JPS60186739A - Analyzing device for characteristic x-ray image - Google Patents

Analyzing device for characteristic x-ray image

Info

Publication number
JPS60186739A
JPS60186739A JP59042642A JP4264284A JPS60186739A JP S60186739 A JPS60186739 A JP S60186739A JP 59042642 A JP59042642 A JP 59042642A JP 4264284 A JP4264284 A JP 4264284A JP S60186739 A JPS60186739 A JP S60186739A
Authority
JP
Japan
Prior art keywords
characteristic
sample
ray detector
electrode
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59042642A
Other languages
Japanese (ja)
Other versions
JPH0562294B2 (en
Inventor
Shoichi Nakaoka
中岡 庄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59042642A priority Critical patent/JPS60186739A/en
Publication of JPS60186739A publication Critical patent/JPS60186739A/en
Publication of JPH0562294B2 publication Critical patent/JPH0562294B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain a two-dimensional state distribution of a sample by making a two-dimensional scan on the sample surface, diffracting the spectrum of characteristic X rays from the sample into a long-wavelength and a short-wavelength region, and calculating the quantity of a peak shift or asymmetry from obtained detection signals. CONSTITUTION:A deflector 9 scans an electron beam 7 on the surface of the sample 9. Characteristic X rays 11 radiated from the sample 9 are diffracted spectrally by a photospectroscope 10 and detected by an X-ray detector 13 through a slit 12. The detector 13 is equipped with a semiconductor plate 15 and used while a voltage is applied between electrodes 16 and 17 split in the center and an electrode 18 on the other surface. The electrode 16 is set as the long- wavelength side and the electrode 17 is set as the short-wavelength side; and output currents S1 and S2 are supplied to an arithmetic circuit. An adder 42 calculates the intensity of the X rays 11, a subtracter 43 calculates the quantity of a peak shift or asymmetry, and a divider 44 standardizes the quantity of the peak shift or asymmetry by the intensity. Thus, the two-dimensional distribution image of the sample 9 is displayed on a CRT48.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はEPMA(電子線マイクロアナライザ又はXM
Aとも称される)を用いて試料状態の線分析又は二次元
状態分布像(状態マツプ)を描く特性X線画像分析装置
に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to an EPMA (electron beam microanalyzer or
The present invention relates to a characteristic X-ray image analysis device that uses line analysis of a sample state or draws a two-dimensional state distribution image (state map) using

(従来技術) EPMAは元来、元素分析手段であり、化合物の存在を
直接明らかにするものではない。すなわち、例えば金属
Feも、FeO、F e 304又はFezO3のFe
も通常は同じに扱われる。しかし、EPMAで検出され
る特性X線のスペクトルは、分析試料の状態(主に化学
結合状態)により変化する。そこで、この特性X線のス
ペクトル変化から状態分析を行なうこともかなり行なわ
れているが、そのスペクトル変化は一般に小さいため測
定点個々に対してスペクトル解析を行なう、所謂点分析
を行なっているのが実情である。
(Prior Art) EPMA is originally an elemental analysis means and does not directly reveal the existence of compounds. That is, for example, metal Fe may also be used as FeO, Fe 304 or FezO3.
are usually treated the same. However, the spectrum of characteristic X-rays detected by EPMA changes depending on the state of the analysis sample (mainly the chemical bond state). Therefore, state analysis is often performed based on changes in the spectrum of this characteristic X-ray, but since the changes in the spectrum are generally small, so-called point analysis, in which the spectrum is analyzed at each measurement point, is used. This is the reality.

したがって、ある化学結合状態のものだけの二次元分布
像を得るようなことは、硫化物と硫酸化物の場合、又は
CuOとCu 20の場合のような特殊な場合を除いて
は行なわれていない。硫黄のL線や酸素のに線では化学
結合状態により分離された異なったピークが出現するの
で、いずれかの固有のピークの波長値に分光器を設定し
て面分析を行なうことにより、特定の化合物の二次元分
布像を得ることができるのである(例えば、日本分析学
界第30年金(1981年)予稿集374ページ参照)
Therefore, obtaining two-dimensional distribution images of only certain chemical bonding states has not been done except in special cases such as the case of sulfides and sulfides, or the case of CuO and Cu20. . Different peaks appear in the L line of sulfur and the Ni line of oxygen, which are separated depending on the chemical bonding state, so by setting the spectrometer to the wavelength value of one of the unique peaks and performing surface analysis, a specific peak can be detected. It is possible to obtain a two-dimensional distribution image of a compound (for example, see page 374 of the proceedings of the 30th Anniversary of the Japan Analytical Society (1981)).
.

しかしEPMAの通常の波長領域(1〜100人)でこ
のような現象が出現することは稀であるので、上記手法
を一般的に適用することはできない。
However, since such a phenomenon rarely occurs in the normal wavelength range of EPMA (1 to 100 people), the above method cannot be generally applied.

また、点分析のスペクトル解析を自動化することは困難
ではないが、線分析や二次元分布像のように測定点が数
10〜数万にもなると、処理時間とメモリ容量が真人な
ものになり、事実上不可能となる。
Additionally, it is not difficult to automate spectrum analysis for point analysis, but when the number of measurement points is tens to tens of thousands, such as in line analysis or two-dimensional distribution images, processing time and memory capacity become prohibitive. , becomes virtually impossible.

(目的) 本発明は試料から放射される特性X線のスペクトル変化
を測定することによりその試料の二次元分布像を採取す
るものである。
(Purpose) The present invention collects a two-dimensional distribution image of a sample by measuring changes in the spectrum of characteristic X-rays emitted from the sample.

(構成) 本発明の特性X線画像分析装置は、試料表面を二次元走
査する電子線走査機構、試料からの特性X線を分光する
X線分光機構、及びその分光された特性X線を検出する
X線検出器を備えたEPMAを用いるものであって、そ
のX線検出器は、設定された検出位置においてスリット
を通して入射する特性X線を長波長側領域と短波長側領
域とに分離して検出するように構成され、その長波長側
領域と短波長側領域とに対応した2個の出力信号からピ
ークシフト量又は非対称性量を演算する機構と、そのピ
ークシフト量又は非対称性量を表わす信号をもとにして
試料の二次元状態分布像を表示する機構とを備えたもの
である。
(Configuration) The characteristic X-ray image analyzer of the present invention includes an electron beam scanning mechanism that two-dimensionally scans the surface of a sample, an X-ray spectroscopy mechanism that spectrally specifies characteristic X-rays from the sample, and detects the spectroscopic characteristic X-rays. The EPMA uses an a mechanism for calculating a peak shift amount or an asymmetry amount from two output signals corresponding to the long wavelength side region and a short wavelength side region; It is equipped with a mechanism for displaying a two-dimensional state distribution image of the sample based on the signals expressed.

本発明の原理を第1図により説明すると、例えば金属F
eの特性X線のピークが同図(A)に記号1で示される
ようにピーク中心波長がP+であるとすると、これに酸
化物Fe2O3の特性X線のピーク2やFeOの特性X
線のピーク3重畳してくると、そのピークは同図(B)
に記号4で示されるようにピーク中心波長がP2にシフ
トしてくる。このピークシフト量Δは、酸化の度合に依
存する。
To explain the principle of the present invention with reference to FIG. 1, for example, metal F
If the peak of the characteristic X-ray of
When the three peaks of the line are superimposed, the peak is shown in the same figure (B)
As shown by symbol 4, the peak center wavelength shifts to P2. This peak shift amount Δ depends on the degree of oxidation.

本発明において、X線検出器は波長方向に長さを有し、
例えばFeの検出を行なう場合にはX線検出器の中心が
第1図(A)のFeピークの中心波長値P+にくるよう
に設定し、その長波長側と短波長側とで分離して検出を
行なう。Feのみのピーク1の場合にはそのX線検出器
の検出信号強度は長波長側と短波長側とで同じになるの
に対し、FeOやFe2Oの入ったピーク4ではその検
出信号強度は長波長側と短波長側とで異なるので、長波
長側と短波長側の2個の検出信号を比較することにより
測定点の状態がわかる。
In the present invention, the X-ray detector has a length in the wavelength direction,
For example, when detecting Fe, set the center of the X-ray detector to be at the central wavelength value P+ of the Fe peak in Figure 1 (A), and separate the long wavelength side and short wavelength side. Perform detection. In the case of peak 1 containing only Fe, the detection signal intensity of the X-ray detector is the same on the long and short wavelength sides, whereas in the case of peak 4 containing FeO and Fe2O, the detection signal intensity is the same on the long and short wavelength sides. Since the wavelength side and the short wavelength side are different, the state of the measurement point can be determined by comparing the two detection signals on the long wavelength side and the short wavelength side.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

(実施例) 第2図は本発明におけるEPMAを概略的に示す図であ
る。5はフィラメント、6はフィラメン1−5から飛出
した電子を加速して電子線とする加速電極、8は電子線
7を走査させる偏向器(コイル)、9は試料である。1
0は試料9から放射される特性X線11を分光する分光
器(結晶格子)、12はスリット、13はX線検出器で
、このX線検出器13はその中心が特定元素の特定状態
のピーク中心波長値に設定され、その長波長側と短波長
側とで分離して検出するようになっている。
(Example) FIG. 2 is a diagram schematically showing an EPMA in the present invention. 5 is a filament, 6 is an accelerating electrode that accelerates the electrons ejected from the filament 1-5 into an electron beam, 8 is a deflector (coil) that scans the electron beam 7, and 9 is a sample. 1
0 is a spectroscope (crystal lattice) that separates the characteristic X-rays 11 emitted from the sample 9, 12 is a slit, and 13 is an X-ray detector. It is set to the peak center wavelength value, and the longer wavelength side and the shorter wavelength side are separately detected.

フィラメント5から飛び出した電子は加速電極6で加速
された後、偏向器8で偏向されて試料9」二を走査する
。その電子線7の走査により特性X線11が放射され、
それが分光器10で分光され、スリット12を通ってX
線検出器13で検出される。
The electrons ejected from the filament 5 are accelerated by an accelerating electrode 6 and then deflected by a deflector 8 to scan a sample 9''. By scanning the electron beam 7, characteristic X-rays 11 are emitted,
It is separated into spectra by a spectroscope 10, passes through a slit 12, and
It is detected by the line detector 13.

本発明で使用されるX線検出器13の実施例を第3図〜
第5図に示す。
Examples of the X-ray detector 13 used in the present invention are shown in FIGS.
It is shown in FIG.

第3図は第1の実施例である半導体検出器14であり、
Si、Qe又はHgTなどの半導体板15の一方の面に
は中央で分離された2個の電極16及び17が、他方の
面には単一の電極18が設けられており、電極16と電
極18の間、及び電極17と電極18の間にはそれぞれ
等しい電圧が印加されている。
FIG. 3 shows a semiconductor detector 14 as a first embodiment,
Two electrodes 16 and 17 separated at the center are provided on one surface of a semiconductor board 15 such as Si, Qe, or HgT, and a single electrode 18 is provided on the other surface. Equal voltages are applied between electrodes 18 and 18 and between electrodes 17 and 18, respectively.

いま、このX線検出器14を入射特性X線11に対し、
図の右方向が長波長側になるように設置したとする。特
性X線11をスリットを経て入射させると、半導体板1
5の導電率が変化して、電極16と18間、及び17と
18間にそれぞれ電流11及び12が流れるが、この電
流11と12はそれぞれの領域に入射する特性X線の強
度に依存するため、入射特性X線11のピーク位置又は
対称性に依存して変化する。例えば、第1図(A)の記
号1で示されるようなピークをもつ特性X線の場合には
、電流i I= i 2となるのに対し、同図(B)の
ように短波長側にシフトしたピークをもつ特性X線の場
合には、i + < i 2となる。逆に長波長側にシ
フトしたピークをもつ特性X線の場合にはi l) i
 2となる。状態により特性X線の対称性が変化する場
合も、長波長側と短波長側とでX線強度が変化するので
、全く同様に電流i+と12の相違として検出される。
Now, this X-ray detector 14 is used for incident characteristic X-rays 11,
Assume that the device is installed so that the right side in the figure is the long wavelength side. When the characteristic X-rays 11 are incident through the slit, the semiconductor board 1
5 changes, currents 11 and 12 flow between electrodes 16 and 18 and between electrodes 17 and 18, respectively, and these currents 11 and 12 depend on the intensity of the characteristic X-rays incident on the respective regions. Therefore, the incident characteristic changes depending on the peak position or symmetry of the X-ray 11. For example, in the case of a characteristic X-ray with a peak as shown by symbol 1 in Fig. 1 (A), the current i I = i 2, whereas the current on the short wavelength side as shown in Fig. 1 (B) In the case of a characteristic X-ray with a peak shifted to , i + < i 2 . Conversely, in the case of characteristic X-rays with peaks shifted to longer wavelengths, i l) i
It becomes 2. Even when the symmetry of the characteristic X-ray changes depending on the state, the X-ray intensity changes between the long wavelength side and the short wavelength side, so it is detected as a difference between the currents i+ and 12 in exactly the same way.

この2個の電流i+、i2はそれぞれ端子St。These two currents i+ and i2 are respectively connected to terminals St.

S2を経て演算回路へ出力され、ピークシフ1へ量又は
非対称性量を表わすための種々の演算が行なわれる。
The signal is output to the calculation circuit via S2, and various calculations are performed to represent the amount of peak shift 1 or the amount of asymmetry.

第4図はX線検出器の第2の実施例を表わし、シンチレ
ータを用いたものである。
FIG. 4 shows a second embodiment of the X-ray detector, which uses a scintillator.

20はシンチレータであり、その両端には光ファイバの
ような光伝送路21.22を介して光電子増倍管23,
24がそれぞれ接続されている。
20 is a scintillator, and a photomultiplier tube 23,
24 are connected to each other.

このX線検出器も例えば第3図と同様に図の右側が長波
長側になるように設置して特性X線11を入射させると
、その入射特性X線11のピーク位置又は対称性に依存
してシンチレータ20での発光強度の分布が長波長側と
短波長側とで変化する。その発光をそれぞれ光電子増倍
管23,24で検出して端子St、S2から電流11,
12として出力すれば、第3図の場合と同様にピークシ
フト量又は非対称性量をめることができる。
For example, if this X-ray detector is installed so that the right side of the figure is on the long wavelength side as in Fig. 3 and the characteristic X-rays 11 are incident, it will depend on the peak position or symmetry of the incident characteristic X-rays 11. As a result, the distribution of the emission intensity at the scintillator 20 changes between the long wavelength side and the short wavelength side. The light emission is detected by photomultiplier tubes 23 and 24, respectively, and currents 11 and 11,
12, the peak shift amount or asymmetry amount can be determined as in the case of FIG.

第5図はX線検出器の第3の実施例を表わし、比例計数
管を用いたものである。
FIG. 5 shows a third embodiment of the X-ray detector, which uses a proportional counter.

30はガス室で、例えばキセノンガスを収納している。30 is a gas chamber which stores, for example, xenon gas.

そのガス室30内には1枚の電極板31と、中心から互
いに等距離に設置された2本の電極線32及び33を備
え、電極線32と電極板31の間、及び電極線33と電
極板31の間にはそれぞれ等しい電圧が印加されている
The gas chamber 30 is equipped with one electrode plate 31 and two electrode wires 32 and 33 installed at equal distances from the center. Equal voltages are applied between the electrode plates 31, respectively.

このX線検出器も図のように入射特性X線11の波長方
向に配置すると、特性X線11が入射すると電極線32
と電極板31の間、及び電極線33と電極板31の間に
はそれぞれ電流11及び12が流れるが、この電流11
と12も入射特性X線11のピーク位置又は対称性に依
存して変化する。
If this X-ray detector is also arranged in the wavelength direction of the incident characteristic X-ray 11 as shown in the figure, when the characteristic X-ray 11 is incident, the electrode wire 32
Currents 11 and 12 flow between the electrode wire 33 and the electrode plate 31, and between the electrode wire 33 and the electrode plate 31, respectively.
and 12 also change depending on the peak position or symmetry of the incident characteristic X-ray 11.

第3図、第4図又は第5図に示されたようなX線検出器
からの出力信号i+、ipにより、状態の二次元分布像
を画く演算・表示機構の一実施例を第6図に示す。
FIG. 6 shows an example of a calculation/display mechanism that draws a two-dimensional state distribution image using the output signals i+, ip from the X-ray detector as shown in FIG. 3, FIG. 4, or FIG. 5. Shown below.

40及び41はそれぞれX線検出器の長波長側出力信号
11及び短波長側出力信号12を入力し増幅するプリア
ンプであり、42はその増幅された両信号i+、i2の
加算を行なう加算器、43はその増幅された両信号i+
、ipの引算を行なう引算器、44は引算器43の出力
信号と加算器42の出力信号との割算を行なう割算器で
あり、これら加算器42、引算器43及び割算器44の
出力信号は、スイッチ45〜47によりいずれがが選択
されてCRT (陰極線管)48のフィラメン1へに強
度信号として入力されるように4っている。CRT48
の走査信号Rは第2図に示されているEPMAの電子線
7を走査するために偏向器8に流される走査信号と同一
のものである。49はCRT48の像をフィルムに記録
するカメラである。
40 and 41 are preamplifiers that input and amplify the long wavelength side output signal 11 and short wavelength side output signal 12 of the X-ray detector, respectively, and 42 is an adder that adds the two amplified signals i+ and i2; 43 is the amplified signal i+
, ip, and 44 is a divider that divides the output signal of the subtracter 43 and the output signal of the adder 42. The output signals of the calculator 44 are arranged so that one of them is selected by switches 45 to 47 and inputted to the filament 1 of a CRT (cathode ray tube) 48 as an intensity signal. CRT48
The scanning signal R is the same as the scanning signal sent to the deflector 8 for scanning the electron beam 7 of the EPMA shown in FIG. 49 is a camera that records the image of the CRT 48 on film.

この演算・表示機構において、加算器42の出力信号(
i + + i = )は特性X線11の強度を表わす
ものであり、引算器43の出力信号(it−1:2)は
ピークシフト量又は非対称性量を表わし、元素の状態を
表わすものである。また、割算器44の出力信号(i 
1−ip)/ (it +42)はピークシフト量又は
非対称性量を表わす信号を強度で規格化したものである
In this calculation/display mechanism, the output signal of the adder 42 (
i + + i = ) represents the intensity of the characteristic X-ray 11, and the output signal (it-1:2) of the subtractor 43 represents the amount of peak shift or the amount of asymmetry, and represents the state of the element. It is. Furthermore, the output signal (i
1-ip)/(it+42) is a signal representing the amount of peak shift or the amount of asymmetry normalized by intensity.

本実施例では、スイッチ47をオンとして割算器44の
出力信号を用いて状態分布を表示するのが最も適してい
る。しかし、引算器43の出力信号により状態分布を表
示することもできるし、他に例えば、i l/ i 2
やit/(i++iz)のような演算を行なってそれら
の信号により状態分布を表示してもよい。
In this embodiment, it is most suitable to display the state distribution using the output signal of the divider 44 with the switch 47 turned on. However, it is also possible to display the state distribution by the output signal of the subtracter 43, and in addition, for example, i l / i 2
It is also possible to perform calculations such as or it/(i++iz) and display the state distribution using these signals.

また、例えば、第6図の演算機構をデジタル装置に置き
換えてデジタル処理をするようにするなど、演算機構は
第6図のものに限定されない。
Further, the calculation mechanism is not limited to that shown in FIG. 6, for example, the calculation mechanism shown in FIG. 6 may be replaced with a digital device to perform digital processing.

(効果) 以上のように、本発明によれば、従来EPMAでは困難
であった状態の二次元分布像を、容易に採取することが
でき、試料の化学結合状態などの解析を行なう上で有効
な手段を提供することができる。
(Effects) As described above, according to the present invention, it is possible to easily collect a two-dimensional distribution image of a state that was difficult with conventional EPMA, and it is effective in analyzing the chemical bonding state of a sample. We can provide you with the means to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(A)及び同図(B)は本発明の詳細な説明す
るためのピークシフトを表わす波形図、第2図は本発明
を表わす概略図、第3図ないし第5図はそれぞれ本発明
で使用されるX線検出器の実施例を表わす概略斜視図(
第5図は一部を切欠いである)、第6図は本発明におけ
る演算・表示機構を示す回路図である。 5・・・・・・ブイラメイト、6・・・・・・加速電極
、7・・・・・・電子線、8・・・・・・偏向器、 9
・・・・・・試料、10・・・・・・分光器、11・・
・・・・特性X線、13・・・・・・X線検出器、15
・・・・・・半導体板、16.17.18・・・・・・
電極、2o・・・中シンチレータ、23.24・・・・
・・光電子増倍管、30・・・・・・ガス室、 31・
・・・・・電極板、32.33・・・・・・電極線。 代理人 弁理士 野口繁雄 第3図 1A −一一一一一一つ−人
FIG. 1 (A) and FIG. 5 (B) are waveform diagrams showing peak shifts for detailed explanation of the present invention, FIG. 2 is a schematic diagram showing the present invention, and FIGS. 3 to 5 are respectively A schematic perspective view showing an embodiment of the X-ray detector used in the present invention (
FIG. 5 is a partially cutaway view), and FIG. 6 is a circuit diagram showing the calculation/display mechanism in the present invention. 5... Buiramate, 6... Accelerating electrode, 7... Electron beam, 8... Deflector, 9
...Sample, 10...Spectrometer, 11...
...Characteristic X-ray, 13...X-ray detector, 15
・・・・・・Semiconductor board, 16.17.18・・・・・・
Electrode, 2o... Medium scintillator, 23.24...
...Photomultiplier tube, 30...Gas chamber, 31.
... Electrode plate, 32.33 ... Electrode wire. Agent Patent Attorney Shigeo Noguchi Figure 3 1A -11111-Person

Claims (4)

【特許請求の範囲】[Claims] (1)試料表面を二次元走査する電子線走査機構と、 試料からの特性X線を分光するX線分光機構と、その分
光された特性X線を設定された検出位置において長波長
側領域と短波長側領域とに分離して検出するX線検荏器
と、 該X線検出器の長波長側領域と短波長側領域とに対応し
た2個の出力信号からピークシフト量又は非対称性量を
演算する機構と、 該演算機構の出力信号をもとにして試料の二次元状態分
布像を表示する機構と、 を備えたことを特徴とする特性X線画像分析装置。
(1) An electron beam scanning mechanism that two-dimensionally scans the sample surface; An X-ray detector that detects the short wavelength region separately, and a peak shift amount or asymmetry amount from two output signals corresponding to the long wavelength region and the short wavelength region of the X-ray detector. 1. A characteristic X-ray image analyzer comprising: a mechanism for calculating; and a mechanism for displaying a two-dimensional state distribution image of a sample based on an output signal of the calculation mechanism.
(2)前記X線検出器は半導体板を備え、該半導体の一
方の面には中央で分離された2個の電極が設けられ、各
電極にはその半導体板の他方の面に設けられた電極との
間に電圧が印加されて使用されるものである特許請求の
範囲第1項に記載の特性X線画像分析装置。
(2) The X-ray detector includes a semiconductor plate, one side of the semiconductor is provided with two electrodes separated at the center, and each electrode is provided with two electrodes provided on the other side of the semiconductor plate. The characteristic X-ray image analysis device according to claim 1, which is used by applying a voltage between the device and the electrode.
(3)前記X線検出器はシンチレータを備え、該シンチ
レータの対向する端部に光検出手段が設けられている特
許請求の範囲第1項に記載の特性X線画像分析装置。
(3) The characteristic X-ray image analysis device according to claim 1, wherein the X-ray detector includes a scintillator, and a photodetection means is provided at opposite ends of the scintillator.
(4)前記X線検出器は比例計数管であり、その比例計
数管のガス室内で設定位置の中心から等距離の位置に1
本ずつの電極線が設けられ、対向する電極板との間にそ
れぞれ等しい電圧が印加されている特許請求の範囲第1
項に記載の特性X線画像分析装置。
(4) The X-ray detector is a proportional counter, and the X-ray detector is placed at a position equidistant from the center of the set position in the gas chamber of the proportional counter.
Claim 1: Each electrode wire is provided, and an equal voltage is applied between each of the electrode wires facing each other.
The characteristic X-ray image analyzer described in Section 1.
JP59042642A 1984-03-05 1984-03-05 Analyzing device for characteristic x-ray image Granted JPS60186739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59042642A JPS60186739A (en) 1984-03-05 1984-03-05 Analyzing device for characteristic x-ray image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59042642A JPS60186739A (en) 1984-03-05 1984-03-05 Analyzing device for characteristic x-ray image

Publications (2)

Publication Number Publication Date
JPS60186739A true JPS60186739A (en) 1985-09-24
JPH0562294B2 JPH0562294B2 (en) 1993-09-08

Family

ID=12641666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59042642A Granted JPS60186739A (en) 1984-03-05 1984-03-05 Analyzing device for characteristic x-ray image

Country Status (1)

Country Link
JP (1) JPS60186739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021076411A (en) * 2019-11-06 2021-05-20 株式会社島津製作所 Method, device, and program for estimating component of sample, method for learning, and learning program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021076411A (en) * 2019-11-06 2021-05-20 株式会社島津製作所 Method, device, and program for estimating component of sample, method for learning, and learning program

Also Published As

Publication number Publication date
JPH0562294B2 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
US6794648B2 (en) Ultimate analyzer, scanning transmission electron microscope and ultimate analysis method
EP0009766B1 (en) Apparatus for emission spectrochemical analysis
Danielsson et al. The IDES System—An Image Dissector Echelle Spectrometer System For Spectrochemical Analysis
US4962516A (en) Method and apparatus for state analysis
Sweedler et al. A comparison of CCD and CID detection for atomic emission spectroscopy
US4870265A (en) Position-sensitive radiation detector
EP0452825B1 (en) Method and apparatus for background correction in analysis of a specimen surface
EP0204855B1 (en) Method and apparatus for state analysis
JP2821656B2 (en) Multiple conditions X-ray fluorescence qualitative analysis method
JPS60186739A (en) Analyzing device for characteristic x-ray image
JPH10208682A (en) Particle beam imaging device, spectrometer provided in the particle beam imaging device, particle beam imaging method and usage of particle beam imaging device
US7220970B2 (en) Process and device for measuring ions
JPH04334861A (en) Electron spectroscopic image measuring method
JPH05172638A (en) Photo array sensor and image intensifier for spectral analyzer
US20030085350A1 (en) Ultimate analyzer, scanning transmission electron microscope and ultimate analysis method
JP2000348670A (en) Electron beam dispersing device and electron microscope
JPS60135850A (en) Method and apparatus for state mapping
JPS6070319A (en) Spectrometer
Feuerbacher et al. An Electron Energy Analyzer for Photoelectron Energy Distribution Studies on Solids
JP3315212B2 (en) Weak luminescence measuring device
JPS60113137A (en) Method and device for x-ray photoelectron spectrochemical analysis
Davidson et al. Digital TV-echelle spectrograph for simultaneous multielemental analysis using microcomputer control
JPH0332737B2 (en)
Polichar et al. Energy selective imaging systems based on monolithic CdZnTe arrays operated in a high speed counting mode
JPH1196962A (en) Ion collector