JPS6018759B2 - Method for manufacturing a cathode for alkali metal halide aqueous solution electrolysis - Google Patents

Method for manufacturing a cathode for alkali metal halide aqueous solution electrolysis

Info

Publication number
JPS6018759B2
JPS6018759B2 JP54056930A JP5693079A JPS6018759B2 JP S6018759 B2 JPS6018759 B2 JP S6018759B2 JP 54056930 A JP54056930 A JP 54056930A JP 5693079 A JP5693079 A JP 5693079A JP S6018759 B2 JPS6018759 B2 JP S6018759B2
Authority
JP
Japan
Prior art keywords
cathode
powder
alkali metal
plating
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54056930A
Other languages
Japanese (ja)
Other versions
JPS55148785A (en
Inventor
計二 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP54056930A priority Critical patent/JPS6018759B2/en
Publication of JPS55148785A publication Critical patent/JPS55148785A/en
Publication of JPS6018759B2 publication Critical patent/JPS6018759B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 本発明はアルカリ金属ハロゲン化物水溶液電解用陰極の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cathode for aqueous alkali metal halide electrolysis.

更に詳しくはこの電解において従来よりも水素過電圧を
著しく低くすることのできる新しい陰極の製造方法を提
供するものである。
More specifically, the present invention provides a new method for producing a cathode that can significantly lower the hydrogen overvoltage in this electrolysis than in the past.

ここにいう新しい陰極とはチタンまたはチタン合金から
なる基体金属にラネーニッケル成分を含む粉末が表面に
保持されたメッキ層を有する陰極を恵末する。電解槽を
用いて例えば水素、塩素、および苛性ソーダを製造する
ための食塩水溶液の電解を行う場合陰極における水素過
電圧により生ずる電力効率の損失は重大な問題である。
この陰極における水素過電圧は、陰極の素地、表面材質
、あるいはその表面状態等により著しく異なることが知
られている。即ち素地としては、チタン、チタン合金、
鉄、ステンレス鋼、ニッケル、白金族金属等を用いると
水素過電圧は低くなり、また、表面状態は粗である程、
水素過電圧が低い事が知られている。
The new cathode referred to herein is a cathode having a plating layer on the surface of which powder containing a Raney nickel component is held on a base metal made of titanium or a titanium alloy. When electrolyzers are used to electrolyze, for example, hydrogen, chlorine, and aqueous saline solutions for the production of caustic soda, the loss of power efficiency caused by hydrogen overvoltage at the cathode is a serious problem.
It is known that the hydrogen overvoltage at the cathode varies significantly depending on the material, surface material, or surface condition of the cathode. That is, the base material is titanium, titanium alloy,
The hydrogen overvoltage will be lower if iron, stainless steel, nickel, platinum group metals, etc. are used, and the rougher the surface condition, the lower the hydrogen overvoltage will be.
It is known that hydrogen overvoltage is low.

これらの知見から水素過電圧の低い材料の粉末を陰極表
面に付着させる各種の方法が提案されている。例えば鉄
板等に競縞法によりニッケル粉末あるいはラネーニッケ
ルの粉末を被覆した陰極、総射法によりニッケル、コバ
ルト、白金、鉄等の粉末状金属を基体金属の素地に密着
させた陰極(特関昭52−32832)、鉄板等に粒子
状コバルトと粒子状ジルコニアからなる溶融噴霧混合物
の被覆を有するアルカリ金属ハロゲン化物水溶液電解用
陰極(特関昭52−36582)の他、粒子状ニッケル
、コバルトもしくはこれらの両者と粒子状アルミニウム
とからなる混合物の熔融燈霧された被覆からアルミニウ
ムを除去した被覆をもつ電解用陰極(特開昭52一36
583)等がそれである。
Based on these findings, various methods have been proposed for attaching powder of materials with low hydrogen overvoltage to the cathode surface. For example, a cathode in which an iron plate or the like is coated with nickel powder or Raney nickel powder by the competitive stripe method, or a cathode in which powdered metals such as nickel, cobalt, platinum, iron, etc. are adhered to the base metal by the radiation method (Tokusei Sho 52) -32832), a cathode for aqueous alkali metal halide electrolysis having an iron plate or the like coated with a molten spray mixture of particulate cobalt and particulate zirconia (Special Seki Sho 52-36582), as well as particulate nickel, cobalt, or these. An electrolytic cathode having a coating obtained by removing aluminum from a molten atomized coating of a mixture of the two and particulate aluminum (Japanese Patent Laid-Open No. 52-36
583) etc.

しかしこれらの陰極の製造法は、金網板状体あるいは箱
型に成形した金網等複雑な表面形状をもつ陰極基板に対
しては均一な被覆が困難であり、且つ金属粉末の損失も
多く高価になる等の問題が多い。そこで我々は、各種形
状の陰極素地にも容易に適用できる水素過電圧低下に有
効な陰極の製造方法について鋭意研究した結果、チタン
またはチタン合金からなる基体金属の素地の少なくとも
一部分に、ラネーニツケル粉末を含有する複合ニッケル
メッキ格を用いてメッキ処理する陰極の製造方法、更に
上記処理後この表面に、これら粉末を含有しないニッケ
ルメッキ格を用いてメッキ処理をする陰極の製造方法を
見出した。
However, with these cathode manufacturing methods, it is difficult to uniformly coat cathode substrates with complex surface shapes such as wire mesh plates or box-shaped wire meshes, and there is a large loss of metal powder, making them expensive. There are many problems such as becoming. As a result of intensive research into a method for manufacturing a cathode that is effective in reducing hydrogen overvoltage and can be easily applied to various shapes of cathode substrates, we have found that at least a portion of the base metal made of titanium or titanium alloy contains Raney nickel powder. We have discovered a method for producing a cathode in which the surface is plated using a composite nickel plating grade containing the above-described powders, and a method for producing a cathode in which, after the above-mentioned treatment, the surface is plated using a nickel plating grade that does not contain these powders.

次に本発明に係る陰極の製造方法を詳細に説明する。Next, a method for manufacturing a cathode according to the present invention will be explained in detail.

陰極基体としては電気伝導性材料で、陰極として必要な
機械的性質と食塩電解格における耐薬品性を有するチタ
ンまたはチタン合金が用いられる。
As the cathode substrate, titanium or a titanium alloy, which is an electrically conductive material and has mechanical properties necessary for a cathode and chemical resistance at a salt electrolyte level, is used.

チタン合金にはチタンとジルコニウム、タンタル、ニオ
ブ、モリブデン、クロム、鉄、バナジウムまたはマンガ
ン等との合金が用いられる。チタン以外の成分は一般に
数重量%含有されたものが適当である。メッキは電気メ
ッキ法でも無電解〆ッキ法でもよいが電気メッキ法が粉
末をメッキ層に多量に且つ均一に含有させ得る点でより
秀れている。
The titanium alloy used is an alloy of titanium with zirconium, tantalum, niobium, molybdenum, chromium, iron, vanadium, manganese, or the like. Generally, components other than titanium are suitably contained in an amount of several percent by weight. Plating may be performed by electroplating or electroless plating, but electroplating is superior in that it allows a large amount of powder to be uniformly contained in the plating layer.

素地のメッキ処理の前処理は通常の慣用手段即ち脱脂、
エッチング、プラスト処理等組面化または清浄化処理を
適宜単独または組合わせて実施することが好ましい。メ
ッキ裕中に懸濁されて用いられるラネーニツケル粉末は
アルミニウムとニッケルの合金のラネーニッケル合金を
アルカリ展開した粉末である。
Pre-treatment of the substrate for plating is done by conventional means, such as degreasing,
It is preferable to carry out assembling or cleaning treatments such as etching and blast treatment alone or in combination as appropriate. The Raney nickel powder used in suspension in the plating bath is a powder obtained by alkali expansion of Raney nickel alloy, which is an alloy of aluminum and nickel.

ここに用いられる粉末の大きさは細かい方が有効であり
懸濁を容易である。直径500ム以上の粉末は懸濁状態
の維持が困難であり実用的でない。好適には100〃前
後以下である。メッキ俗はニッケルメッキ格、鉄メッキ
裕等の通常の電気メッキまたは無電解〆ッキ格に上記ラ
ネーニッケル粉末を懸濁したものが使用できるが、当該
粉末含有量は、付着量、懸濁液の維持、付着の均一性、
経済性等の点から1〜500夕/そで、好ましくは10
〜200夕/そである。
The finer the powder used here, the more effective it is and the easier it is to suspend. Powder with a diameter of 500 mm or more is difficult to maintain in a suspended state and is not practical. It is preferably around 100 or less. For general plating, the above Raney nickel powder suspended in ordinary electroplating or electroless plating, such as nickel plating, iron plating, etc., can be used, but the powder content depends on the amount of adhesion and the amount of suspension. maintenance, uniformity of adhesion,
From the point of view of economic efficiency, etc., 1 to 500 evenings/sleeve, preferably 10
~200 evenings/sleeves.

上記〆ツ3キ浴中ニッケル〆ッキ浴としてはワット格、
ホウフッ化ニッケルのメッキ格、スルフアミン酸ニッケ
ルの〆ッキ浴等が用いられうるがラネ−ニッケルの反応
性の面から裕pH‘ま4以上、好ましくは5以上が好ま
れる。メッキ格には通常の電気メッキ、無電解〆ッキの
場合と同じく界面活性剤例えばポリオキシェチレンアル
キルアミン、アルキルイミダゾリウムクロリド等の添加
は表面の平滑化に有効である。
The nickel-plated bath in the above 3-piece bath is watt-rated.
A plating bath of nickel borofluoride, a fining bath of nickel sulfamate, etc. may be used, but from the viewpoint of the reactivity of Raney nickel, a pH of 4 or more, preferably 5 or more is preferred. In the case of plating, addition of surfactants such as polyoxyethylene alkylamine, alkylimidazolium chloride, etc. is effective for smoothing the surface, as in the case of ordinary electroplating and electroless plating.

一方、メッキ量及び粉末付着量は電流密度により左右さ
れ、電流密度が大である程メッキ量及び粉末付着量は大
となる。実用的には私/dわが好適である。〆ッキ浴温
度は通常の場合のメッキ温度(40〜7ぴ○)でよく、
特に限定されるものではない。
On the other hand, the amount of plating and the amount of powder adhesion are influenced by the current density, and the higher the current density, the larger the amount of plating and the amount of powder adhesion. Practically speaking, I/d is suitable. The plating bath temperature should be the normal plating temperature (40 to 7 pi○).
It is not particularly limited.

フネ−ニッケル粉末の〆ッキ浴への懸濁方法としては、
機械的燈梓、ガス気泡櫨拝、液循環燈梓等の方法が適用
可能である。前記諸条件により複合メッキが達成される
が前記粉末を有する陰極表面は、紛末濃度の低いメッキ
格によるものはその高いものよりも付着強度が大である
;付着強度が低い場合には更に重ねて、フネーニッケル
粉末を懸濁せしめていない通常のメッキ俗にて好ましく
は10r(厚み)以下のニッケルメッキ層を作ることに
より付着強度を大にする事が可能である。本製造方法に
より製造される陰極は単極としての用途以外にその耐薬
品性、耐酸化性等の点で複極式用電極として用いうる特
徴がある。
The method for suspending Fune-nickel powder in a finishing bath is as follows:
Methods such as mechanical lighting, gas bubble lighting, liquid circulation lighting, etc. are applicable. Composite plating is achieved under the above conditions, but the adhesion strength of the cathode surface with the powder is greater when the plating grade is low in powder concentration than when it is high; Therefore, it is possible to increase the adhesion strength by forming a nickel plating layer with a thickness of preferably 10 r (thickness) or less using normal plating without suspending Fune nickel powder. In addition to being used as a single electrode, the cathode manufactured by this manufacturing method has characteristics such as chemical resistance and oxidation resistance that allow it to be used as a bipolar electrode.

実施例1及び2 第1表に示した条件で作成した陰極金網上にアスベスト
を沈着させてァスベスト隔膜法陰極とし、チタン金網上
に酸化ルテニウムを被覆した陽極と対置し、温度50℃
電流密度17Amp/dめにて飽和食塩水の電解を行っ
た結果、欧鋼金網陰極を使用した場合に比べ全槽電圧は
約0.10V(実施例1)0.11V(実施例2)下る
ことがわかった。
Examples 1 and 2 Asbestos was deposited on a cathode wire mesh prepared under the conditions shown in Table 1 to form an asbestos diaphragm cathode, which was placed opposite an anode made of a titanium wire mesh coated with ruthenium oxide at a temperature of 50°C.
As a result of electrolysis of saturated salt water at a current density of 17 Amp/d, the total cell voltage was approximately 0.10 V (Example 1) and 0.11 V (Example 2) lower than when using a European steel wire mesh cathode. I understand.

第 1 表また前記軟鋼金網陰極はワイヤーブラシにて
研磨して用いた。
Table 1 Also, the mild steel wire mesh cathode was polished with a wire brush before use.

Claims (1)

【特許請求の範囲】 1 チタンまたはチタン合金からなる基体金属の素地の
少なくとも一部分に、ラネーニツケル粉末を含有した複
合ニツケルメツキ浴を用いてメツキ処理することを特徴
とするアルカリ金属ハロゲン化物水溶液の電解用陰極の
製造方法。 2 チタンまたはチタン合金からなる基体金属の素地の
少なくとも一部分に、ラネーニツケル粉末を含有した複
合ニツケルメツキ浴を用いてメツキ処理後更に、上記粉
末を含有しないニツケルメツキ浴を用いてメツキ処理す
ることを特徴とするアルカリ金属ハロゲン化物水溶液の
電解用陰極の製造方法。
[Scope of Claims] 1. A cathode for electrolysis of an aqueous alkali metal halide solution, characterized in that at least a portion of a base metal base made of titanium or a titanium alloy is plated using a composite nickel plating bath containing Raney nickel powder. manufacturing method. 2. At least a portion of the base metal substrate made of titanium or titanium alloy is plated using a composite nickel plating bath containing Raney nickel powder, and then further plated using a nickel plating bath not containing the above powder. A method for producing a cathode for electrolyzing an aqueous alkali metal halide solution.
JP54056930A 1979-05-11 1979-05-11 Method for manufacturing a cathode for alkali metal halide aqueous solution electrolysis Expired JPS6018759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54056930A JPS6018759B2 (en) 1979-05-11 1979-05-11 Method for manufacturing a cathode for alkali metal halide aqueous solution electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54056930A JPS6018759B2 (en) 1979-05-11 1979-05-11 Method for manufacturing a cathode for alkali metal halide aqueous solution electrolysis

Publications (2)

Publication Number Publication Date
JPS55148785A JPS55148785A (en) 1980-11-19
JPS6018759B2 true JPS6018759B2 (en) 1985-05-11

Family

ID=13041218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54056930A Expired JPS6018759B2 (en) 1979-05-11 1979-05-11 Method for manufacturing a cathode for alkali metal halide aqueous solution electrolysis

Country Status (1)

Country Link
JP (1) JPS6018759B2 (en)

Also Published As

Publication number Publication date
JPS55148785A (en) 1980-11-19

Similar Documents

Publication Publication Date Title
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
JPH0581677B2 (en)
US4250004A (en) Process for the preparation of low overvoltage electrodes
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
CA1260427A (en) Low hydrogen overvoltage cathode and method for producing the same
JPH0257159B2 (en)
JP4115575B2 (en) Activated cathode
CA1062202A (en) Rhenium coated cathodes
JPS6018759B2 (en) Method for manufacturing a cathode for alkali metal halide aqueous solution electrolysis
JPS6018758B2 (en) Manufacturing method of cathode for alkali metal halide aqueous solution electrolysis
JPH10330998A (en) Electroplating method
JPS6015712B2 (en) Cathode for producing caustic soda and its production method
EP0100777A1 (en) Process for electroplating metal parts
JPS6045710B2 (en) electrolytic cell
US4177129A (en) Plated metallic cathode
JPS6364518B2 (en)
JPS6015713B2 (en) water electrolysis method
JPS6029487A (en) Manufacture of cathode with low hydrogen overvoltage
JPS6353273B2 (en)
JPS5846553B2 (en) Method of manufacturing activated electrodes
US3373092A (en) Electrodeposition of platinum group metals on titanium
JPH1136099A (en) Plating device and plating method thereby
JPH0625879A (en) Production of alkali hydroxide
JPS6123278B2 (en)
JPS6353274B2 (en)