JPS60189216A - Laser annealing equipment - Google Patents

Laser annealing equipment

Info

Publication number
JPS60189216A
JPS60189216A JP4293584A JP4293584A JPS60189216A JP S60189216 A JPS60189216 A JP S60189216A JP 4293584 A JP4293584 A JP 4293584A JP 4293584 A JP4293584 A JP 4293584A JP S60189216 A JPS60189216 A JP S60189216A
Authority
JP
Japan
Prior art keywords
laser beam
laser
wedge prism
section
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4293584A
Other languages
Japanese (ja)
Inventor
Hisaaki Aizaki
尚昭 相崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4293584A priority Critical patent/JPS60189216A/en
Publication of JPS60189216A publication Critical patent/JPS60189216A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To contrive single crystallization in good reproducibility and in a wide area obtaining a sufficiently stable laser beam reducing return light to an actually ignorable extent by changing the inclination of the laser beam using a wedge prism. CONSTITUTION:The traveling direction 52 of a laser beam 10 is inclined with an angle 50 shown in the drawing from the traveling direction 51 of an incident laser beam perpendicular to the surface of a sample without using a wedge prism 30. In the case of not using the wedge prism 30, the laser beam reflected on the surface of the sample returns on the route of the incident laser beam but in the case of using the wedge prism 30, the laser beam is reflected to the direction inclined twice the inclination angle 50. In order not to return the reflected beam 53 on the route of the incident laser beam, the vertical angle 31 of the wedge prism 30 is required to be so determined that the inclination angle 50 of the laser beam is larger than the ratio of the radius of the incident laser beam 10 and the distance between an objective lens and the sample.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は半導体薄膜等の製造に用いられるレーザアニ
ーリング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a laser annealing apparatus used for manufacturing semiconductor thin films and the like.

(従来技術とその問題点) 近年、半導体集積回路の高密度化が進むに伴い、半導体
集積回路の各素子寸法の微細化をはかって横方向の集積
度を向上させる他に、いったん形成された素子構造の上
に絶縁膜を全面にわたって形成し、さらに、この絶縁膜
上に半導体薄膜を設けて、この半導体薄膜を用いて素子
を形成するというようないわゆる三次元構造が盛んに研
究開発されている。とくに絶縁膜上に形成した多結晶シ
リコン膜をレーザビームによシ照射し再結晶化させる方
法が注目されている。また、半導体集積回路の高速化が
進むに伴い半導体集積回路の各素子あるいは配線部分と
基板シリコンとの間の電気容量を小さくすることが重要
な課題となっている。これまでによく用いられているp
n接合分離と比較すると絶縁膜上に形成したシリコン膜
を用いれば寄生容量を小さくできるので、この意味でも
レーザビームによる再結晶化技術すなわちレーザアニー
リング技術が注目されている。しかし、現在の段階では
半導体集積回路を形成する目的に対して十分良好な結晶
性を得るに至っていない。
(Prior art and its problems) In recent years, as the density of semiconductor integrated circuits has increased, in addition to improving the lateral integration degree by miniaturizing the dimensions of each element of semiconductor integrated circuits, A so-called three-dimensional structure is being actively researched and developed, in which an insulating film is formed over the entire surface of the device structure, a semiconductor thin film is further provided on this insulating film, and the device is formed using this semiconductor thin film. There is. In particular, a method of recrystallizing a polycrystalline silicon film formed on an insulating film by irradiating it with a laser beam is attracting attention. Further, as the speed of semiconductor integrated circuits increases, it has become an important issue to reduce the electric capacitance between each element or wiring portion of the semiconductor integrated circuit and the silicon substrate. p that has been commonly used so far
Compared to n-junction isolation, parasitic capacitance can be reduced by using a silicon film formed on an insulating film, so recrystallization technology using a laser beam, that is, laser annealing technology, is attracting attention in this sense as well. However, at the current stage, crystallinity sufficiently good for the purpose of forming semiconductor integrated circuits has not been achieved.

以上説明した絶縁膜上のシリコン膜の結晶性が十分良好
でない原因の一つは、レーザビームが試料表面で反射し
、この反射光がレーザ発振器内部へ戻ってしまうために
レーザビーム強度変動や発振波長成分比の変動を引き起
こすことにあった。
One of the reasons why the crystallinity of the silicon film on the insulating film described above is not good enough is that the laser beam is reflected on the sample surface and this reflected light returns inside the laser oscillator, causing fluctuations in the laser beam intensity and oscillation. This caused fluctuations in the wavelength component ratio.

従って、レーザビームの形状を通常の丸形でな一ザビー
ムを得ることができず、再現性良く広い面積にわたシ単
結晶化をはかることができな伝と(発明の目的) 本発明の目的はレーザビームで走査する際のし〜ザ発振
器内部への戻り光を実際上無視できる程度に減らして十
分安定なレーザビームを得て、その結果再現性良く広い
面積にわたシ単結晶化をはかることができるレーザアニ
ーリング装置を提供することにある。
Therefore, it is not possible to obtain a laser beam with a normal round shape, and it is not possible to achieve single crystallization over a wide area with good reproducibility. When scanning with a laser beam, the return light inside the oscillator is reduced to a practically negligible level, and a sufficiently stable laser beam is obtained, resulting in single crystallization over a wide area with good reproducibility. The object of the present invention is to provide a laser annealing device that can perform the following steps.

(発明の構成) 本発明によれば、レーザ光を発振するレーザ光源部と、
レーザビーム傾角部と、レーザビームを試料上で走査す
るレーザビーム走査部と、試料保持部とを備えたことを
特徴とするレーザアニーリング装置が得られる。
(Structure of the Invention) According to the present invention, a laser light source unit that oscillates a laser beam;
A laser annealing apparatus is obtained that includes a laser beam tilting section, a laser beam scanning section that scans a laser beam on a sample, and a sample holding section.

(実施例) 次に本発明について図面を参照して説明する。(Example) Next, the present invention will be explained with reference to the drawings.

本発明のレーザアニーリング装置は例えば第1図fa+
あるいは(blのように構成される。第1図(atに示
すようにレーザ光源部100から出たガウス型の強度分
布を有するレーザビーム10はレーザビーム走査部20
0によシ任意の速度で走査され、レーザビーム成形部3
00を通過することによって多峰型の強度分布を有する
レーザビーム11に・薫換され、次いでレーザビーム傾
角部400を通ヤすることによって試料表面に対し、斜
め方向から入射するように一定の角度だけ傾けられ、最
後に試料保持部500に保持された試料に照射される。
For example, the laser annealing apparatus of the present invention is shown in FIG.
Alternatively, the laser beam 10 having a Gaussian intensity distribution emitted from the laser light source section 100 as shown in FIG.
0 at an arbitrary speed, and the laser beam shaping section 3
00, it is converted into a laser beam 11 having a multimodal intensity distribution, and then passes through a laser beam tilting section 400, so that it enters the sample surface at a certain angle so as to be incident from an oblique direction. Finally, the sample held in the sample holding section 500 is irradiated.

あるいは第1図(blに示すようにレーザ光源部100
から出たガウス型の強度分布を有するレーザビーム10
はレーザビーム傾角部200によシ走査された後、まず
先にレーザビーム傾角部400を通過して傾けられ、そ
の後にレーザビーム成形部300を通過することによシ
多峰型の強度分布を有するレーザビーム11に変換され
てもよい。
Alternatively, as shown in FIG.
A laser beam 10 having a Gaussian intensity distribution emitted from
After being scanned by the laser beam tilting section 200, the laser beam first passes through the laser beam tilting section 400 and is tilted, and then passes through the laser beam shaping section 300 to form a multimodal intensity distribution. The laser beam 11 may be converted into a laser beam 11 having a

またレーザビームを走査するのでなく、試料保持部50
0をX−Y移動ステージ等によって駆動し、結果として
レーザビーム走査を実現してもよい。
Moreover, instead of scanning the laser beam, the sample holding section 50
0 may be driven by an X-Y moving stage or the like, resulting in laser beam scanning.

なお、又、目的によっては、レーザビーム成形部300
を備えておらず、従ってガウス型の強度分布を有するレ
ーザビーム10のままであってもよい。
Furthermore, depending on the purpose, the laser beam shaping section 300
Therefore, the laser beam 10 may remain as having a Gaussian intensity distribution.

次に本発明の要点をさらに詳しく説明するためにレーザ
ビームを成形せず単純なガウス型の強度分布を有するレ
ーザビーム10を用いた場合につ°いて説明する。
Next, in order to explain the main points of the present invention in more detail, a case will be described in which a laser beam 10 having a simple Gaussian intensity distribution is used without shaping the laser beam.

第2図(atはレーザビーム傾角部の一例を説明する図
である。ガウス型の強度分布を有するレーザビーム10
はレーザビーム集束用対物レンズ20を通シ、次に、ウ
ェッジプリズム30を透過する際に曲げられ試料400
表面に斜め方向から入射する。このときのレーザビーム
の進行方向52はウェッジプリズム30を使用しない場
合の試料表面に垂直に入射しているレーザビーム進行方
向51にくらべ、図中50で示した角度だけ傾いており
、従って試料表面での焦点位置はウェッジプリズム30
を使用していない場合の焦点位置41にくらベラエツジ
プリズム30を使用している場合の焦点位置42はレー
ザビーム傾角50とウェッジプリズム・試料間距離との
積だけ離れている。
FIG. 2 (at is a diagram illustrating an example of a laser beam inclination part. A laser beam 10 having a Gaussian intensity distribution
passes through the laser beam focusing objective lens 20, and then is bent when passing through the wedge prism 30, resulting in a sample 400.
The light is incident on the surface from an oblique direction. The traveling direction 52 of the laser beam at this time is inclined by the angle indicated by 50 in the figure compared to the laser beam traveling direction 51 which is incident perpendicularly to the sample surface when the wedge prism 30 is not used, and therefore the sample surface The focal position is wedge prism 30
The focal position 42 when the edge prism 30 is used is separated by the product of the laser beam inclination 50 and the distance between the wedge prism and the sample.

その結果、ウェッジプリズム30を使用していない場合
には試料表面で反射したレーザビームは入射レーザビー
ムは光路を逆にたとって戻っていくのに対し、ウェッジ
プリズム30を使用している場合には、レーザビーム傾
角50の2倍の角度だけ傾いた方向へ反射する。この傾
いた方向への反射光53がもとの入射レーザビームの光
路に戻らないようにするには、レーザビーム傾角50が
人声レーザビーム10の半径と対物レンズ・試料間 。
As a result, when the wedge prism 30 is not used, the laser beam reflected from the sample surface reverses the optical path of the incident laser beam and returns, whereas when the wedge prism 30 is used, is reflected in a direction tilted by an angle twice the laser beam tilt angle 50. In order to prevent the reflected light 53 in this tilted direction from returning to the optical path of the original incident laser beam, the laser beam tilt angle 50 must be set at a distance between the radius of the human voice laser beam 10 and the distance between the objective lens and the sample.

11距離との比よりも大きくなるようにウェッジプリ1
ズム30の頂角31を決定すればよい。
11 Wedge pre-1 so that the ratio is greater than the distance
What is necessary is to determine the apex angle 31 of the beam 30.

第2図tb>はウェッジプリズム30を対物レンズ20
の手前に配設した場合の図である。この場合にも、第2
図(&)の場合と同様にレーザビーム傾角50が入射レ
ーザビーム10の半径と対物レンズ・試料間距離との比
よシも大きくなるようにウェッジプリズム300頂角3
1を決定すれば、反射光53はもとの入射レーザビーム
10の光路に戻らないことになるう なお以上の説明では、入射レーザビームとして単純なガ
ウス型の強度分布を有するレーザビームを用いる例につ
いて主に説明したが、絶縁膜上の多結晶シリコン膜をレ
ーザアニーリングする場合、レーザビームの形状が極め
て重要であシ、例えば、レーザ光源部からみて1/4波
長板と複屈折板をこの順に組み合わせたレーザビーム成
形部により多環型レーザビームを得てこの多環型レーザ
ビームを用いる場合にもこの発明を適用することが可能
である。また1/4波長板に限らす1/2波長板でもよ
い。
Figure 2 tb> shows the wedge prism 30 and the objective lens 20.
It is a figure when it is arranged in front of. In this case as well, the second
As in the case of the figure (&), the wedge prism 300 has an apex angle 3 so that the laser beam inclination angle 50 is larger than the ratio of the radius of the incident laser beam 10 and the distance between the objective lens and the sample.
1, the reflected light 53 will not return to the optical path of the original incident laser beam 10. In the above explanation, a laser beam having a simple Gaussian intensity distribution is used as an incident laser beam. However, when laser annealing a polycrystalline silicon film on an insulating film, the shape of the laser beam is extremely important. The present invention can also be applied to the case where a polycyclic laser beam is obtained by sequentially combining laser beam shaping sections and this polycyclic laser beam is used. Moreover, it may be a 1/2 wavelength plate instead of a 1/4 wavelength plate.

(発明の効果) 以上説明したように、ウェッジプリズムを用い匹ばレー
ザビーム傾角が変化し、この傾角が太き−t<なれば反
射光かもとの入射レーザビームの光路、1に戻らないよ
うになる。レーザビーム傾角を変えたときのレーザ光源
部への戻シ光量を第3図に示す。このときの入射レーザ
ビーム半径は511M、対物レンズの焦点距離は70W
IMであるので、両者の比に相当する角度は4.9度で
ある。第2図から分るようにレーザビーム傾角が4度よ
り大きくなるとレーザ光源部への戻シ光所は急激に減少
する。
(Effect of the invention) As explained above, when the wedge prism is used, the laser beam inclination changes, and if this inclination becomes thick -t<, the optical path of the reflected light or the original incident laser beam will be prevented from returning to 1. become. FIG. 3 shows the amount of light returned to the laser light source when the laser beam inclination angle is changed. The incident laser beam radius at this time is 511M, and the focal length of the objective lens is 70W.
Since it is IM, the angle corresponding to the ratio of the two is 4.9 degrees. As can be seen from FIG. 2, when the laser beam inclination angle becomes larger than 4 degrees, the number of places where the laser beam returns to the laser light source decreases rapidly.

ニーリング装置を得ることができ、十分安定なレーザビ
ームにより再現性良く広い面積にわたシ単結晶化をはか
ることができる。
A kneeling device can be obtained, and a sufficiently stable laser beam can be used to form a single crystal over a wide area with good reproducibility.

なお以上の説明では、レーザビーム傾角部がウェッジプ
リズムよシ構成されている実施例について説明したが、
これに限られる必要はなく、第4図に示すごとく第1の
傾角用ミラー61と第2の傾角用ミラー62の組み合わ
せによシレーザ傾角部が構成されていてもよい。
Note that in the above explanation, an example in which the laser beam inclination part is configured as a wedge prism has been described.
The invention is not limited to this, and the laser tilting section may be configured by a combination of a first tilting mirror 61 and a second tilting mirror 62 as shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ta> 、 tb)は本発明のレーザアニーリン
グ装置の構成を示すブロック図。第2図(at 、 (
hlは本発1明のレーザビーム傾角部の構成例を示す図
。第3図は、レーザ光源部への戻り光量とレーザビーム
−′−角との関係を実測した結果を示す図。第4図は1
\体発明のレーザビーム傾角部の別の構成例を示す図。 図において、10・・・ガウス型強度分布のレーザ、ビ
ーム、11・・・多環型強度分布のレーザビーム、20
・・・レーザビーム集束用対物レンズ、30・・・ウェ
ッジプリズム、31・・・ウェッジプリズムの頂角、4
0・・・K料、41・−・ウェッジプリズムを使用しな
い場合の焦点位置、42・・・ウェッジプリズムを使用
している場合の焦点位置、50・・・レーザビーム傾角
、51・・・ウェッジプリズムを使用しない場合のレー
ザビーム進行方向、52・・・ウェッジプリズム又は傾
角用ミラーを使用している場合のレーザビーム進行方向
、53・・・ウェッジプリズム又は傾角用ミラーを使用
している場合のレーザビーム反射方向、61.62・・
傾角用ミラー、100・・・レーザ光源部、200・・
・レーザビーム走査部、300・・・レーザビーム成形
部、400・・・レーザビーム傾角部、500・・・試
料保持部。 番 1 目 亭 2 間 (a) (b) し−ザビーム甫内(・欄) 2
FIGS. 1(a) and 1(b) are block diagrams showing the configuration of the laser annealing apparatus of the present invention. Figure 2 (at, (
hl is a diagram showing an example of the configuration of a laser beam tilting section according to the first aspect of the present invention. FIG. 3 is a diagram showing the results of actually measuring the relationship between the amount of light returned to the laser light source section and the -'-angle of the laser beam. Figure 4 is 1
\A diagram showing another example of the configuration of the laser beam tilt angle section of the invention. In the figure, 10... Laser beam with Gaussian intensity distribution, 11... Laser beam with polycyclic intensity distribution, 20
...Objective lens for laser beam focusing, 30... Wedge prism, 31... Apex angle of wedge prism, 4
0... K material, 41... Focal position when wedge prism is not used, 42... Focal position when wedge prism is used, 50... Laser beam inclination, 51... Wedge Laser beam traveling direction when no prism is used, 52... Laser beam traveling direction when a wedge prism or tilting mirror is used, 53... Laser beam traveling direction when a wedge prism or tilting mirror is used. Laser beam reflection direction, 61.62...
Tilt mirror, 100... Laser light source section, 200...
- Laser beam scanning section, 300... Laser beam shaping section, 400... Laser beam tilting section, 500... Sample holding section. Number 1 Meitei 2 Between (a) (b) Shi-The Beam Houchi (・column) 2

Claims (1)

【特許請求の範囲】 (1)レーザ光を発振するレーザ光源部と、レーザビー
ム傾角部と、レーザビームを試料上で走査するレーザビ
ーム走査部と、試料保持部とを備えた暮1とを特徴とす
るレーザアニーリング装置。 Itfi’+l レーザビーム傾角部がウェッジプリズ
ムを少榴くとも一個備えてなる特許請求の範囲第1項記
19レーザアニーリング装置。 (3) レーザビーム傾角部がレーザビーム傾角用ミラ
ーを少なくとも一組備えてなる特許請求の範囲第1項記
載のレーザアニーリング装置。 (4) レーザビーム成形部をも備えている特許請求の
範囲第1項、第2項または第3項記載のレーザアニーリ
ング装置。 (5)レーザビーム成形部がレーザ光源部から見て1/
4波長板と複屈折板とがこの順に組み合わされたものあ
るいは的波長板と複屈折板とがこの順にくみあわされた
ものを少くとも一組備えてなる特許請求の範囲第4項記
載のレーザアニーリング装置。
[Claims] (1) A housing 1 comprising a laser light source section that oscillates a laser beam, a laser beam tilt section, a laser beam scanning section that scans the laser beam on a sample, and a sample holding section. Features of laser annealing equipment. 19. A laser annealing apparatus as set forth in claim 1, wherein the laser beam inclination portion comprises at least one wedge prism. (3) The laser annealing apparatus according to claim 1, wherein the laser beam tilting section includes at least one set of laser beam tilting mirrors. (4) The laser annealing apparatus according to claim 1, 2, or 3, further comprising a laser beam shaping section. (5) The laser beam shaping section is 1/1/1 when viewed from the laser light source section.
Laser annealing according to claim 4, comprising at least one set of a four-wavelength plate and a birefringent plate combined in this order, or a set of a four-wavelength plate and a birefringence plate combined in this order. Device.
JP4293584A 1984-03-08 1984-03-08 Laser annealing equipment Pending JPS60189216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4293584A JPS60189216A (en) 1984-03-08 1984-03-08 Laser annealing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4293584A JPS60189216A (en) 1984-03-08 1984-03-08 Laser annealing equipment

Publications (1)

Publication Number Publication Date
JPS60189216A true JPS60189216A (en) 1985-09-26

Family

ID=12649867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4293584A Pending JPS60189216A (en) 1984-03-08 1984-03-08 Laser annealing equipment

Country Status (1)

Country Link
JP (1) JPS60189216A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158184A (en) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp Laser optical system for laser heat treatment
JP2002231655A (en) * 2001-01-30 2002-08-16 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for laser annealing
JP2009206521A (en) * 2001-08-03 2009-09-10 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128024A (en) * 1981-01-30 1982-08-09 Fujitsu Ltd Single crystallization for non-single crystalline semiconductor layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128024A (en) * 1981-01-30 1982-08-09 Fujitsu Ltd Single crystallization for non-single crystalline semiconductor layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158184A (en) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp Laser optical system for laser heat treatment
JP2002231655A (en) * 2001-01-30 2002-08-16 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for laser annealing
JP2009206521A (en) * 2001-08-03 2009-09-10 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3903761B2 (en) Laser annealing method and laser annealing apparatus
KR101167324B1 (en) Laser thin film poly-silicon annealing optical system
US7991037B2 (en) Multi-beam laser apparatus
CA2108951A1 (en) Two dimensional scan amplifier laser
KR101268107B1 (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device
JP2004103628A (en) Laser annealing device and method of laser-annealing tft substrate
KR101054235B1 (en) Laser irradiation method, semiconductor device manufacturing method, and laser irradiation system
JPS60189216A (en) Laser annealing equipment
JP3379480B2 (en) Laser processing equipment for display substrates
JP2577638B2 (en) Laser marking method and apparatus
JPH11162868A (en) Laser irradiation device
JP2012015463A (en) Yag laser annealing device and annealing method by yag laser light
JP2857754B2 (en) Auto-focusing device using double reflection
JP3402124B2 (en) Beam homogenizer and method for producing semiconductor thin film
CA1278392C (en) Apparatus for and method of positioning and synchronizing a writing laser beam
JPH01261820A (en) Laser irradiation apparatus
JPS59224121A (en) Laser annealing device
Liu Sources, Optics and Laser Microfabrication Systems for direct Writing and Projection Lithography
CN218836472U (en) Device for adjusting width of notch groove
JP3175005B2 (en) Laser processing equipment
JPS6358827A (en) Exposure device
JPS59121913A (en) Manufacture of semiconductor device
US20230124650A1 (en) Optical system and laser machining device
JPS6362089B2 (en)
JPH11125702A (en) Formation of microlens array