JPS60193502A - High-pressure crystallizer - Google Patents

High-pressure crystallizer

Info

Publication number
JPS60193502A
JPS60193502A JP5010984A JP5010984A JPS60193502A JP S60193502 A JPS60193502 A JP S60193502A JP 5010984 A JP5010984 A JP 5010984A JP 5010984 A JP5010984 A JP 5010984A JP S60193502 A JPS60193502 A JP S60193502A
Authority
JP
Japan
Prior art keywords
filter
pressure
heat
partition wall
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5010984A
Other languages
Japanese (ja)
Inventor
Masato Moritoki
正人 守時
Kazuo Kitagawa
北川 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5010984A priority Critical patent/JPS60193502A/en
Publication of JPS60193502A publication Critical patent/JPS60193502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recover the specific component having high purity at a high yield under satisfactory operation controllability by providing a heat insulating partition wall between the inside circumferential surface of a high-pressure vessel and a filter. CONSTITUTION:A heat-insulating partition wall 9 is provided between a filter 2 and a supporting material 3 for the rear of the filter. A heat insulating partition wall 10 is also provided to the outside circumferential wall of said material 3 to constitute the crystallizer into such heat insulating construction in which the transmission of the heat of the compressed material on the inside surface of the filter 2 toward a high-pressure vessel 1 is prevented as far as possible. The temp. change of the compressed matter on the inside surface side of the vessel 1 owing to the vessel temp. is therefore prevented as far as possible and eventually the entire part of the compressed material is maintained approximately at a uniform temp. As a result the crystallization of the components except the specific component on the inside surface side of the filter 2 is prevented and the compressed material thereof is efficiently removed. The purity and recovering rate of the specific component are thus improved.

Description

【発明の詳細な説明】 本発明は高圧晶析装置に関し、殊に高圧晶析操作と、こ
れに続いて行なう固液圧搾分離工程において、被圧搾物
に極力温度分布を生じさせることなく均質で高純度の特
定成分(製品)を効率良く分離回収することのできる高
圧晶析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-pressure crystallizer, and in particular, in the high-pressure crystallization operation and the subsequent solid-liquid pressing separation step, the present invention is capable of producing homogeneous material without causing temperature distribution in the pressed material as much as possible. The present invention relates to a high-pressure crystallizer that can efficiently separate and recover high-purity specific components (products).

高圧晶析法とは、複数成分からなる液相又は固液混合ス
ラリーからなる原料を高圧容器内へ導入し、該原料に高
圧力(例えば1000気圧を超えるような圧力)を加え
て特定成分の晶析を促進させる方法であり、この操作に
よって特定成分の結晶と残留液が混在した状態が得られ
る。そこで排液管路の閉鎖を解除し正前記固液共存物に
ピストン圧力を加えながら残留液をフィルター経由で系
外に排出し、高圧室内に残された固相を高純度の特定成
分として取り出す。即ち第1図は、上記の様な高圧晶析
に用いられる装置を例示する要部縦断面図であり、図中
1は高圧容器、2はフィルター、8はフィルター背面支
持材、4はピストン、5は給・排出側ブロック、6は原
料供給管域、7は排液管路を示し、この装置を用いた高
圧晶析の手順の一例を簡単に説明すると次の通りである
The high-pressure crystallization method involves introducing a raw material consisting of a liquid phase or solid-liquid mixed slurry consisting of multiple components into a high-pressure container, and applying high pressure (for example, a pressure exceeding 1000 atmospheres) to the raw material to separate specific components. This is a method of accelerating crystallization, and by this operation, a state in which crystals of a specific component and residual liquid are mixed is obtained. Therefore, the drain pipe is unblocked, and the remaining liquid is discharged from the system via a filter while applying piston pressure to the solid-liquid coexistence material, and the solid phase left in the high-pressure chamber is taken out as a high-purity specific component. . That is, FIG. 1 is a vertical cross-sectional view of essential parts illustrating the apparatus used for high-pressure crystallization as described above, in which 1 is a high-pressure container, 2 is a filter, 8 is a filter back support material, 4 is a piston, Reference numeral 5 indicates a supply/discharge side block, 6 indicates a raw material supply pipe area, and 7 indicates a drain pipe. An example of a high-pressure crystallization procedure using this apparatus will be briefly explained as follows.

■排液弁v7を閉とじ給液弁■6を開いて原料供給管路
6から高圧容器1内へ原料を供給する。
(2) Close the drain valve v7 and open the liquid supply valve (6) to supply the raw material from the raw material supply pipe 6 into the high-pressure container 1.

■給液が終わると給液弁v6を閉じ、ピストン′4を降
下させて容器l内の原料に高圧力を作用させ、特定成分
の晶析を促進させる。
(2) When the liquid supply is finished, the liquid supply valve v6 is closed, and the piston '4 is lowered to apply high pressure to the raw material in the container l, thereby promoting crystallization of a specific component.

■晶析が終わると排液弁v7を開いて濾過・圧搾工程に
移る。この工程では、容器1内に存在する液状物を圧搾
しフィルター2を通して排出させるが、液状物はフィル
ター2の背面側に設けた隙間から給・vト出側ブロック
5の排液通路8を経て排液管路に至り、排液弁■7から
排出される。
- When the crystallization is finished, open the drain valve v7 and move on to the filtration/squeezing process. In this process, the liquid present in the container 1 is squeezed and discharged through the filter 2, but the liquid is passed through the gap provided on the back side of the filter 2 and through the drain passage 8 of the supply/vlet side block 5. The liquid reaches the drain pipe and is discharged from the drain valve 7.

■濾過・圧搾が終了した後は、高圧容器1を開放してケ
ーキ状に固まった特定成分の結晶を大気圧下に取出すか
、特別の事情があれば液状に融解して高圧容器から取出
してもよい。
■After filtration and squeezing are completed, open the high-pressure container 1 and take out the cake-shaped crystals of the specific component under atmospheric pressure, or if there are special circumstances, melt them into a liquid and take them out from the high-pressure container. Good too.

ところで主起■、■の濾過・圧搾工程では、フィルター
2の内部側の結晶成分は加圧・圧縮による圧縮熱および
晶析熱の発生によって、はとんど瞬時に10度ないし数
十度も昇温するが、高圧容器の熱容量はきわめて大きい
ので、被処理体の、フィルター及び高圧容器内面に接す
る部分は、昇温か抑えられ、かつ、放熱が進行して、さ
らに温度が低下する。このような状態で母液を分離しよ
うとしても、フィルターの近傍又は排液通路に多量の結
晶ができて、固液の分離は円滑に進行しない。逆に固液
分離の過程で減圧す雇と、被処理体の温度は低下し、フ
ィルターや高圧容器内面の温度よりも低くなることがあ
り、時に必要以上の同相が融解し流出する。
By the way, in the filtration/squeezing steps (2) and (2), the temperature of the crystal components inside the filter 2 is almost instantaneously heated to 10 to several tens of degrees due to the generation of compression heat and crystallization heat due to pressurization and compression. Although the temperature rises, since the heat capacity of the high-pressure container is extremely large, the temperature of the portion of the object to be processed that is in contact with the filter and the inner surface of the high-pressure container is suppressed, and the temperature further decreases as heat dissipates. Even if an attempt is made to separate the mother liquor in such a state, a large amount of crystals will form near the filter or in the drain passage, and the solid-liquid separation will not proceed smoothly. On the other hand, when the pressure is reduced during the solid-liquid separation process, the temperature of the object to be processed decreases, sometimes becoming lower than the temperature inside the filter or high-pressure container, and sometimes more of the same phase than necessary melts and flows out.

このような温度分布の変動は、+’l)特定成分以外の
成分のA’b析による強度低下の危険がある、(2)排
液通路の同化にともないフィルターの濾過m能が低下す
る、(3)特定成分の結晶の融解による分留り低下をひ
きおこす、など、高圧力による晶析の特徴を損なう。
Such fluctuations in temperature distribution pose the following problems: +'l) There is a risk of strength reduction due to A'b analysis of components other than specific components, (2) The filtration ability of the filter decreases due to the assimilation of the drainage passage. (3) It impairs the characteristics of crystallization due to high pressure, such as causing a decrease in fractional fraction due to melting of crystals of specific components.

さらに、これらの現象は、1日サイクルで生じる温度変
化、季節的温度変化で、容器温度が変化する影響をうけ
るので、安定な操業を維持しようとすると、容器温度の
管理を十分膠こ行なう必要が生じる。
Furthermore, these phenomena are affected by changes in the container temperature due to temperature changes that occur during the daily cycle and seasonal temperature changes, so in order to maintain stable operations, it is necessary to carefully manage the container temperature. occurs.

その為の温度制御は極めて煩雑であると共に相当のエネ
ルギーコストを要し、相当の手数とエネルギーを要する
。しかも高圧容器は高度の耐圧性を必須とすることから
厚内材で形成され、容器の熱容量は極めて大きいので、
容器温度の調整については応答性が良いとは言えず、温
度の調整精度もあまり良いものとはならない。
Temperature control for this purpose is extremely complicated, requires considerable energy cost, and requires considerable effort and energy. In addition, high-pressure containers must have a high degree of pressure resistance, so they are made of thick inner material, and the heat capacity of the container is extremely large.
Regarding the adjustment of the container temperature, it cannot be said that the responsiveness is good, and the temperature adjustment accuracy is also not very good.

本発明者等はこうした事情に着目し、フィルター内・外
の温度差に起因する前述の様な障害を少なくし、良好な
操業制御性のもどで高純度の特定成分を高収率で回収す
ることのできる高圧晶析装置を開発しようとして種々研
究を進めてきた。本発明はかかる研究の結果完成された
ものであって、その構成は、前述の様な高圧晶析装置に
おいて、高圧容器内周面とフィルターとの間に断熱性隔
壁を設けたところに要旨を有するものであり、該断熱性
wA壁によって高圧容器本体への熱伝達によるフィルタ
ー内周面側の圧搾物の降温を極力抑え、圧搾物全体を略
一定の温度に維持することによって特定成分の純度及び
回収率を大幅に高めると共に、操業時の温度制御を著し
く簡略化し得ることになった。
The present inventors focused on these circumstances, and aimed to reduce the above-mentioned problems caused by the temperature difference between inside and outside the filter, and recover high-purity specific components at high yields with good operational controllability. Various research efforts have been carried out in an attempt to develop a high-pressure crystallizer that can achieve this. The present invention was completed as a result of such research, and its configuration is based on the above-mentioned high-pressure crystallizer, in which a heat-insulating partition is provided between the inner peripheral surface of the high-pressure container and the filter. The heat-insulating WA wall minimizes the temperature drop of the pressed material on the inner peripheral surface of the filter due to heat transfer to the high-pressure container body, and maintains the entire pressed material at a substantially constant temperature, thereby improving the purity of specific components. In addition to greatly increasing the recovery rate, temperature control during operation can be significantly simplified.

以下実施例図面に沿って本発明の構成及び作用効果を詳
細に説明する。第2図は本発明署こ係る高圧晶析装置を
例示する要部概略縦断面図であり、装置全体の構成は第
1図の例と実質的に変わらない。本例ではフィルター2
とフィルター背面支持材8の間に断熱性隔壁9を設ける
と共に、該支持材8の外周側にも断熱性隔1110を設
け、フィルター内面側に初ける圧搾物の熱が高圧容器本
体1方向へ極力伝わらない樺な断熱構造として構成され
ている。同図ではフィルター背面支持材8を挾んでその
内・外に断熱性隔!19.10を2重に設けたが、十分
な断熱効果を確保し得る限り外面側の断熱atOは省略
してもよく、また断熱壁9を剛性材で構成することによ
ってフィルター背面支持機能を兼備させ、り背面支持材
8を省略することも可能である。また本例ではシリンダ
の下方部周壁のみにフィルター2を配置して濾過を行な
う様に構成したが、シリンダ高さ方向全体にフィルター
2を配置して濾過効率を高めることも勿論可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration and effects of the present invention will be explained in detail below with reference to the drawings. FIG. 2 is a schematic longitudinal cross-sectional view of the main parts illustrating the high-pressure crystallization apparatus according to the present invention, and the configuration of the entire apparatus is substantially the same as the example shown in FIG. 1. In this example, filter 2
A heat insulating partition wall 9 is provided between the support material 8 and the filter back support material 8, and a heat insulating partition 1110 is also provided on the outer circumferential side of the support material 8, so that the heat of the pressed material that starts on the inner surface of the filter is directed toward the high pressure container main body 1. It is constructed with a birch heat insulating structure that prevents transmission of electricity as much as possible. In the same figure, the filter back support material 8 is sandwiched between the inside and outside of it with a heat insulating partition! 19. 10 are provided in double layers, but the insulation atO on the outer surface side may be omitted as long as a sufficient insulation effect can be ensured, and by constructing the insulation wall 9 with a rigid material, it also has the function of supporting the back of the filter. It is also possible to omit the rear support member 8. Further, in this example, the filter 2 is disposed only on the lower circumferential wall of the cylinder for filtration, but it is of course possible to dispose the filter 2 over the entire height of the cylinder to increase the filtration efficiency.

又高さ方向全域にフィルターを配置しない場合には、容
器l内面と処理室14との間に断熱層18を設けること
によって、被処理体への容器温度の影響を断つことがで
きる。更に図示した如<、ピストン4の頭部及び給・排
出側ブロック5の頂部にも断熱層11.12を設は装置
本体方向への熱伝達を防止することも有効である。又さ
らにこの部分にフィルターを配置することも効果がある
Further, when a filter is not disposed over the entire height direction, by providing a heat insulating layer 18 between the inner surface of the container l and the processing chamber 14, the influence of the container temperature on the object to be processed can be cut off. Furthermore, as shown in the figure, it is also effective to provide heat insulating layers 11 and 12 on the head of the piston 4 and the top of the supply/discharge side block 5 to prevent heat transfer toward the main body of the apparatus. Furthermore, it is also effective to place a filter in this area.

この様に本発明ではシリンダ内の圧搾物と装置本体を断
熱材によって熱的に遮断し、特にフィルター2の外周方
向への熱伝達を阻止しているから、フィルター2部分の
見掛は上の熱容量は著しく低減する。その結果、加圧拳
圧搾によって生じる圧搾物の前記第2図に示した様な内
部温度の変化に対しても、圧搾物全体が該温度変化に直
ちに追従し、フィルター内面側と中心部の間で緩慢な温
度勾配を生ずることが実質的にほとんどなく、圧搾物全
体をほぼ一定の温度分布に保持することができる。従っ
て先に説明した様な「フィルター内周面側圧搾物の降温
によって特定成分以外の成分が晶析し、■圧搾物の純度
が低下する、Oフィルター内面側で目詰り状態となって
濾過機能が低下する、等jといった問題が殆んど発生せ
ず、圧搾物中に含まれる液状物質のみをフィルター2か
ら効率良(除去することができ、特定成分の純度及び回
収率を大幅に高めることができる。また被処理物の温度
も容器温度に影響されず、操業が安定する。さらに高圧
容器の温度管理精度の許容値は大幅にゆるめられ、経済
性も高められる。
In this way, in the present invention, the compressed material in the cylinder and the main body of the apparatus are thermally isolated from each other by the heat insulating material, and in particular, heat transfer toward the outer circumferential direction of the filter 2 is prevented, so the appearance of the filter 2 portion is as shown above. Heat capacity is significantly reduced. As a result, even when the internal temperature of the pressed material changes as shown in FIG. There is virtually no occurrence of a slow temperature gradient, and the entire pressed material can be maintained at a substantially constant temperature distribution. Therefore, as explained earlier, components other than specific components crystallize as the temperature of the pressed material on the inner peripheral surface of the filter decreases, and the purity of the pressed material decreases.The inner surface of the O filter becomes clogged and the filtration function There are almost no problems such as a decrease in In addition, the temperature of the object to be processed is not affected by the container temperature, resulting in stable operation.Furthermore, the tolerance for temperature control accuracy of the high-pressure container can be significantly relaxed, improving economic efficiency.

尚断熱材の材質は、適度の弾性と優れた圧縮強度を有し
且つ被処理物質に犯されない断熱性物質であればその種
類は特に限定されないが、特に好ましいのはベークライ
トやエポキシ樹脂の様な耐熱硬質樹脂である。又その形
状は装着位置の形状に応じて適宜決定すべきであること
は当然であるが、フィルター2の外周面側へ装着される
断熱性隔壁9の場合は、更に濾過液の流下を許す様な設
計上の工夫も必要となる。即ち第2図からも容易に理解
し得る様に、フィルター9を通過した液状物はその外周
側を流下した後排液通路8から排液管路7方向へ排出さ
れなければならず、前記隔壁9がフィルター2の外周全
面に密着していると、液状物の流下が不可能になって圧
搾濾過自体が不可能になるからである。かかる濾過液状
物の流下を許す為の具体的な構造としては、■断熱性隔
壁9のフィルター2との接触面に上下方向の凹溝を多数
形成して液状物の流下隙間とした構造、■間隔壁9に多
数の細孔を船成し、該隔!!!9の外面側から下方へ流
下させる構造、或は■第8図(部分横断面図)に示す如
く隔壁9を多数の割型構造とし、割型同士の隙間から流
出してきた液状物をその舛側に設けた液状物流王道9a
を経て下方へ流下させる構造、■隔壁9全体を多孔質材
で構成し、wi1819の内部を通して流下させる構造
、等を適宜、採用すればよい。
The material of the heat insulating material is not particularly limited as long as it has appropriate elasticity, excellent compressive strength, and is not affected by the material to be treated, but particularly preferred are bakelite and epoxy resin. It is a heat-resistant hard resin. It goes without saying that its shape should be determined appropriately depending on the shape of the mounting position, but in the case of the heat-insulating partition wall 9 mounted on the outer peripheral surface of the filter 2, it should be designed to allow the filtrate to flow further down. Design considerations will also be required. That is, as can be easily understood from FIG. 2, the liquid that has passed through the filter 9 must be discharged from the drain passage 8 toward the drain pipe 7 after flowing down the outer circumferential side of the filter 9. This is because if the filter 9 is in close contact with the entire outer periphery of the filter 2, it becomes impossible for the liquid to flow down and squeeze filtration itself becomes impossible. Specific structures for allowing the filtered liquid to flow down include: (1) a structure in which a large number of vertical grooves are formed on the contact surface of the insulating partition wall 9 with the filter 2 to create a flow gap for the liquid; A large number of pores are formed in the partition wall 9, and the partition wall 9 is formed with a large number of pores. ! ! 9. Alternatively, as shown in Fig. 8 (partial cross-sectional view), the partition wall 9 has a structure with many split molds, and the liquid flowing out from the gaps between the split molds is drained from the gap between the split molds. Liquid distribution road 9a installed on the side
2) The entire partition wall 9 is made of a porous material and the water flows down through the inside of the wi1819, etc. may be adopted as appropriate.

断熱層の厚みは、操業条件によって任意に決定できるが
、上鮎ベークライトのような構造部材に眠らず、例えば
、前記補強部材に膜状断熱材を固定したようなものであ
ってもよい。
The thickness of the heat insulating layer can be arbitrarily determined depending on the operating conditions, but instead of relying on a structural member such as Kamiayu Bakelite, it may be, for example, a film-like heat insulating material fixed to the reinforcing member.

本発明は以上の様に構成されており、容器内面殊にフィ
ルター外面側に断熱性隔壁i設、けて装置本体方向への
熱移動を阻止したので、フィルター内面側における圧搾
物の容器温度による温度変化が可及的に防止され、ひい
ては圧搾物全体をほぼ均等な温度に保つことができる。
The present invention is constructed as described above, and the heat insulating partition wall i is provided on the inner surface of the container, especially on the outer surface of the filter, thereby preventing heat transfer toward the main body of the device. Temperature changes are prevented as much as possible, and the entire pressed product can be kept at a substantially uniform temperature.

その結果フィルター内面側における特定成分以外の成分
の晶析が防止されてその圧搾除去を効率良く行なうこと
ができ、特定成分の純度及び回収率を共に向上し得るこ
とになった。
As a result, the crystallization of components other than the specific components on the inner surface of the filter was prevented, and their removal by compression could be carried out efficiently, making it possible to improve both the purity and recovery rate of the specific components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される高圧晶析装置を例示する概
略縦断面図、第2図は本発明の実施例を示す要部縦断面
図、第8図は断熱性隔壁の配設例を示す要部横断面図で
ある。 1・・・高圧容器本体、2・・・フィルター、°8・・
・フィルター背面支持部材、 4・・・ピストン、 5・・・給・排出側ブロック、9
.10・・・断熱性隔壁、 11.12・・・断熱層。 出願人株式会社神戸製鋼所 代理人弁理士植木久鼎h
FIG. 1 is a schematic vertical cross-sectional view illustrating a high-pressure crystallizer to which the present invention is applied, FIG. 2 is a vertical cross-sectional view of essential parts illustrating an embodiment of the present invention, and FIG. FIG. 1... High pressure vessel body, 2... Filter, °8...
・Filter back support member, 4... Piston, 5... Supply/discharge side block, 9
.. 10...Insulating partition wall, 11.12...Insulating layer. Applicant Kobe Steel Co., Ltd., Patent Attorney Hisataka Ueki

Claims (1)

【特許請求の範囲】[Claims] 液相混合物中の特定成分を加圧により固化析出せしめ、
次いで高圧容器の少なくとも内周側に配置されたフィル
ターを通して、液状成分を高圧容器の外部に連なる排出
管路へ圧搾排出させることによって特定成分を分離回収
する高圧晶析装置において、高圧容器内面と処理室又は
フィルターとの間に断熱性隔壁を設けてなることを特徴
とする高圧晶析装置。
The specific components in the liquid phase mixture are solidified and precipitated by applying pressure.
Next, in a high-pressure crystallizer that separates and recovers specific components by squeezing and discharging the liquid components to a discharge pipe connected to the outside of the high-pressure container through a filter disposed at least on the inner circumferential side of the high-pressure container, the inner surface of the high-pressure container is processed. A high-pressure crystallizer characterized in that a heat-insulating partition is provided between a chamber or a filter.
JP5010984A 1984-03-14 1984-03-14 High-pressure crystallizer Pending JPS60193502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5010984A JPS60193502A (en) 1984-03-14 1984-03-14 High-pressure crystallizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5010984A JPS60193502A (en) 1984-03-14 1984-03-14 High-pressure crystallizer

Publications (1)

Publication Number Publication Date
JPS60193502A true JPS60193502A (en) 1985-10-02

Family

ID=12849919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5010984A Pending JPS60193502A (en) 1984-03-14 1984-03-14 High-pressure crystallizer

Country Status (1)

Country Link
JP (1) JPS60193502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001605A1 (en) * 1985-09-18 1987-03-26 Kabushiki Kaisha Kobe Seiko Sho High-pressure crystallizer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157773A (en) * 1978-06-02 1979-12-12 Kobe Steel Ltd High pressure fractional crystallizer
JPS54158376A (en) * 1978-06-05 1979-12-14 Kobe Steel Ltd Squeeze separating method for solid/liquid in fractional crystallization under pressure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157773A (en) * 1978-06-02 1979-12-12 Kobe Steel Ltd High pressure fractional crystallizer
JPS54158376A (en) * 1978-06-05 1979-12-14 Kobe Steel Ltd Squeeze separating method for solid/liquid in fractional crystallization under pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987001605A1 (en) * 1985-09-18 1987-03-26 Kabushiki Kaisha Kobe Seiko Sho High-pressure crystallizer

Similar Documents

Publication Publication Date Title
IE62853B1 (en) Process and equipment for crystallising an inorganic substance
JPS60193502A (en) High-pressure crystallizer
US4784766A (en) Pressure crystallization equipment
US3290891A (en) Batch crystal purification
JPS5810121B2 (en) Substance separation and purification equipment
US3190450A (en) Filter for a crystal purification column
EP0475836A2 (en) Process for separating 2,7-dimethylnaphthalene under pressure
FR2530482B1 (en) PROCESS FOR THE EXTRACTION OF A LIQUID PHASE CONTAINED IN MATERIAL SIMILAR TO A PULP
JPS6112727B2 (en)
JPS60193501A (en) High-pressure crystallizer
JPH02214503A (en) Separation by cooled crystallization
RU2139363C1 (en) Method and installation for refining lithium
JPS6112724B2 (en)
JPH02198601A (en) Method for pressure crystallization
JP2006069959A (en) Crystal purification method and apparatus therefor
JPS6161842B2 (en)
JPS59170227A (en) Refining method of aluminum
JPH082403B2 (en) Pressure crystallization method
JPH0417682B2 (en)
JPH0418882B2 (en)
JPH0587065B2 (en)
JPS6125403B2 (en)
JPH0523803B2 (en)
JPH04145902A (en) Pressure crystallizer
JPH0119366B2 (en)