JPS60191689A - Laser heater - Google Patents

Laser heater

Info

Publication number
JPS60191689A
JPS60191689A JP59048412A JP4841284A JPS60191689A JP S60191689 A JPS60191689 A JP S60191689A JP 59048412 A JP59048412 A JP 59048412A JP 4841284 A JP4841284 A JP 4841284A JP S60191689 A JPS60191689 A JP S60191689A
Authority
JP
Japan
Prior art keywords
laser beam
energy density
laser
workpiece
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59048412A
Other languages
Japanese (ja)
Inventor
Naotake Toshifuji
利藤 尚武
Toshio Yoshida
寿夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59048412A priority Critical patent/JPS60191689A/en
Publication of JPS60191689A publication Critical patent/JPS60191689A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To enable irradiation of energy at a uniform density to a material to be worked by refracting a laser beam in plural directions, condensing the laser beams superposed with the part of the high energy density and the part of the low energy density and irradiating such beam to the work. CONSTITUTION:A laser beam 1 having a Gauss type energy density distribution is irradiated to a prism 4 of a conical body having a gable roof shape in such a way that the central part of the beam 1 coincides with the ridgeline of the prism 4. The laser beams 5, 6 subjected to refraction by the prism 4 are superposed to obtain a laser beam having the approximately uniform energy density distribution. The laser beam consisting of the beams 5, 6 is then condensed by a convex lens 2 and is irradiated to a material 3 to be worked. The material 3 is worked at a desired working pattern by changing a work distance l. The irradiation of the laser beam at the uniform energy density to the material to be worked is thus made possible.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、レーザ発振器から取り出されたレーザビー
ムを被加工物に照射して、この被加工物の加熱を行う装
置において、特に、表面改質加工を行うのに好適な、均
一なエネルギー密度分布を有するレーザビームを得るこ
とのできるレーザ加熱装置に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an apparatus for heating a workpiece by irradiating the workpiece with a laser beam extracted from a laser oscillator, and particularly for surface modification. The present invention relates to a laser heating device that can obtain a laser beam having a uniform energy density distribution suitable for processing.

〔従来技術〕[Prior art]

従来一般に、レーザ発振器から取シ出されたレ−f ヒ
−hのエネルギー密度分布は、レーザ発振器の特性に応
じて、種々のモードにしたがった分布を有している。例
えば、第1図に示す様に、レーザビーム1がガウス形エ
ネルギー密度分布を示すTBM、。モードの場合、レー
ザビーム1のエネルギー密度は、レーザビーム1の横断
面の中心部分が最も高いエネルギー密度を有し、中心部
分から離れるにしたがって指数関数的に低下するエネル
ギー密度を有する。したがって、第2図に示す様に、被
加工物3に対して表面焼き入れや、表面合金層の形成等
の表面改質を行う場合、レーザビーム1を凸レンズ等の
集光レンズ2で集光し、被加工物3の加工部分に照射す
ると、レーザビーム1の中心部分が最も高温に加熱され
、中心部分から離れるにしたがって加熱塩度が低下する
ため、被加工物3に形成される表面改質層の深さが均一
にならないことはもちろん、中心部分とこれより離れた
部分の冶金的性質が異なったりして、所望の表面改質層
の品質を得ることは困難であるという欠点があった。こ
の様な欠点を解消し、レーザビームのエネルギー密度分
布を変える方法として、例えば特公昭58−3478号
公報に開示されている様な技術手段が既に提案されてい
る。上記公報に記載されたものは、レーザ発掘器より取
り出されたレーザビームを複数に分割し、被加工物の照
射面上におけるレーザビームのエネルギー密度分布が少
なくとも一方向でほぼ均一になる様に、上記分割された
複数個のレーザビームのエネルギー密度の高い部分と低
い部分とを重ね合わせ、合成させて被加工物に照射する
様にしたものである。ところで、この様な方法では、被
加工物に照射するレーザビームのエネルギー密度分布を
均一化できるきいう特長を有するが、被加工物が変わり
、その加工部分の加エバターンや寸法が変り、被加工物
におけるレーザビームの照射面の大きさを所定の寸法に
変化させる場合、レーザビームを集光する凹面鏡を所定
のものに取り換えるか、あるいは複数の凹面鏡の反射方
向を所定の角度に各々調整しなければならないなどの欠
点があった。
Conventionally, the energy density distribution of rays extracted from a laser oscillator generally has a distribution according to various modes depending on the characteristics of the laser oscillator. For example, as shown in FIG. 1, a TBM in which the laser beam 1 exhibits a Gaussian energy density distribution. In the case of a mode, the energy density of the laser beam 1 has the highest energy density in the central part of the cross section of the laser beam 1, and has an energy density that decreases exponentially as it moves away from the central part. Therefore, as shown in FIG. 2, when performing surface modification on the workpiece 3 such as surface hardening or forming a surface alloy layer, the laser beam 1 is focused by a condensing lens 2 such as a convex lens. However, when the processed part of the workpiece 3 is irradiated, the center part of the laser beam 1 is heated to the highest temperature, and the heating salinity decreases as it moves away from the center, so that the surface modification formed on the workpiece 3 is The disadvantage is that it is difficult to obtain the desired quality of the surface-modified layer, not only because the depth of the surface-modified layer is not uniform, but also because the metallurgical properties of the central part and the parts further away are different. Ta. As a method for eliminating such drawbacks and changing the energy density distribution of the laser beam, technical means as disclosed in Japanese Patent Publication No. 58-3478, for example, have already been proposed. The method described in the above publication divides the laser beam taken out from the laser excavator into a plurality of parts, so that the energy density distribution of the laser beam on the irradiated surface of the workpiece is almost uniform in at least one direction. The parts with high energy density and the parts with low energy density of the plurality of divided laser beams are superimposed and combined to irradiate the workpiece. By the way, this method has the advantage of making the energy density distribution of the laser beam irradiated onto the workpiece uniform, but as the workpiece changes, the machining pattern and dimensions of the machined part change, resulting in When changing the size of the laser beam irradiation surface of an object to a predetermined size, the concave mirror that focuses the laser beam must be replaced with a predetermined one, or the reflection direction of multiple concave mirrors must be adjusted to a predetermined angle. There were drawbacks such as not being able to do so.

〔発明の概要〕[Summary of the invention]

この発明は、上記の様な従来のものの欠点を改善する目
的でなされたもので、レーザビームを複数の方向に屈折
させ、この屈折を受けた複数のレーザビームのエネルギ
ー密度の高い部分と低い部分とを重ね合わせたレーザビ
ームを集光させ、被加工物に照射することにより、はぼ
均一なエネルギー密度分布を有するレーザビームが得ら
れ、かつ被加工物におけるレーザビームの照射面の大き
さを容易に変えることができる様にしたレーザ加熱装置
を提供するものである。
This invention was made with the purpose of improving the above-mentioned drawbacks of the conventional method.The invention refracts a laser beam in multiple directions, and the refracted laser beams have high and low energy density regions. By condensing the laser beam and irradiating it onto the workpiece, a laser beam with a nearly uniform energy density distribution can be obtained, and the size of the laser beam irradiation surface on the workpiece can be reduced. The present invention provides a laser heating device that can be easily changed.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第3図はこの発明の一実施例であるレーザ加熱装置にお
けるレーザ加熱方法の原理を説明するための概略構成図
である。図ζこ示す様に、このものは、レーザビーム1
として、その横断面におけるエネルギー密度分布がガウ
ス形を有するレーザビーム1を用い、このレーザビーム
1を、第4図に示す様な切り妻屋根形を成す錐状体のプ
リズム4に対し、レーザビーム1の中心部分がプリズム
4の稜線と一致する様に照射し、このプリズム4で屈折
を受けた各レーザビーム5,6が交差する面に凸レンズ
等の集光レンズ2を設け、各レーザビーム5.6の重ね
合わされたレーザビームを集光レンズ2で集光して、被
加工物3tこ照射する様に構成されている。この時Iこ
おいて、各レーザビーム5゜6が交差する集光レンズ2
面上のレーザビームの横断面形状は、第5図ζこ示す様
になり、レーザビームのエネルギー密度の高い部分と低
い部分とが重ね合わされるため、はぼ均一なエネルギー
密度分布を有するレーザビームが得られ、このレーザビ
ームを集光レンズ2で集光して、被加工物3に照射する
ので、被加工物3の面上にほぼ均一化したエネルギー密
度分布を有するレーザビームの照射が行われる。ここで
、集光レンズ2と被加工物3との距離t(以下、ワーク
ディスタンスと称する)を変えるだけで、第5図に示す
様なレーザビームの横断面形状は、レーザビームの大き
さが相似的に変わった形状のレーザビームとなり、被加
工物3に照射することができる。
FIG. 3 is a schematic configuration diagram for explaining the principle of a laser heating method in a laser heating device which is an embodiment of the present invention. As shown in Figure ζ, this thing has laser beam 1
As shown in FIG. 4, a laser beam 1 having a Gaussian energy density distribution in its cross section is used. A condensing lens 2 such as a convex lens is provided on the plane where the laser beams 5 and 6, which have been refracted by the prism 4, intersect. .6 superimposed laser beams are condensed by a condenser lens 2 and irradiated onto 3t of workpieces. At this time, the condenser lens 2 where each laser beam 5°6 intersects
The cross-sectional shape of the laser beam on the surface is as shown in Figure 5. Since the high and low energy density parts of the laser beam are superimposed, the laser beam has a nearly uniform energy density distribution. is obtained, and this laser beam is focused by the condenser lens 2 and irradiated onto the workpiece 3, so that the surface of the workpiece 3 is irradiated with a laser beam having a substantially uniform energy density distribution. be exposed. Here, by simply changing the distance t between the condenser lens 2 and the workpiece 3 (hereinafter referred to as the work distance), the cross-sectional shape of the laser beam as shown in FIG. 5 can be changed by changing the size of the laser beam. The laser beam has a similar shape and can be irradiated onto the workpiece 3.

第6図はこの発明の他の実施例であるレーザ加熱装置に
使用した四角錐状体のプリズムを示す斜視図である。第
6図に示すものは、上記第4図に示す様な切り妻屋根形
を成す錐状体のプリズム4を、四角錐状体のプリズム7
とした点が相違し、このプリズム7の四角錐の頂点がレ
ーザビームの中心部分に一致する様にしたものである。
FIG. 6 is a perspective view showing a square pyramidal prism used in a laser heating device according to another embodiment of the present invention. The prism 4 shown in FIG. 6 has a gable roof shape as shown in FIG.
The difference is that the apex of the square pyramid of this prism 7 coincides with the center of the laser beam.

その他の点については、上記第3図に示す実施例のもの
と同様であるから、詳細な説明は省略する。第6図に示
すプリズム7を使用した実施例のものでは、集光レンズ
2面上で得られるレーザビームの横断面形状は、第7図
に示す様な正方形状となり、レーザビームのエネルギー
密度の最も高い部分は正方形のコーナ部に位置し、エネ
ルギー密度の低い部分は重力形の中心部分で重なり合わ
され、はぼ均一なエネルギー密度分布を有するものとな
る。
Other points are the same as those of the embodiment shown in FIG. 3 above, so detailed explanation will be omitted. In the embodiment using the prism 7 shown in FIG. 6, the cross-sectional shape of the laser beam obtained on the two surfaces of the condenser lens is square as shown in FIG. 7, and the energy density of the laser beam is The highest parts are located at the corners of the square, and the parts with lower energy density overlap at the center of the gravitational shape, resulting in a nearly uniform energy density distribution.

また、上記第3図に示す実施例のものと同様に、第6図
に示すプリズム7を使用した実施例のものでも、ワーク
ディスタンスを変えるだけで、被加工物3に照射するレ
ーザビームの寸法を相似的に変えることができる。
In addition, similar to the embodiment shown in FIG. 3 above, even in the embodiment using the prism 7 shown in FIG. can be changed analogously.

なお、上記実施例では、集光レンズ2を使用した場合に
ついて説明したが、第8図に示す様に、集光レンズ2に
代えて凹面鏡8を用いても良く、上記実施例と同様の効
果を奏する。
In the above embodiment, the case where the condenser lens 2 was used was explained, but as shown in FIG. 8, a concave mirror 8 may be used instead of the condenser lens 2, and the same effect as in the above embodiment can be obtained play.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した様に、レーザ加熱装置において
、レーザビームを複数の方向に屈折させ、この屈折を受
けた複数のレーザビームのエネルギー密度の高い部分と
低い部分とを重ね合わせたレーザビームを集光させ、被
加工物lこ照射する様にしたので、はぼ均一なエネルギ
ー密度分布を有するレーザビームを被加工物に照射する
ことができる吉共に、ワークディスタンスを変えるだけ
で、被加工物に照射されるレーザビームの大きさを相似
的に所定の寸法に設定でき、このため、被加工物の表面
改質加工に用いた場合に、均一な表面改質層の品質が得
られることはもちろんのこと、被加工物が変ったり、表
面改質する部分のパターン及び寸法が変った場合にも、
極めて容易に、かつ安定に操作できるという優れた効果
を奏するものである。
As explained above, the present invention uses a laser heating device to refract a laser beam in a plurality of directions, and generate a laser beam in which the portions of high energy density and portions of low energy density of the plurality of refracted laser beams are superimposed. Since the laser beam is focused and irradiated onto the workpiece, it is possible to irradiate the workpiece with a laser beam having a nearly uniform energy density distribution. The size of the laser beam irradiated on the surface can be set to a predetermined size in a similar manner, and therefore, when used for surface modification of a workpiece, it is possible to obtain a uniform quality of the surface modification layer. Of course, even if the workpiece changes or the pattern and dimensions of the part to be surface modified change,
It has the excellent effect of being extremely easy and stable to operate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガウス形エネルギー密度分布を有するレ
ーザビームの横断面形状及びエネルギー密度分布を示す
図、第2図は従来のレーザ加熱装置型こおけるレーザ加
熱方法の原理を説明するための概略構成図、第3図はこ
の発明の一実施例であるレーザ加熱装置におけるレーザ
加熱方法の原理を説明するための概略構成図、第4図は
、第3図のレーザ加熱装置に使用した切り妻屋根形を成
す錐状体のプリズムを示す斜視図、第5図は、第3図の
レーザ加熱装置のプリズムによって得られるレーザビー
ムの横断面形状を示す図、第6図はこの発明の他の実施
例であるレーザ加熱装置に使用した四角錐状体のプリズ
ムを示す斜視図、第7図は、第6図のレーザ加熱装置の
プリズムによって得られるレーザビームの横断面形状を
示す図、第8図は、第3図のレーザ加熱装置で使用した
集光レンズを凹面鏡に代えた場合を示す概略構成図であ
る。 凶において% i、s、6・・・レーザビーム、2・・
・集光レンズ、3・・・被加工物、4,7・・・プリズ
ム、8・・・凹面鏡である。 なお、各図中、同一符号は同一、又は相当部分を示す。 代理人 大岩増雄 第1図 第2図 第3因 第5図
Figure 1 is a diagram showing the cross-sectional shape and energy density distribution of a conventional laser beam with a Gaussian energy density distribution, and Figure 2 is a schematic diagram for explaining the principle of a laser heating method in a conventional laser heating device type. 3 is a schematic configuration diagram for explaining the principle of a laser heating method in a laser heating device which is an embodiment of the present invention, and FIG. 4 is a gable diagram used in the laser heating device of FIG. 3. FIG. 5 is a perspective view showing a conical prism forming a roof shape, FIG. 5 is a view showing the cross-sectional shape of the laser beam obtained by the prism of the laser heating device of FIG. 3, and FIG. FIG. 7 is a perspective view showing a quadrangular pyramidal prism used in the laser heating device according to the embodiment; FIG. This figure is a schematic configuration diagram showing a case where the condenser lens used in the laser heating device of FIG. 3 is replaced with a concave mirror. % i, s, 6...laser beam, 2...
- Condensing lens, 3... Workpiece, 4, 7... Prism, 8... Concave mirror. In each figure, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 3 Cause Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1) レーザ発振器から取シ出されたレーザビームを
被加工物に照射して、この被加工物の加熱を行う装置に
おいて、前記レーザビームを複数の方向に屈折させ、こ
の屈折を受けた複数のレーザビームのエネルギー密度の
高い部分と低い部分とを重ね合わせる手段と、重ね合わ
されたレーザビームを集光させ、前記被加工物に照射さ
せる手段とを備えていることを特徴とするレーザ加熱装
置。
(1) In an apparatus that heats a workpiece by irradiating the workpiece with a laser beam extracted from a laser oscillator, the laser beam is refracted in a plurality of directions, and the laser beam is refracted in a plurality of directions. A laser heating device characterized by comprising means for superimposing a high energy density part and a low energy density part of the laser beam, and a means for condensing the superimposed laser beam and irradiating the workpiece. .
(2)前記屈折を受けた複数のレーザビームのエネルギ
ー密度の高い部分と低い部分とを重ね合わせる手段は、
錐状体のプリズムとすることを特徴とする特許請求の範
囲第1項記載のレーザ加熱装置。
(2) The means for superimposing high energy density parts and low energy density parts of the plurality of laser beams that have undergone the refraction,
2. The laser heating device according to claim 1, wherein the laser heating device is a conical prism.
(3)前記屈折を受けた複数のレーザビームのエネルギ
ー密度の高い部分と低い部分とを重ね合わせる手段は、
前記複数のレーザビームを、2方向あるいは4方向に屈
折させる面を有する錐状体のプリズムとすることを特徴
とする特許請求の範囲第1項又は第2項記載のレーザ加
熱装置。
(3) The means for superimposing high energy density portions and low energy density portions of the plurality of laser beams subjected to the refraction,
3. The laser heating device according to claim 1, wherein the laser heating device is a conical prism having a surface that refracts the plurality of laser beams in two or four directions.
(4)前記重ね合わされたレーザビームを集光させ、前
記被加工物に照射させる手段は、凸レンズあるいは凹面
鏡とすることを特徴とする特許請求の範囲第1項ないし
第3項記載のレーザ加熱装置。
(4) The laser heating device according to any one of claims 1 to 3, wherein the means for condensing the superimposed laser beams and irradiating the workpiece is a convex lens or a concave mirror. .
JP59048412A 1984-03-12 1984-03-12 Laser heater Pending JPS60191689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59048412A JPS60191689A (en) 1984-03-12 1984-03-12 Laser heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59048412A JPS60191689A (en) 1984-03-12 1984-03-12 Laser heater

Publications (1)

Publication Number Publication Date
JPS60191689A true JPS60191689A (en) 1985-09-30

Family

ID=12802587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59048412A Pending JPS60191689A (en) 1984-03-12 1984-03-12 Laser heater

Country Status (1)

Country Link
JP (1) JPS60191689A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189881A (en) * 1996-01-11 1997-07-22 Mitsubishi Heavy Ind Ltd Optical system in laser device
EP1524096A3 (en) * 2003-10-14 2008-03-19 Denso Corporation Resin mold and method for manufacturing the same
US7482554B2 (en) * 2005-01-05 2009-01-27 Disco Corporation Laser beam processing machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189881A (en) * 1996-01-11 1997-07-22 Mitsubishi Heavy Ind Ltd Optical system in laser device
EP1524096A3 (en) * 2003-10-14 2008-03-19 Denso Corporation Resin mold and method for manufacturing the same
US7527760B2 (en) 2003-10-14 2009-05-05 Denso Corporation Resin mold and method for manufacturing the same
US7482554B2 (en) * 2005-01-05 2009-01-27 Disco Corporation Laser beam processing machine

Similar Documents

Publication Publication Date Title
US5886318A (en) Method for laser-assisted image formation in transparent objects
CA1113757A (en) Device for material machining using electromagnetic or corpuscular beams
JPS583478B2 (en) Laser heating method and device
KR930004999B1 (en) Laser processing device
US11420288B2 (en) Laser machining systems and methods
JPS5891422A (en) Light beam equalizer
US5138490A (en) Arrangement for changing the geometrical form of a light beam
JP5861494B2 (en) Laser processing apparatus and laser processing method
JPH04229821A (en) Region shaping method for surface of optical member using aberration of excimer laser light
GB2027752A (en) Surface hardening by high energy beam
US5285320A (en) Mirror for changing the geometrical form of a light beam
Belay et al. Dynamic optical beam shaping system to generate Gaussian and top-hat laser beams of various sizes with circular and square footprint for Additive Manufacturing applications
JP2005178351A (en) Laser joining method of resin structures
JPS60191689A (en) Laser heater
JP2000334594A (en) Laser beam machine and method for laser beam machining
JPS6317035B2 (en)
JPH0436794B2 (en)
JPH02263590A (en) Laser beam machine
JP2007101844A (en) Diffraction type beam homogenizer
JPH07214360A (en) Laser beam machining
JPS63232937A (en) Polishing method
JPH02299791A (en) Workpiece irradiating method with laser beam
JPH03219024A (en) Laser beam quenching method
JPH0428493A (en) Laser beam optical system
JP2006142335A (en) Laser beam machining device