JPS601879A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS601879A
JPS601879A JP10913883A JP10913883A JPS601879A JP S601879 A JPS601879 A JP S601879A JP 10913883 A JP10913883 A JP 10913883A JP 10913883 A JP10913883 A JP 10913883A JP S601879 A JPS601879 A JP S601879A
Authority
JP
Japan
Prior art keywords
layer
inp
substrate
semiconductor laser
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10913883A
Other languages
Japanese (ja)
Inventor
Koichi Imanaka
今仲 行一
Hideaki Horikawa
英明 堀川
Akira Watanabe
彰 渡辺
Tomoyuki Yamada
山田 朋幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP10913883A priority Critical patent/JPS601879A/en
Publication of JPS601879A publication Critical patent/JPS601879A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/3203Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth on non-planar substrates to create thickness or compositional variations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32391Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers based on In(Ga)(As)P

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a structure having good current narrowing layer in one crystal growth by etching the terrace oblique surface of an InP substrate of (100) plane azimuth to form a (211) surface, and liquid phase epitaxially growing InP in reverse conductive type to the substrate. CONSTITUTION:An N type InP substrate 1 of (100) plane azimuth is etched with etchant of chlorine series to form an oblique surface A in (211) surface, the degree of overcooling is set to 10 deg.C or lower to liquid-phase epitaxially grow a P type InP current narrowing layer 2. Then, a discontinuous part 2a is partly obtained in the layer 2, and operates as a window of the current. The degree of overcooling is increased, N type InP clad layer 3 is grown, and an InGaAsP active layer 4, a P type InP clad layer, cap layer 6 are sequentially grown. The current narrowing layer can be formed in one crystal growth, and large steps can be simplified. This can be utilized for manufacturing a long wavelength InGaAsP/InP semiconductor laser for a light communication.

Description

【発明の詳細な説明】 (技術分野) この発明は、1回の結晶成長でできる電流狭窄層を有す
るテラス型の半導体レープ“の製造方法圧関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a terrace-type semiconductor layer having a current confinement layer that can be formed by one-time crystal growth.

(従来技術) 従来の電流狭窄層を有する半導体レーザの一例としてV
溝型レーザを第1図に示す。この第1図における1はn
−InP基板、2はP−InPi流狭窄層、3はn−I
nPクラッド層、4はInQa、/Igp活性層、5は
P−InPクラッド層、6はキャップ層である。このV
溝型レーザはP−InP電流狭窄層2により、n−In
P基板1内の7字部分にのみ電流が流れる。
(Prior art) As an example of a semiconductor laser having a conventional current confinement layer, V
A groove-type laser is shown in FIG. 1 in this Figure 1 is n
-InP substrate, 2 is P-InPi flow constriction layer, 3 is n-I
An nP cladding layer, 4 an InQa/Igp active layer, 5 a P-InP cladding layer, and 6 a cap layer. This V
The groove type laser has n-InP current confinement layer 2.
Current flows only through the 7-figure portion in the P substrate 1.

しかしながら、この判造処は2回の結晶成長を必要とす
る欠点を有していた。すなわち、まずn−InP基板1
上にP−InP電流狭窄層22平面成長した後、エツチ
ングによりV溝を掘り、しかる後n−InPクラッド層
3、InGaAsP活性層4、P−InPクラッド層5
、キャップ層6を成長する。
However, this method had the drawback of requiring two crystal growth steps. That is, first, the n-InP substrate 1
After a P-InP current confinement layer 22 is grown in a plane on top, a V-groove is dug by etching, and then an n-InP cladding layer 3, an InGaAsP active layer 4, and a P-InP cladding layer 5 are formed.
, grow the cap layer 6.

(発明の目的) この発明は、上記従来の欠点を除去するため罠なされた
もので、1回の液相エピタキシャル(以下、LPE成長
と云う)結晶成長で良好な電流狭窄層を有する構造を作
成できる半導体し・−ザの製造方法を提供することを目
的とする。
(Objective of the Invention) The present invention was made to eliminate the above-mentioned conventional drawbacks, and it is possible to create a structure having a good current confinement layer by one liquid phase epitaxial (hereinafter referred to as LPE growth) crystal growth. An object of the present invention is to provide a method for manufacturing a semiconductor device.

(発明の構成) この発明の半導体レーザの製造方法は、(100)面方
位のInP基板のテラス斜面を塩素系のエツチング液を
用いて(211)面とし、この(211)面上に上記I
nP基板とは逆型のInPを比較的小さな過飽和度をも
ってLPE成長することによシ、上記テラス斜面の一部
に不連続部分を形成して電流狭窄層を形成し、この電流
狭窄層の形成後の上に第1のクラッド層、活性層、第1
のクラッド層とは逆型の第2のクラッド層およびキャッ
プ層を順次形成するようにしたものである0 (実施例) 以下、この発明の半導体レーザの製造方法の実施例につ
いて図面に基づき説明する。第2図はその一実施例によ
シ製造された半導体レーザの構造を示す断面図であり、
この第2図において、第1図と同一部分には同一符号が
付されている0すなわち、n−InP基板1上にP−I
nP電流狭窄層2、n−InPクラッド層3、InGa
AsP活性層4、P−InPクラッド層5、キャップ層
6が順次形成され、このキャップ層6側よシ注入された
電流はP−I’nP電流狭窄層2の不連続部分2aのみ
を通るようになっている。したがって、InGaAsP
活性層4の一部のみを通過し効率良く電流集中が行なえ
る。
(Structure of the Invention) A method for manufacturing a semiconductor laser according to the present invention includes etching the terrace slope of a (100) plane-oriented InP substrate into a (211) plane using a chlorine-based etching solution, and etching the above-mentioned I
By growing InP of the opposite type to that of the nP substrate by LPE with a relatively small degree of supersaturation, a discontinuous portion is formed in a part of the terrace slope to form a current confinement layer, and the current confinement layer is formed. a first cladding layer, an active layer, a first
A second cladding layer and a cap layer having a reverse type to that of the cladding layer are sequentially formed. (Example) An example of the method for manufacturing a semiconductor laser of the present invention will be described below with reference to the drawings. . FIG. 2 is a cross-sectional view showing the structure of a semiconductor laser manufactured according to one embodiment.
In this FIG. 2, the same parts as in FIG.
nP current confinement layer 2, n-InP cladding layer 3, InGa
An AsP active layer 4, a P-InP cladding layer 5, and a cap layer 6 are formed in this order so that the current injected from the side of the cap layer 6 passes only through the discontinuous portion 2a of the P-I'nP current confinement layer 2. It has become. Therefore, InGaAsP
The current passes through only a portion of the active layer 4, allowing efficient current concentration.

次に、この発明の製造方法を第3図(a)、第3図(b
)によシ説明する。まず、第3図(a)Ic示すように
、(100)面方位のn−InP基板1を通常のレジス
ト7をマスクとして塩素系のエッチャント、ff1Lt
ば4HCJ+H,0を用いてエツチングすると、第3図
(a)に示すテラス1aと斜面Aとのなす角θは約38
゜となり、斜面Aは(211)面となる。
Next, the manufacturing method of this invention is shown in FIGS. 3(a) and 3(b).
) to explain. First, as shown in FIG. 3(a) Ic, an n-InP substrate 1 with a (100) plane orientation is treated with a chlorine-based etchant using a normal resist 7 as a mask.
For example, when etching is performed using 4HCJ+H,0, the angle θ between the terrace 1a and the slope A shown in FIG. 3(a) is approximately 38
°, and the slope A becomes the (211) plane.

次に、上記レジスト7の除去の後、結晶成長を開始する
。まず、P−InP電流狭窄層2を成長するのであるが
、よく知られているように、一般に(211)而すなわ
ち、第3図(a)の斜面Aは過冷却度が小さいと、その
上には成長しにくい面である。
Next, after removing the resist 7, crystal growth is started. First, the P-InP current confinement layer 2 is grown, but as is well known, generally (211), that is, the slope A in FIG. This is an aspect that is difficult to grow.

このことを利用して、過冷却度を10℃以下にしてP−
InP電流狭窄層2を成長すると、第3図(b)のよう
に、このP−InP電流狭窄層2に一部不連続が得られ
それが電流の窓として働く。
By utilizing this fact, the degree of supercooling can be lowered to 10°C or less.
When the InP current confinement layer 2 is grown, a partial discontinuity is obtained in this P-InP current confinement layer 2, as shown in FIG. 3(b), and this serves as a current window.

その後、n−InPクラッド層3を成長するが、今度は
過冷却度を大きくとることKよシ、斜面A上に成長させ
ることが可能となる。その後、第2図に示すように、I
nGaAsP活性層4、P−InPクラッド層、キャッ
プ層6を順次成長させる。
Thereafter, the n-InP cladding layer 3 is grown, but this time it is possible to grow it on the slope A by increasing the degree of supercooling. Then, as shown in FIG.
An nGaAsP active layer 4, a P-InP cladding layer, and a cap layer 6 are grown in sequence.

以上説明したように、上記第1の実施例では、1回の結
晶成長で電流狭窄層を形成できることから大幅な工程の
簡略化ができるという利点がある。
As explained above, the first embodiment has the advantage that the current confinement layer can be formed by one-time crystal growth, so that the process can be significantly simplified.

なお、上記実施例では、n基板を使用した場合について
例示したが、P型基板を使用してもよく、この場合は各
層は上記とは逆の導電型になることは云うまでもない。
In the above embodiment, the case where an n-type substrate is used is illustrated, but it goes without saying that a p-type substrate may also be used, and in this case, each layer will have a conductivity type opposite to that described above.

(発明の効果) 以上のように、この発明の半導体レーザの製造方法によ
れば、(100)面方位のInP型を用いたテラス型の
InGaAsP/1npレーザでテラス斜面を塩素系の
エツチング液を用いて(211)面とし、この(211
)面上にInP基板とは逆型のInPを比較的小さな過
飽和度をもってLPE成長させ、テラス斜面の一部に不
連続部分を形成して電流狭窄層を形成するようにしたの
で、1回のLPIC結晶成長で良好な電流狭窄層を有す
る半導体レーザ構造を製造できる。
(Effects of the Invention) As described above, according to the method for manufacturing a semiconductor laser of the present invention, a terrace-type InGaAsP/1np laser using a (100)-oriented InP type is etched by etching a chlorine-based etching solution on a terrace slope. This (211) plane is obtained by using
) surface, InP of the opposite type to that of the InP substrate was grown by LPE with a relatively small degree of supersaturation, and a discontinuous part was formed on a part of the terrace slope to form a current confinement layer. A semiconductor laser structure having a good current confinement layer can be manufactured by LPIC crystal growth.

これにともない、光通信用など長波長InGaAsP/
InP半導体レーザの製造に利用することができる。
Along with this, long wavelength InGaAsP/
It can be used to manufacture InP semiconductor lasers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電流狭窄層を有する半導体レーザの構造
を示す断面図、第2図はこの発明の半導体レーザの製造
方法により製造された半導体レーザの構造を示す断面図
、第3図(a)および第3図(b)はこの発明の半導体
レーザの製造方法の一実施例の工程説明図である。 1− n −InP基板、2 ・P −InP電流狭窄
層、2a・・・不連続部分、3・・・n−InPクラッ
ド層、4・・−InGaAsP活性層、 5 =−P 
−InPり2ラド層、6・・・キャップ層、7・・・レ
ジストマスク、A・・・(211)面の斜面。 第1図 第2図 第3図 −36:
FIG. 1 is a cross-sectional view showing the structure of a semiconductor laser having a conventional current confinement layer, FIG. 2 is a cross-sectional view showing the structure of a semiconductor laser manufactured by the semiconductor laser manufacturing method of the present invention, and FIG. ) and FIG. 3(b) are process explanatory diagrams of an embodiment of the method for manufacturing a semiconductor laser of the present invention. 1-n-InP substrate, 2.P-InP current confinement layer, 2a... discontinuous portion, 3... n-InP cladding layer, 4...-InGaAsP active layer, 5 =-P
-InP layer 2, 6... Cap layer, 7... Resist mask, A... (211) slope. Figure 1 Figure 2 Figure 3-36:

Claims (1)

【特許請求の範囲】[Claims] (100)面方位のInP基板のテラス斜面を塩素系の
エツチング液を用いて(211)面とし、この(211
)面上に上記InP基板とは逆の導電型のInPを比較
的小さな過飽和度をもって液相エピタキシャル成長する
ことによシ上記テラス斜面の一部に不連続部分を形成し
て電流狭窄層を形成し、この電流狭窄層上に第1のクラ
ッド層、活性層、第1のクラッド層とは逆の導電型の第
2のクラッド層およびキャップ層を順次形成することを
特徴とする半導体レーザの製造方法。
The terrace slope of the (100)-oriented InP substrate is made into a (211) plane using a chlorine-based etching solution, and this (211)
) by liquid-phase epitaxial growth of InP of a conductivity type opposite to that of the InP substrate with a relatively small degree of supersaturation, a discontinuous portion is formed in a part of the terrace slope, and a current confinement layer is formed. A method for manufacturing a semiconductor laser, comprising sequentially forming a first cladding layer, an active layer, a second cladding layer of a conductivity type opposite to that of the first cladding layer, and a cap layer on the current confinement layer. .
JP10913883A 1983-06-20 1983-06-20 Manufacture of semiconductor laser Pending JPS601879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10913883A JPS601879A (en) 1983-06-20 1983-06-20 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10913883A JPS601879A (en) 1983-06-20 1983-06-20 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS601879A true JPS601879A (en) 1985-01-08

Family

ID=14502554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10913883A Pending JPS601879A (en) 1983-06-20 1983-06-20 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS601879A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239892A (en) * 1985-04-18 1986-10-25 Shokuhin Sangyo Baioriakutaa Syst Gijutsu Kenkyu Kumiai Immobilized amylase for forming maltooligosaccharide
FR2693047A1 (en) * 1992-06-24 1993-12-31 Fujitsu Ltd Heterostructure semiconductor laser fabrication method with epitaxy on mesa patterned substrate - using epitaxial MOCVD growth of current stop gallium arsenide layer on sides of mesa stripe, with tri:methyl gallium as source gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239892A (en) * 1985-04-18 1986-10-25 Shokuhin Sangyo Baioriakutaa Syst Gijutsu Kenkyu Kumiai Immobilized amylase for forming maltooligosaccharide
JPH0332999B2 (en) * 1985-04-18 1991-05-15 Nippon Shokuhin Kako Kk
FR2693047A1 (en) * 1992-06-24 1993-12-31 Fujitsu Ltd Heterostructure semiconductor laser fabrication method with epitaxy on mesa patterned substrate - using epitaxial MOCVD growth of current stop gallium arsenide layer on sides of mesa stripe, with tri:methyl gallium as source gas
US5336635A (en) * 1992-06-24 1994-08-09 Fujitsu Limited Manufacturing method of semiconductor laser of patterned-substrate type
US5375136A (en) * 1992-06-24 1994-12-20 Fujitsu Limited Semiconductor laser of patterned-substrate type and structure thereof

Similar Documents

Publication Publication Date Title
US4496403A (en) Method of making a compound semiconductor laser
JP2708165B2 (en) Semiconductor structure and method of manufacturing the same
KR940006782B1 (en) Semiconductor laser
JPS6237904B2 (en)
US5665612A (en) Method for fabricating a planar buried heterostructure laser diode
JPS58216486A (en) Semiconductor laser and manufacture thereof
JPS601879A (en) Manufacture of semiconductor laser
JPS6223191A (en) Manufacture of ridge type semiconductor laser device
JPS62286294A (en) Manufacture of semiconductor laser
JPS6381887A (en) Semiconductor laser device and manufacture of the same
JPS5925217A (en) Manufacture of semiconductor device
KR920000358B1 (en) Laser diode manufacture method of high confidence burried type
JPS6351558B2 (en)
JPS6068685A (en) Manufacture of buried semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JP2525776B2 (en) Method for manufacturing semiconductor device
JPS6319824A (en) Etching
JPH09293926A (en) Semiconductor device and its manufacture
JP3522151B2 (en) Method for manufacturing compound semiconductor laser
JPS60136283A (en) Manufacture of buried type semiconductor laser
JPS6113682A (en) Manufacture of semiconductor laser
JPS6057989A (en) Manufacture of semiconductor device
JPH07162091A (en) Manufacture of buried structure semiconductor laser
JPH03187282A (en) Manufacture of semiconductor laser
JPS605584A (en) Manufacture of semiconductor laser element