Applicant: Seiko Electronics Industries Co., Ltd., Figure 1, Figure 10, Figure 81, Figure 10

Claims (3)

【特許請求の範囲】[Claims] (1) 屈曲振動と捩れ振動の弾性結合を利用する音叉
型水晶振動子において、音叉腕先端でかつ音叉腕幅方向
中央部を音叉胸幅方向端部に多量のオモリを増減し、主
振動の周波数温度特性に周波数の粗調整を行ない、それ
らのオモリの中間の位置に少量のオモリを増減し、主振
動の周波数の微調整を行なうことを特徴とする音叉型水
晶振動子の周波数及び周波数温度特注の調整方法。
(1) In a tuning fork crystal oscillator that utilizes elastic coupling between bending vibration and torsional vibration, a large amount of weight is added or decreased at the tip of the tuning fork arm and at the center in the width direction of the tuning fork arm, and at the end of the tuning fork in the width direction of the chest. Frequency and frequency temperature of a tuning fork type crystal resonator, characterized in that the frequency is coarsely adjusted to the frequency-temperature characteristics, and the frequency of the main vibration is finely adjusted by increasing or decreasing a small amount of weight at the intermediate position between the weights. Customized adjustment method.
(2)屈曲振動と捩れ振動の弾性結合を利用する音叉型
水晶振動子において、最初に音叉腕先端でかつ音叉腕幅
方向中央部にオモリを増減することによシ主振動の周波
数温度特性を調整し、次に音叉腕先端でかつ音叉胸幅方
向端部にオモリヲ増減することによシ主振動の周波数を
粗調整し、衆後にそれらのオモリの中間の位置にオモリ
を増減することにより主振動の周波数を微調整すること
を特徴とする特許請求の範囲第1項記載の音叉型水晶振
動子の周波数と周波数温度特性ta整する方法。
(2) In a tuning fork type crystal resonator that utilizes elastic coupling between bending vibration and torsional vibration, the frequency-temperature characteristics of the main vibration can be determined by increasing or decreasing a weight at the tip of the tuning fork arm and at the center in the width direction of the tuning fork arm. Then, coarsely adjust the frequency of the main vibration by increasing or decreasing the weight at the tip of the tuning fork arm and at the end of the tuning fork in the width direction of the tuning fork. A method for adjusting the frequency and frequency-temperature characteristics of a tuning fork crystal resonator according to claim 1, which comprises finely adjusting the frequency of vibration.
(3) 屈曲振動と捩れ振動の弾性結合を利用する音叉
型水晶振動子において、レーザー等を照射することによ
り、あらかじめ付着しであるオモリを減少させて主振動
の周波数及び周波数温度特性を調整する場合、オモリの
減少の仕方は音叉腕の幅方向に平行に行なうことを特徴
とする特許請求の範囲第1項及び第2JJi記載の音叉
型水晶振動子の周波数と周波数温度特性を調整する方法
(3) In a tuning fork type crystal resonator that utilizes elastic coupling of bending vibration and torsional vibration, the frequency and frequency temperature characteristics of the main vibration are adjusted by reducing the weight that is attached in advance by irradiating it with a laser or the like. A method for adjusting the frequency and frequency temperature characteristics of a tuning fork crystal resonator according to claims 1 and 2, wherein the weight is reduced in parallel to the width direction of the tuning fork arm.
JP4986184A 1984-03-15 1984-03-15 Adjusting method of frequency and frequency temperature characteristics of tuning fork type crystal oscillator Pending JPS60194606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4986184A JPS60194606A (en) 1984-03-15 1984-03-15 Adjusting method of frequency and frequency temperature characteristics of tuning fork type crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4986184A JPS60194606A (en) 1984-03-15 1984-03-15 Adjusting method of frequency and frequency temperature characteristics of tuning fork type crystal oscillator

Publications (1)

Publication Number Publication Date
JPS60194606A true JPS60194606A (en) 1985-10-03

Family

ID=12842830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4986184A Pending JPS60194606A (en) 1984-03-15 1984-03-15 Adjusting method of frequency and frequency temperature characteristics of tuning fork type crystal oscillator

Country Status (1)

Country Link
JP (1) JPS60194606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110057549A1 (en) * 2009-09-08 2011-03-10 Seiko Epson Corporation Flexural vibration piece, flexural vibrator, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110057549A1 (en) * 2009-09-08 2011-03-10 Seiko Epson Corporation Flexural vibration piece, flexural vibrator, and electronic device
US8294337B2 (en) * 2009-09-08 2012-10-23 Seiko Epson Corporation Flexural vibration piece, flexural vibrator, and electronic device

Similar Documents

Publication Publication Date Title
US7511870B2 (en) Highly tunable low-impedance capacitive micromechanical resonators, oscillators, and processes relating thereto
US7859365B2 (en) Low frequency process-variation-insensitive temperature-stable micromechanical resonators
US3683213A (en) Microresonator of tuning fork configuration
JPH0150129B2 (en)
TW201312939A (en) Crystal resonator and crystal oscillator
US20110156826A1 (en) Resonator element, resonator, oscillator, electronic device, and frequency adjustment method
US4771202A (en) Tuning fork resonator
US4205248A (en) Quartz crystal vibrator electrode configuration
JP2000295065A (en) Piezoelectric vibrator and its frequency adjusting method
JPH0232807B2 (en)
JPS60194606A (en) Adjusting method of frequency and frequency temperature characteristics of tuning fork type crystal oscillator
US3566166A (en) Mechanical resonator for use in an integrated semiconductor circuit
JPS59202720A (en) Tuning fork type crystal resonator
JPH1070416A (en) Integrated electronic device
US20140210566A1 (en) Crystal resonator, crystal resonator package, and crystal oscillator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JPS586616A (en) Frequency adjusting method for coupling oscillator
JPH0870232A (en) Surface acoustic wave element and oscillat0r
JP2005094733A (en) Resonator, resonator unit, oscillator, electronic apparatus and manufacturing method thereof
JP2022032487A (en) Crystal oscillation device
JPS647689B2 (en)
JPS644694B2 (en)
JP2008199438A (en) Piezoelectric vibrator and manufacturing method of piezoelectric vibrator
JPH07254839A (en) Crystal vibrator
JP2003115741A (en) Piezoelectric resonator and overtone frequency adjusting method