JPS60191744A - Detection of data for automatic grinding of spiral tool and apparatus thereof - Google Patents

Detection of data for automatic grinding of spiral tool and apparatus thereof

Info

Publication number
JPS60191744A
JPS60191744A JP4560484A JP4560484A JPS60191744A JP S60191744 A JPS60191744 A JP S60191744A JP 4560484 A JP4560484 A JP 4560484A JP 4560484 A JP4560484 A JP 4560484A JP S60191744 A JPS60191744 A JP S60191744A
Authority
JP
Japan
Prior art keywords
tool
spiral tool
spiral
data
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4560484A
Other languages
Japanese (ja)
Other versions
JPH0133300B2 (en
Inventor
Jiro Uchida
二朗 内田
Sadayuki Mori
森 貞幸
Shigeru Inoue
茂 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAKINO FURAISU SEIKI KK
Original Assignee
MAKINO FURAISU SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAKINO FURAISU SEIKI KK filed Critical MAKINO FURAISU SEIKI KK
Priority to JP4560484A priority Critical patent/JPS60191744A/en
Publication of JPS60191744A publication Critical patent/JPS60191744A/en
Publication of JPH0133300B2 publication Critical patent/JPH0133300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • G05B19/186Generation of screw- or gearlike surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To efficiently realize the tool grinding with high precision by automatically executing the regrinding of a spiral tool by an NC tool grinder on the basis of the actual tool data of the tool, in regrinding of the spiral tool. CONSTITUTION:As for the detecting means for the data for the automatic grinding of a spiral tool, the feed transfer amount (l) and the revolution angle amount (alpha) are detected in a number of times over the all grinding length of a spiral tool T by revolution detectors 22 and 24, and the helix angle (theta) is detected by a calculating and memorizing means 28, and then the correspondence relation between the actual lead of the tool T and the helix angle is detected and memorized. Then, the memory data is input into an NC tool grinder, and automatic control operation is performed, and then the grindstone of the grinder can be traveled along the actual twisted edge surface of the tool T. By this means, the regrinding of the spiral tool can be automatically performed efficiently with high precision.

Description

【発明の詳細な説明】 技術分WJ 本発明はスパイラル工具の自動イν[耐用データを(i
1i出する方法と装置に関し、特に数値制御工具イν「
側盤によるスパイラル工具の自動再研削に通用して有効
な自動研削用プーータの検出方法と装置−に関する。
[Detailed description of the invention] Technical part WJ The present invention is an automatic adjustment method for spiral tools.
Regarding the method and device for producing 1i, especially the numerical control tool
The present invention relates to a method and device for detecting a puller for automatic grinding, which is applicable and effective for automatic re-grinding of a spiral tool using a side disk.

従来技術 従来よシ市販されているスパイラル工具には谷す−)’
 スi44ラル工具、不等リードスパイラル工具、テー
パ等・\リカ及2フ等イラル工共等の多極があシ、これ
らのスパイラル工具においては呼称されるリード値やス
パイラル値に対して実際値が一般に誤差を含んでいるこ
とが多い0促って〜呼称値に基いて数値制御(以下、N
Cという)工具ψト側盤によシこれらのスパイラル工具
を再研1−JiJ Lようとすると、実際値との誤差の
1こめにスパイラル工具の既存切刃溝に沿わない自動研
削が遂行さ7’Lることとなシ、その結果工具を使用不
能に陥らせたり、或いはiJ’J ’J&に多くの時間
を費やすことになり、非能率的になるという欠点があっ
た。
Conventional technology There are many spiral tools available on the market.
44 spiral tools, unequal lead spiral tools, tapers, etc., multi-pole tools such as Rica and 2F spiral tools, etc., and these spiral tools have actual values for the called lead values and spiral values. Numerical control (hereinafter, N
When attempting to resharpen these spiral tools using the tool ψ (referred to as C) and the side plate, automatic grinding that does not follow the existing cutting groove of the spiral tool is performed at the first error from the actual value. 7'L, as a result, the tool becomes unusable or a lot of time is spent on iJ'J 'J&, resulting in inefficiency.

発明の概−装 依って本発明の目的は上述した従来技術の欠点をJ眸消
ずべく、ス・ぐイラル工其の自動研削用のデ′−夕を自
動的に険出し、この検出データによってNC工具研削盤
でス・母イラル工其の既存刃溝に沿って高梢度の目動イ
リ(削を遂行できるようにするス・にイラル工共の自動
研削用データの検出力法と装置4ヲ提供せんとするもの
である。本発明によればス・にイラル工其の自動研削用
データ検出方法において、工具保持台に装着した前記ス
・ぞイラル工具のねじれ刃面に一定予圧力下で固定基準
片を当接させ、前記ス・ぐイラル工具をその「曲線方向
に自動送りすることによって前記スパイラル工具を前記
軸線まわシに回転させ、前記ス・母イラル工具の自り1
υ送り一紅と回転角度量とを対応して検出し、その対応
検出値から一定演算式に従って前記ス・ぐイラル工具の
リードとねじれ角との実P@値を演算してこれf:経時
的な記憶データとして格納する工程を有し、前記格納さ
れた記憶データに従って前記スパイラル工具を自fil
I41F削できるようにしたスパイラル工具の自動細則
用データ検出力法が仙′供され、上記演算式は、前記自
動送り41 t、回転角Lb’+α、前記スパイラル工
具のIf ’i16 D 、前記スパイラル工具のり−
ドL1前記スノ9イラル工其のねじれ角θに関して、 L=t ・・・・・・・・・・・・(1)である。本発
明によれば、)I)iる検出力法の実施のために、固定
台と、前記固定台上に移動可能に設けられると共に一定
の軸方向の移動送り手段とスパイラル工具の装填用スピ
ンドルとをイ)した摺動iのワーク保持台と、@記移動
送9手段の送り砥検小器と前記スピンドルの回転量、4
0・出2!JとrCそれぞれ接続した演算、記憶手段と
、前n己固定台上に固定設置されると共に前記スピンド
ルに装填さhたスフ4イラル工具のねじれ刃面f/C一
定予圧力下で当砕されるJJ(準具と全具備してl1h
t成され、前記(’+ii算、記1.(″J、手段には
1.iIs記送り量使小器と前記回転計検出器との対応
恢出11D、に基いて偵尊−する一定の演算弐奮予め記
憶させ、前記スピンドルに装填したスパイラル工具のリ
ードとねじれ月の夫際計全前dCワーク保持台の送シ移
動量と前記スピンドルの回転量とから% ri fJ出
すると共に記I5はするようにしたことを%徴とするス
パイラル工具の自動仙削データ検出装置が提供され、M
iJ記ワーク保持台を数値′1BII御工具研削盤のワ
ークヘッドによって形成し、また前記送9景、沃出器全
前記ワークヘッP送りモータの回転検出器、前記回転量
検出器”c )Iil記ワークヘッドのスピンドルに設
けられた回転検出器によってそれぞれ形成し、また前記
簀1記憶手段を数値制■装置によって形成すればスパイ
ラルエよ↓の自動研削データ検出装置を既存のNC工具
研111」盤上で実現すること力作コ能でろシ、従って
検出した自動研f41J r−夕に基いて直ちにスパイ
ラル工具の書研削を自動遅行することができる。以下、
本発明を添付図面に示す央廁例に基いて詳細に簡明する
SUMMARY OF THE INVENTION In order to eliminate the above-mentioned drawbacks of the prior art, the purpose of the present invention is to automatically detect the data for automatic grinding of S.G. By using the NC tool grinding machine, we have developed a detection power method of data for automatic grinding of the machine tool, which allows the grinding machine to carry out high-speed machining along the existing cutting groove of the tool machine. According to the present invention, in the method for detecting data for automatic grinding of a steel tool, a certain predetermined shape is formed on the helical blade surface of the tool mounted on a tool holding stand. A fixed reference piece is brought into contact with the fixed reference piece under pressure, and the spiral tool is rotated around the axis by automatically feeding the spiral tool in the curve direction, and the spiral tool is rotated around the axis 1.
The υ feed and rotation angle amount are detected in correspondence, and the actual P@ value of the lead and helix angle of the spiral tool is calculated from the corresponding detected value according to a certain calculation formula, and this value is calculated as f: time elapsed. the step of storing the spiral tool as stored data;
A data detection force method for automatic detailed rules for a spiral tool capable of I41F cutting is provided, and the above calculation formula is based on the automatic feed 41t, rotation angle Lb'+α, If'i16D of the spiral tool, and the spiral Tool glue
With respect to the torsion angle θ of the above-mentioned Snow 9 Iral construction, L=t (1). According to the invention, for the implementation of the detection force method, a fixed base, a constant axial movement feed means and a spindle for loading the spiral tool are arranged movably on the fixed base; A) A sliding workpiece holding table with a), a feed grindstone detector of the moving feeding means 9, and the rotation amount of the spindle, 4
0 out 2! The calculation and storage means connected to J and rC respectively, and the helical blade surface f/C of the four-dimensional tool, which is fixedly installed on the fixed table and loaded on the spindle, are crushed under a constant preload force. JJ (with all preparations and equipment)
t is formed, and the above ('+ii calculation, notation 1. The calculation is memorized in advance, and %ri fJ is calculated and recorded from the total amount of movement of the spiral tool loaded on the spindle and the amount of rotation of the spindle. I5 is provided with an automatic grinding data detection device for a spiral tool, which detects the percentage of the
The workpiece holder shown in iJ is formed by the work head of the numerical value '1 BII tool grinding machine, and the rotation detector of the feed motor of the work head P and the rotation amount detector If each of them is formed by a rotation detector provided on the spindle of the work head, and the storage means is formed by a numerical control device, the automatic grinding data detection device of Spiral E↓ can be used with the existing NC tool grinding 111'' machine. What is realized above is a powerful tool, and therefore, the manual grinding of the spiral tool can be automatically delayed immediately based on the detected automatic grinding. below,
The invention will now be explained in detail on the basis of a central example shown in the accompanying drawings.

第1図は本発明によるスパイラル工具の自動研削データ
検出方法を実施する装置の機構図である。
FIG. 1 is a mechanical diagram of an apparatus for implementing the automatic grinding data detection method for a spiral tool according to the present invention.

゛同41図において、10は固定基台であり、この固定
基台10のがイドエ2に沿ってワーク保持台14が矢印
II 、)(″方向に移動自在に載設され、固定基台l
Oに取付けられX !Ill駆動モータ16と送りねじ
18に依ってX軸方向に自動送シされる。
゛In Fig. 41, 10 is a fixed base, and the workpiece holder 14 is mounted along the station 2 so as to be movable in the direction of the arrow II, )('', and the fixed base l
Attached to O and X! It is automatically fed in the X-axis direction by the Ill drive motor 16 and feed screw 18.

またワーク保)立合14はスピンドル20を有し、この
スピンドル20の先端にはスパイラル工具Tが装填され
中心軸線まわシに矢印°“A#力方向p転自在となって
いる。また上記)[1g動モータ16と上記スピンドル
20との両者には七り、ぞれ周知のロータリーエンコー
ダからなる回転検出器22.24が4′411+#され
ておシ、回転検出器22の回転侠出量を介して送シねじ
18によるワーク保持台14のX軸方向移動量が愼出で
き、また回転検出器24の回転検出器から究極的にスパ
イラル工具Tの矢印”A”方向における回転角変電が検
出できる。
In addition, the workpiece holding stand 14 has a spindle 20, and a spiral tool T is loaded at the tip of the spindle 20, and the spiral tool T is rotatable around the center axis in the direction of force. Both the 1g motor 16 and the spindle 20 are equipped with rotation detectors 22 and 24, each consisting of a well-known rotary encoder. The amount of movement of the workpiece holder 14 in the X-axis direction by the feed screw 18 can be detected through the rotation sensor 24, and the rotation angle transformation of the spiral tool T in the direction of arrow "A" can ultimately be detected from the rotation detector 24. can.

このように1()を成されたワーク保持台14にいまス
ノやイラルエJATを抜埴し、詠ス・ゼイラル工具の用
心上で該工具のすくい刃面に基準片26全当接させる。
A piece of snow or an Iralue JAT is now drawn out on the workpiece holding table 14 that has undergone step 1 () in this way, and the reference piece 26 is brought into full contact with the rake edge surface of the tool as a precaution.

この、埜準片26は例えば崗気スタンド・;テのW、j
知のセツティング手段音用いてi占1定基台10に固定
し、ワーク保持台14に対し2て不動に維持する。葦だ
、スピンドル20の内す耶には例えはコイルばね音用い
て該スピンド9ル20をワーク保楠台14の内方に引き
例けるよりな1・1゛・1成を」よ(++fiさせて基
準片26Vこ対しスノぐイラルー[共Tが’Mに−′l
にの予圧力下で当接するように構成しておく。また回転
検出器22.24の侠出叡は後述する一定の演T)4式
を記憶し、憩)マ:を実行する演算記1.ば手段28V
′C入力される。また演壇、記1.(〜+段28は削去
#i :¥:全経時的に記t、u j ルと共に外部I
i;、 D’A f f+fl! 1ii+ jてXl
1III+駆動モータ16のf観御駆、動をも行う。つ
まり演算記憶手段28は市販のマイクロコンピュータユ
ニットを用いて構成することも−oJ能であり、また後
述するように数値制御工具研削盤の数11σ制上述の構
成において、X軸[1,< tlfj+モータ16の作
動によってワーク保持台14(i−介してスピンドル2
0に装填嘔れたスパイラル工具Tを第1図のX軸左方向
に移動させると、スパイラル工具Tのねじれ刃面に不動
基準片26が当接配5にされているから該スノJ?イラ
ル工共のねじれ角(のに応じてスピンドル20、スパイ
ラル工具Tは矢印″′A#方向におりる一方向に旋回す
る。これらの、く軸方向の送シ移動i:およびA方向の
回転角ff量は回転(2)小器22,24によって4’
CQ出され、演り:記憶平段28に入力される。いま、
X軸方向の送シ移(b鼠tにり′accするスパイラル
工具Tの実際の回転角を圧砕がα0であり、スパイラル
工具の外径がDであったとすれは、スフ9イラル工具T
の実際のねじれ角θに対して の関係が成立するから、この式(1)を演算ね旧、は手
段28に予め格納させておけば、回転検出1+22゜2
4からの検出量が入力2れる都鹿、送シ移切址tに対応
したス・母イラル工具Tのヘリカル刃の実際ねじれ角θ
k J′)、出し、昇出値を経時的に記憶することがで
きる。なぜ、上述したねじれ角θの実際値の検出に当っ
ては、送り移動量t′f:微小インクレメンタル11t
、とじて、当該ス・やイラル工具Tの全研削長に旦って
多数回サンプルし、そのサンプルされた各送り移動量t
に対応した回転角度量αr桟出してその都度のねじれ角
θを演A、シ、記憶する方法が採られる。このようにス
・にイラル工具Tの全研削長に亘って回転検出器22.
24から多数回そizぞれ送シ移動gtと回転角If量
αとを4・帽Bシ、(l<算、記憶手段28でねじれ角
0を検出するようにすれば、等リード又は不等リードの
ス・平イラル工其の如何に係わり無く、該工具の実際の
、リードとねじれ角との間の対応関係を検出して記1蔵
することができる。
This Nozomi piece 26 is, for example, a solid stand; Te's W, j
It is fixed to the fixed base 10 using known setting means and kept immovable relative to the workpiece holding table 14. For example, the inside of the spindle 20 should have a 1.1゛.1 formation, rather than using the sound of a coil spring to draw the spindle 20 to the inside of the workpiece holding stand 14. Let's put the standard piece 26V against it [both T and 'M-'l
The structure is such that they come into contact under a preload of . Further, the rotation detectors 22 and 24 store certain expressions T)4, which will be described later, and execute calculations 1 and 24. Means 28V
'C is input. Also, the podium, note 1. (~+ stage 28 is deleted #i: ¥: All chronologically recorded t, u j and external I
i;, D'A f f+fl! 1ii+ jteXl
1III+ Also perform f observation driving and movement of the drive motor 16. In other words, the arithmetic storage means 28 can be constructed using a commercially available microcomputer unit, and as will be described later, in the above-described construction based on the number 11σ system of the numerically controlled tool grinder, the X-axis [1, < tlfj+ By the operation of the motor 16, the workpiece holding table 14 (i- via the spindle 2
When the unloaded spiral tool T is moved to the left of the X-axis in FIG. Depending on the torsion angle of the spiral tool, the spindle 20 and the spiral tool T turn in one direction in the direction of the arrow ``A#''. The angle ff amount is 4' due to the rotation (2) small pieces 22 and 24.
The CQ is issued and input to the performance/memory level 28. now,
If the actual rotation angle of the spiral tool T that is accretive to the feed movement in the X-axis direction is α0 and the outer diameter of the spiral tool is D, then
Since the relationship holds true for the actual torsion angle θ, this equation (1) can be calculated.
Actual helix angle θ of the helical blade of the main helical tool T corresponding to the transfer cutting site t in which the detected amount from 4 is input 2.
k J'), exit, rise and rise values can be stored over time. Why is it that when detecting the actual value of the torsion angle θ mentioned above, the feed movement amount t'f: minute incremental 11t
, the total grinding length of the tool T is sampled many times, and each sampled feed movement amount t
A method is adopted in which a rotation angle amount αr corresponding to the rotation angle αr is determined and the torsion angle θ is calculated and stored each time. In this way, the rotation detector 22.
If the torsion angle 0 is detected by the storage means 28, the feeding movement gt and the rotation angle If amount α are calculated as 4 and the rotation angle If, respectively, from 24. Irrespective of whether the tool has a uniform lead or flat helix, the actual correspondence between the lead and the helix angle of the tool can be detected and stored.

第2図、第3図は上述した対応関係を示すグラフ図であ
シ、第2図が等リード等ねじれ角のストレートエンドミ
ルを被検出(研削)ス・母イラルエ共とした揚仕を示し
、第3図は不等リード、吟tじれ角のチー/やエンドミ
ルを被1p出(研削)スノやイラル工具とした場合金星
した図でめる0なお八toは全研削刃長を示している。
Figs. 2 and 3 are graphs showing the above-mentioned correspondence, and Fig. 2 shows a straight end mill with equal helix angles of equal leads and a straight end mill with both the detected (grinding) base and the base plate. Figure 3 shows a diagram with a gold star when a chi/end mill with an unequal lead and a heel angle is used as a 1p protrusion (grinding) tool or an irral tool. .

本発明による上述した記憶データを矢に数値制御工具研
削盤のα値制御説直に人力して1其研削盤を自動制御作
動させればス・ぞイラル工具Tの実際のねじれ刃面にa
って研削砥石?走行させることかり能であシ、従ってス
ノぐイラル工具の再1υ開り全自動的に遂行させ、かつ
従来必要とした−・1整作業を擬することなく能率的に
工具古漬を達成できるのである。つまシ、上述した記は
データ全自動研削用データとして使用できるのでめる。
If the above-mentioned stored data according to the present invention is used as an arrow to manually control the α value of a numerically controlled tool grinder and the grinder is automatically controlled, the actual helical blade surface of the spiral tool T will be a
Is it a grinding wheel? Since it is possible to run the tool automatically, the re-opening of the tool can be carried out fully automatically, and tool cleaning can be efficiently achieved without having to perform the one-time adjustment work that was required in the past. be. Please note that the above description can be used as data for fully automatic grinding.

さて、第4図、第5図は数値制御工具研削盤の正面図と
1ill而図とを示しておシ、第1図に示し!ζ本発明
の自動研削用データの検出装置が、この数値制御工具研
削盤に具備させ得ることを以下に説明する。
Now, Figures 4 and 5 show a front view and a diagram of a numerically controlled tool grinder. ζIt will be explained below that the automatic grinding data detection device of the present invention can be included in this numerically controlled tool grinding machine.

、144図、fJ5図において、α値1ift 1m工
具研811盤はベッド30の上部にブリッジ32が載置
され、このブ!J 、yS)32上にX軸テーブル34
がX ’Ili方向に摺動可能にc1λけられている。
, 144, and fJ5, the α value 1ift 1m Tool Ken 811 machine has a bridge 32 placed on the top of the bed 30, and this bridge 32 is placed on the top of the bed 30. J, yS) 32 on the X-axis table 34
is slidably slidable in the X'Ili direction.

またX ’1Qflテーブル、34上にワークベッド3
6が取付けられ、このワークヘッド;36のスピンドル
38に被イυ1削ス/IPイラルエ共が取付けられる。
Also X '1 Qfl table, 3 work beds on 34
6 is attached to the work head; 36's spindle 38 is attached to the workpiece υ1 cutting base/IP irraue.

他方、ヘッド30に載jtオされたブト9ル40tま上
述のX軸方向と直交す/+ Y ’ii1方向にY輔4
4 BlυモータM1の+iA動力を受けてJl・1!
1lJl可能であり、このサト°ル40上に設けられた
コラム42の上部に砥石車44を有した砥石ヘッド46
が設けられている。コラム42はヘッド:30内に内蔵
された上・工作動機構によってよ・下、2佃1方向に移
動可能であシ、このコラム42の2軸方向移動に伴って
砥石ヘッド46もZ軸方向にイ゛番動する。
On the other hand, the button 40 mounted on the head 30 is moved in the direction perpendicular to the above-mentioned X-axis direction.
4 Jl・1 after receiving the +iA power of Blυ motor M1!
A grinding wheel head 46 having a grinding wheel 44 on the upper part of a column 42 provided on this sattle 40.
is provided. The column 42 can be moved in two directions (upward and downward) by the upper and lower machining mechanisms built into the head 30, and as the column 42 moves in two axes, the grinding wheel head 46 also moves in the Z-axis direction. Take turns.

さて、上述したα値制御工具研削盤においては、X軸テ
ーブル34のX1ll駆動モ一タMxには回転検出器(
通常ロータリーエンコーダ)が内蔵されていて数値制御
11裟1dと接続されている。つまシ、X癲田4動モー
タMxは数値制御装置の制御によってワークヘッド36
をX軸方向に槓密送りするように1.、a ++17 
d h −r lへA −4市M;−r7−7 ヘ=、
 h” ’A 6 ノx (’ンドル38はその中心軸
(A ’1ift )まわシに回転11詣であると共に
A5軸枢動モータMAからの回転駆動力がベベル両車機
構又はウオーム歯車+I 4iaからなる方向及換型の
伝動機41(を介してスピンドル38を回転駆動する4
i’)成が設けられている。
Now, in the α-value controlled tool grinding machine described above, the X1ll drive motor Mx of the X-axis table 34 has a rotation detector (
It has a built-in rotary encoder (usually a rotary encoder) and is connected to the numerical control 11 (1d). The four-motion motor Mx is operated by the work head 36 under the control of the numerical controller.
1. so as to feed it closely in the X-axis direction. , a ++17
d h -r l to A -4 city M; -r7-7 h=,
h"'A 6 nox (' The handle 38 rotates about 11 times around its central axis (A '1ift), and the rotational driving force from the A5 axis pivot motor MA is transmitted from the bevel wheel mechanism or the worm gear + I4ia. The spindle 38 is rotationally driven through a direction change type transmission 41 (4).
i') configuration is provided.

従っていま、スピンドル38の上記伝動機4’l/)に
おける伝動要素間全11Jr続自在な伯1.7造、つま
り例えばウオーム歯車機構におけるウオームとウオーム
車間を機械的に切り離し自在とする+’+lJ造を設け
、かつスピンドル380回転−酸を検出する回転検出器
、例えばロータリーエンコーダを具備させておけば、ワ
ークヘッド361g1図のワーク保持台14として用い
、また第1図の基準片26に対応した適宜の基準片全へ
ラド30に取f=Jけるようにすれば、スピンドル、3
8に被研Mllスノ9イラルエ共を装填することにより
、自動研削用データの検出、記憶と、その記憶された自
動4t)(制用ガータに基〈工具古漬を連続して一台の
数値t++l+御工具研削工具研削盤上ることができる
のでめる。
Therefore, it is now assumed that the transmission elements in the transmission device 4'l/) of the spindle 38 are connected to each other by a total of 11Jr, that is, for example, in a worm gear mechanism, the worm and the worm wheel can be mechanically separated. If the spindle 380 rotation is equipped with a rotation detector, such as a rotary encoder, for example, a rotary encoder, the work head 361g can be used as the work holding table 14 in Figure 1, and can also be used as the reference piece 26 in Figure 1. If f=J is attached to all the appropriate reference pieces on the rad 30, the spindle, 3
By loading Mll/Snow 9/Irarue to be ground into 8, automatic grinding data can be detected and stored, and the stored automatic 4t) (Based on the custom gutter, one numerical value t++l+ The tool grinding tool can be used as a grinder.

そのJ44付には勿論、自動1υ[制用ガータの検出に
必装な演jン2作用は数値制御装置dの備える演算ユニ
、l’で実行すね、はよく、また鼠算結果の記憶も数値
制御・廃+?1.で行えば良いことほぎうまでもない。
Of course, the J44 is equipped with an automatic 1υ [operation 2 function, which is essential for the detection of the control gutter, is executed by the calculation unit l' provided in the numerical control device d, and also has a memory for the calculation results. Numerical control/waste+? 1. There's no need to worry about doing it yourself.

発明の効果 以」二の、1イ、明から明らかなように、本発明によれ
ば、スパイラル工具の再+yt削に当って、被研削対壕
であるスフ9イラル工其の実際の工具データ、つまシ自
動研削用データを比較的1)I〕単に演算検出し、しか
もその使用したデータに基いて数値制御工具研削盤によ
り当該スパイラル工具の研削、特に再イ1ノ[削を自動
遂行できるので、従来はス・!イラル工具のリード誤差
やねじれ角誤差を考慮して熟練技術や刃受けを用いた煩
瑣な調整作業を要した不都合をIll消して能率良く、
かつ精度の商いスパイラ 。
As is clear from Part 2, 1B, and ``Effects of the Invention'', according to the present invention, when re-cutting a spiral tool, the actual tool data of the suffix 9 spiral tool, which is the groove to be ground, is , the data for automatic grinding of the pickle can be simply detected by calculation, and based on the data used, grinding of the spiral tool, especially re-grinding, can be performed automatically using a numerically controlled tool grinder. So, traditionally, S! It eliminates the inconvenience of having to make complicated adjustments using skilled techniques and blade rests in consideration of the lead error and helix angle error of the tool.
And accuracy quotient Spira.

ルー[具研削1=成できる。Rou [tool grinding 1 = can be done.

4、 図+#iの前車な、況明 ・淋1図は木尾明によるスパイラル工具の自動研削用デ
ータ’15瑛出する方法の実施に用いられる装置、42
図、第3図は恢出データにおけるリードとねじれ川との
対応関係ケ示すグラフ図、44図、第5図は本発明によ
るス・母イラル工其の自動研削用データを検出する方法
全)!、癩できる奴値靜1側にL具研削盤の、正聞図と
41111面図。
4. The front car of Figure + #i, Shoakiaki and Hinoki 1. Figure 1 is a device used to carry out the method of extracting data '15 for automatic grinding of spiral tools by Akira Kio, 42
Figures 3 and 3 are graphs showing the correspondence between leads and twisted rivers in the excavated data, Figures 44 and 5 show the method for detecting data for automatic grinding of spiral machining according to the present invention. ! , A front view and a 41111 side view of the L tool grinder on the 1st side.

10・・・固定基台、12・・・ガイド、14・・・ワ
ーク保持台、16・・・X軸駆動モータ、18・・・送
りねじ、20・・・スピンドル、22.24・・・1!
J]転侠出器、26・・・基準片、28・・・演算記憶
手段、T・・・ス・ぞイラル工具。
DESCRIPTION OF SYMBOLS 10... Fixed base, 12... Guide, 14... Work holding stand, 16... X-axis drive motor, 18... Feed screw, 20... Spindle, 22.24... 1!
J] Transfer device, 26... Reference piece, 28... Arithmetic storage means, T... Szoiral tool.

特許出願人 牧野フライス精機株式会社 特許出願代理人 弁理士 庁 木 朗 弁理士 西 舘 和 之 弁理士 中 山 恭 介 弁理士 山 口 昭 之 弁理士 西 山 雛 也 第1図 第2図 ;i(3r、:1patent applicant Makino Milling Seiki Co., Ltd. patent application agent Patent Attorney Agency Akira Ki Patent attorney Kazuyuki Nishidate Patent attorney Kyosuke Nakayama Patent attorney Akira Yamaguchi Patent Attorney Hina Nishiyama Figure 1 Figure 2 ;i(3r, :1

Claims (1)

【特許請求の範囲】 1、 スパイラル工具の自動研削用データ検出方法にお
いて、工具保持台に装着した前記スパイラル工具のねじ
れ刃面に一定予圧力下で固定裁準片を当玲させ、前記ス
パイラル工具全その軸線方向に自動送りすることによっ
て前記ス/’Pイラル工具を前記軸Hまわりに回転させ
、前記スパイラル工具の自動送り ;ijと回転角度&
t+J:を対応して検出し、その対応検出値から一定演
算弐°に従って前記スノやイラル]ニルのリードとねじ
れ角との実際値f (a(算してこれ′:f:経時的な
記憶データとして格納する工程をイJ″し、前記格納さ
れた記憶データに従って前記スパイラル工具を自動研削
できるよ゛うにしたスパイラル工具の自動研削用データ
検出方法。 2、% ff 請求の+1i1)門弟1項に記載ノ方法
ニオイて、1%jl Ji1+嘔τ C’l’ d” 
I++ −A++ B−自重1+ ;t h 、−ト 
/ 1iil市ニイfzlrJ’量α、前記スパイラル
工具の直径D1宵■記スパイラル工具のリードL1前記
スパイラル工具のねじれ角0に関して、 L=t・・・・・・・・・・・・・曲−(1)であるス
パイラル工具の自動研削用データの検出方法。 3、特許請求の範囲第1項又は紀2項に記載の方法にお
いて、前記スパイラル工具の自動送’) litは前記
ワークヘッドの送シモータの回転量ヲエンコーダによっ
て検出することを介して憤出し、また前記スパイラル工
具の回転角度址は前記ワークヘッドのスピンドルに取付
けたエンコーダによって検出するようにしたスパイラル
工具の自動イL1ir“旬月データの検出方法。 4、固定台と、前記同定台上に移動可能に設けられると
共に一定の111方向の移動速シ手段とスパイラル工具
の装填用スピンドルとを有した摺動性のワーク保持台と
、前記移動法、り手段の送り量俣小器と前記スピンドル
の回転量検出器とにそれぞれ接続した演算、記憶手段と
、前記固定台上に固定設置1イされると共に前記スピン
ドルに装填きれたスパイラル工具のねじれ刃面に一定予
圧力下で当1片される基準具とを具侃jして構成され、
M’+J比演算、iii:憶手段にはFJ(1記送シ址
検出器と前記回転が、検出2(との対応検出11ηに茫
いて演算する一定の演算式を予め記1.・ヨさせ、前記
スピンドルに装填したスパイラル工具のリードとねじれ
角の実際組ヲ前記ワーク保持台の〕、4り移侃;「量と
前記スピンドルの回転111とから演n−検出すると共
に記憶するようにしたことを特徴とするスパイラル工具
の自ah研削データ4芙出装(11゜ ’ 管fr’Fλ(4氷のく(0門弟4項に記載の装置
において一前記ワーク保持台が数値制御工具イV+削益
のワークヘッドによって形成され、また前記送シ量、検
出2iが前記ワークヘッド送9モータの回転恢小器、前
記回転i7を検出にニルが前記ワークヘッドのスピンl
ミルに設けらrl、た回転検出器によってぞれぞ九形成
貿れ、また前記しtn:、記憶手段が数値画(ホ)装置
によって形成されるスパイラル工具の自動研削データ検
出装置1イ。
[Claims] 1. In a data detection method for automatic grinding of a spiral tool, a fixed cutting piece is applied under a constant preload to the helical edge surface of the spiral tool mounted on a tool holding stand, and the spiral tool The spiral tool is rotated around the axis H by automatic feeding in the axial direction of the spiral tool;
t+J: is detected correspondingly, and from the corresponding detected value, according to a certain calculation 2°, the actual value of the lead and torsion angle f (a (calculate this': f: memory over time) is calculated. A method for detecting data for automatic grinding of a spiral tool, which eliminates the step of storing data as data and enables automatic grinding of the spiral tool according to the stored memory data. The method described in
I++ -A++ B-Self weight 1+; t h, -t
/ 1iil city fzlrJ' amount α, diameter D1 of the spiral tool, lead L1 of the spiral tool, helix angle 0 of the spiral tool, L=t・・・・・・・・・・・・・curve − (1) A method for detecting data for automatic grinding of a spiral tool. 3. In the method according to claim 1 or 2, the automatic feed of the spiral tool is determined by detecting the rotation amount of the feed motor of the work head with an encoder; Further, the rotation angle of the spiral tool is detected by an encoder attached to the spindle of the work head. 4. A method for detecting automatic rotation data of the spiral tool. 4. Move to the fixed table and the identification table. a sliding workpiece holding table having a means for moving at a constant speed in 111 directions and a spindle for loading a spiral tool; A calculation and storage means respectively connected to the rotation amount detector, and a spiral tool fixedly installed on the fixed base and applied under a constant preload to the helical blade surface of the spiral tool fully loaded on the spindle. It is composed of a reference tool and
M'+J ratio calculation, iii: The storage means stores in advance a certain arithmetic expression to be calculated based on the correspondence between the FJ (1 recording position detector and the rotation) and the corresponding detection 11η with the detection 2 (1). and the actual set of the lead and helix angle of the spiral tool loaded on the spindle is detected and stored from the amount and the rotation 111 of the spindle. Self-ah grinding data for a spiral tool characterized by The work head is formed by a work head with V+cutting margin, and the amount of feed, detection 2i is the rotation of the work head feed motor, and the rotation i7 is detected by the spin l of the work head.
Automatic grinding data detection device 1 for a spiral tool, in which the rotation detectors provided in the mill are used to form the nine shapes, and the storage means are formed by a digital data writing device.
JP4560484A 1984-03-12 1984-03-12 Detection of data for automatic grinding of spiral tool and apparatus thereof Granted JPS60191744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4560484A JPS60191744A (en) 1984-03-12 1984-03-12 Detection of data for automatic grinding of spiral tool and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4560484A JPS60191744A (en) 1984-03-12 1984-03-12 Detection of data for automatic grinding of spiral tool and apparatus thereof

Publications (2)

Publication Number Publication Date
JPS60191744A true JPS60191744A (en) 1985-09-30
JPH0133300B2 JPH0133300B2 (en) 1989-07-12

Family

ID=12723954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4560484A Granted JPS60191744A (en) 1984-03-12 1984-03-12 Detection of data for automatic grinding of spiral tool and apparatus thereof

Country Status (1)

Country Link
JP (1) JPS60191744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108640A (en) * 2017-01-05 2018-07-12 リープヘル−フェアツァーンテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of automatically measuring external dimensions of gear cutter tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108640A (en) * 2017-01-05 2018-07-12 リープヘル−フェアツァーンテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method of automatically measuring external dimensions of gear cutter tool

Also Published As

Publication number Publication date
JPH0133300B2 (en) 1989-07-12

Similar Documents

Publication Publication Date Title
JP3467807B2 (en) Grinding equipment
US4683626A (en) Tool Holder for a machine tool
US4819515A (en) Method and apparatus for grinding saw teeth
US8644978B1 (en) Machining apparatus and method of making endodontic instruments
US5097634A (en) Tool grinder apparatus and method
JPS60191744A (en) Detection of data for automatic grinding of spiral tool and apparatus thereof
JP2007083351A (en) Grinder
JP2822061B2 (en) Grinding method of long tool edge using long tool grinder
JP3413939B2 (en) Grinding equipment
JP3128763B2 (en) Method of machining workpiece from coiled material
CN215432829U (en) Edging device convenient for blade transposition for cutter machining
US4157635A (en) Grinding machine for grinding a helical groove in a workpiece of tapering axial section
JPS5942268A (en) Grinding wheel truing device
JP3686393B2 (en) Router polishing machine
JP3777825B2 (en) Precision grinding machine and grinding wheel radius measurement method
JPH0839427A (en) Grinding device
JP3404902B2 (en) Grinding equipment
JP3293300B2 (en) Grinding equipment
JPH0358865B2 (en)
CN220347376U (en) Numerical control five-axis three-linkage plane enveloping worm whirlwind cutting machine tool
JP2952867B2 (en) Cutting tool re-grinding equipment
JP4838441B2 (en) Cylindrical workpiece grinding apparatus having repetitive profile and cylindrical workpiece shift plunge grinding method
JPH0710481B2 (en) NC broach grinder
JP3715773B2 (en) Traverse grinding method for rolling roll having crown
JP6827359B2 (en) Center unit, machine tool and program

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term