JPS6018269B2 - Manufacturing method for stainless steel welds - Google Patents

Manufacturing method for stainless steel welds

Info

Publication number
JPS6018269B2
JPS6018269B2 JP55100471A JP10047180A JPS6018269B2 JP S6018269 B2 JPS6018269 B2 JP S6018269B2 JP 55100471 A JP55100471 A JP 55100471A JP 10047180 A JP10047180 A JP 10047180A JP S6018269 B2 JPS6018269 B2 JP S6018269B2
Authority
JP
Japan
Prior art keywords
stainless steel
welded
weld
weight
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55100471A
Other languages
Japanese (ja)
Other versions
JPS5725282A (en
Inventor
清 山内
幾久 浜田
智美 横野
和喜 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP55100471A priority Critical patent/JPS6018269B2/en
Publication of JPS5725282A publication Critical patent/JPS5725282A/en
Publication of JPS6018269B2 publication Critical patent/JPS6018269B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 本発明は、ステンレス鋼材料を用いて構成する肉盛部や
溶接部などのステンレス鋼溶着部の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a stainless steel welded part such as a built-up part or a welded part constructed using a stainless steel material.

圧力容器、例えば沸騰水型原子炉の内面は腐食による損
傷を防ぐため、肉盛溶接が施こされている。
The inner surface of a pressure vessel, such as a boiling water reactor, is welded overlay to prevent damage due to corrosion.

本発明はこの肉盛溶接などのステンレス鋼溶着部に係り
、その目的は、優れた耐腐食性を有するステンレス鋼熔
着部の製造方法を提供するにある。
The present invention relates to stainless steel welded parts such as overlay welding, and an object thereof is to provide a method for manufacturing a stainless steel welded part having excellent corrosion resistance.

この目的を達成するため、本発明は、母材の表面に、ニ
ッケルを約12〜14重量%、クロムを約22〜24重
量%含有する熱伝導度の低い第1のステンレス鋼溶着部
を形成し、その第1のステンレス鋼溶着部の表面にニッ
ケルを約9〜la重量%、クロムを約18〜21重量%
含有する第2のステンレス鋼溶着部を形成することによ
り、第2のステンレス鋼溶着部と前記母材との間に2つ
の境界面を設け、前記第2のステンレス鋼港着部の表面
側を再溶融せしめて表面にフェライト相の再粒子化層を
設けたことを特徴とするものである。
To achieve this objective, the present invention forms a first stainless steel weld on the surface of the base metal with a low thermal conductivity containing about 12-14% by weight of nickel and about 22-24% by weight of chromium. The surface of the first stainless steel weld is coated with about 9 to 10% by weight of nickel and about 18 to 21% by weight of chromium.
By forming a second stainless steel weld containing the material, two interfaces are provided between the second stainless steel weld and the base material, and the surface side of the second stainless steel weld is It is characterized in that it is remelted and a regranulated layer of ferrite phase is provided on the surface.

すなわち、前記第2のステンレス鋼溶着部である308
系ステンレス鋼は、後記の特性表から明らかなように他
のステンレス鋼に比べて熱伝導性が良く、しかも融点が
低いため「入熱量が少ない条件で再溶融でき、入熱量が
少ないことから再溶融後の冷却速度が遠く、その結果、
網目状に細かく発達したフェライト相の細粒子化層が全
体にわたって均一に形成される。
That is, the second stainless steel welded portion 308
As is clear from the property table below, stainless steel has better thermal conductivity than other stainless steels, and has a lower melting point, so it can be remelted under conditions with less heat input; The cooling rate after melting is far, resulting in
A fine-grained ferrite phase layer with a finely developed network is uniformly formed throughout.

一方、前記第1のステンレス鋼溶着部である309系ス
テンレス鋼は、後記の特性表から明らかなように他のス
テンレス鋼に比べて熱伝導性が悪い。
On the other hand, the 309 series stainless steel that is the first stainless steel welded part has poor thermal conductivity compared to other stainless steels, as is clear from the characteristic table below.

この第1のステンレス鋼溶着部が母材と第2のステンレ
ス鋼溶着部との間に介在され、母材と第1のステンレス
鋼溶着部との間ならぴに第1のステンレス鋼溶着部と第
2のステンレス溶着部との間にそれぞれ境界面が設けら
れ、しかも前述のように第2のステンレス鋼落着部に対
する入熱量が少なくてすむことから、これらが互に関係
し合って母材への熱的影響を極力抑制することができる
。数種類のステンレス鋼のニッケルならびにクロムの含
有率、融点ならびに500午0での熱伝導率を次の特性
表に示す。
The first stainless steel weld is interposed between the base metal and the second stainless steel weld, and the first stainless steel weld is located between the base metal and the first stainless steel weld. A boundary surface is provided between each of the second stainless steel welded parts, and as mentioned above, the amount of heat input to the second stainless steel welded part is small, so these interrelate to the base metal. It is possible to suppress the thermal influence as much as possible. The nickel and chromium content, melting point and thermal conductivity at 500 pm of several types of stainless steel are shown in the following characteristic table.

特 性 表 第4図は、本発明の実施例に係るステンレス鋼溶着部を
示す図である。
Characteristics Table 4 is a diagram showing a stainless steel welded part according to an example of the present invention.

低合金鋼1の上に309系ステンレス鋼溶着部2が形成
され、さらにその上に308系ステンレス鋼溶着層3が
形成される。そしてこの308系ステンレス鋼溶着層3
の表面側を溶材なしの非消耗電極を用いてプラズマアー
ク溶接法により再溶融し、冷却凝固させて表面に薄い再
溶融層4が形成される。第5図および第6図は前記再溶
融層4の平面および断面を倍率500で写した顕微鏡写
真で、矢印Aで示している部分がオーステナイト相、矢
印Fで示している部分がフェライト相である。
A 309 series stainless steel welded portion 2 is formed on the low alloy steel 1, and a 308 series stainless steel welded layer 3 is further formed thereon. And this 308 series stainless steel welding layer 3
The surface side is remelted by plasma arc welding using a non-consumable electrode without a welding material, and is cooled and solidified to form a thin remelted layer 4 on the surface. 5 and 6 are micrographs showing the plane and cross section of the remelted layer 4 at a magnification of 500, in which the part indicated by arrow A is the austenite phase, and the part indicated by arrow F is the ferrite phase. .

これらの写真から明らかなように、再溶融層4はフェラ
イト相Fが網目状に細かく発達して、全体的に分散した
状態になっている。溶着部におけるフェライト相の紬粒
化を定量定に把握するため、第5図の上に任意に引いた
直線と交わるフェライト相Fとオーステナィト相Aの界
面が単位長さ当り何個所あるかを示す量Nを定義して(
写真の倍率は実寸に補正する)、評価した結果を第7図
の0‘こ示す。
As is clear from these photographs, in the remelted layer 4, the ferrite phase F has developed into a fine network and is dispersed throughout. In order to quantitatively understand the grain formation of the ferrite phase in the welded part, the number of interfaces between the ferrite phase F and the austenite phase A that intersect with a straight line arbitrarily drawn on Figure 5 is shown per unit length. Define the quantity N and (
(The magnification of the photograph is corrected to the actual size), and the evaluated results are shown at 0' in Fig. 7.

第9図は本発明の溶着金属部を硫酸−硫酸第2鉄腐食試
験法(日本工業規格C0572)で評価した結果を示す
図で、試料Vは港着部の表面側を再溶融させてフェライ
ト相の細粒化層を形成したままのもの、試料のは紬粒化
層形成後に応力除去蛾鈍処理(610oo,4加持間)
を施したものである。
Figure 9 shows the results of evaluating the welded metal part of the present invention using the sulfuric acid-ferric sulfate corrosion test method (Japanese Industrial Standards C0572). The sample with the fine-grained phase still formed was subjected to stress-relieving moth dulling treatment (610oo, 4 cycles) after the formation of the pongee-grained layer.
It has been subjected to

第1図は、本発明者が先に検討したステンレス鋼による
2層肉盛構造を示す図である。低合金鋼1に母材の希釈
を考慮して、その上に309系ステンレス鋼溶着部2(
Niが約12〜14重量%,Crが約22〜24重量%
)が形成され、さらにその上に308系ステンレス鋼溶
着層3(Niが約9〜la重量%,Crが約18〜21
重量%)が形成されている。第2図および第3図は、表
面側のステンレス鋼溶着部3(炭素量0.04%、フェ
ライト11%)の平面および断面を倍率500で写した
顕微鏡写真である。前述のように低い含有炭素量に対し
て十分なフェライト量があるから、耐食性、耐応力腐食
割れ性があると考えられていた。しかし実際にその溶着
金属部を、粒界腐食または応力腐食割れの加速試験とし
て知られている硫酸−硫酸第2鉄腐食試験法で評価する
と、第8図のような結果になる。この図において、試料
mは溶着したままで応力除去焼鎚処理を施さなかったも
の、試料Nは溶着後に61000で4餌時間応力除去焼
錨処理を施したものである。この図から明らかなよよう
に、これら試料m,Wでは粒界侵食が起こり、耐食性の
点で必ずしも満足できるものではない。またこの溶着部
におけるフェライト相の紬粒化を定量的に把握するため
、前述と同様に第2図の上に任意に引いた直線と交わる
フェライト相Fとオーステナィト相Aの界面が単位長さ
当り何個所あるかを示す量Nを定義して、評価した結果
を第7図の1に示す。
FIG. 1 is a diagram showing a two-layer overlay structure made of stainless steel that was previously studied by the present inventor. Considering the dilution of the base metal to the low alloy steel 1, welded part 2 of 309 series stainless steel (
Ni is about 12-14% by weight, Cr is about 22-24% by weight
) is formed, and on top of that a 308 series stainless steel welding layer 3 (Ni: about 9 to 15% by weight, Cr about 18 to 21% by weight) is formed.
% by weight) is formed. 2 and 3 are micrographs taken at a magnification of 500 of the plane and cross section of the stainless steel welded part 3 on the front side (carbon content 0.04%, ferrite 11%). As mentioned above, it was thought that since there is a sufficient amount of ferrite in spite of the low carbon content, it has corrosion resistance and stress corrosion cracking resistance. However, when the welded metal part is actually evaluated using the sulfuric acid-ferric sulfate corrosion test method, which is known as an accelerated test for intergranular corrosion or stress corrosion cracking, the results shown in FIG. 8 are obtained. In this figure, sample M was welded and not subjected to stress-relieving casting hammer treatment, and sample N was welded and then subjected to stress-relieving hammering treatment at 61000 for 4 hours. As is clear from this figure, grain boundary erosion occurs in these samples m and W, and the corrosion resistance is not necessarily satisfactory. In addition, in order to quantitatively understand the granulation of the ferrite phase in this weld, the interface between the ferrite phase F and the austenite phase A, which intersects with the straight line arbitrarily drawn on Figure 2, is calculated per unit length as described above. A quantity N indicating the number of locations is defined and the evaluated results are shown in 1 in FIG.

この図から明らかなように、本発明による溶着部0のフ
ェライト相の細かさは、溶着部1の2倍以上ある。また
第9図と第8図の腐食試験結果を対比すれば明らかなよ
うに、本発明によって得られたステンレス鋼溶着部は優
れた耐腐食性を有している。
As is clear from this figure, the fineness of the ferrite phase in weld part 0 according to the present invention is more than twice that of weld part 1. Furthermore, as is clear from a comparison of the corrosion test results in FIG. 9 and FIG. 8, the stainless steel welded portion obtained by the present invention has excellent corrosion resistance.

母材中での内部結晶の分離やクラックの発生を抑制する
ため、従来、母材の表面に1層のステンレス鋼溶着部を
形成し、前記母材のステンレス鋼溶着部と対向する部分
が約725〜110000になるようにステンレス鋼溶
着部側から極めて多量の熱を短時間に供給することによ
り、前記対向部分の粗大結晶組織を微細結晶粒組織に変
換する方法が提案されている。しかしこの方法は前述の
ように人熱量が極めて多く母材がかなり高温になるため
、母材側からステンレス鋼落着部へ炭素の拡散が生じる
In order to suppress the separation of internal crystals and the occurrence of cracks in the base metal, conventionally, a single layer of stainless steel weld is formed on the surface of the base metal, and the part of the base metal facing the stainless steel weld is approximately A method has been proposed in which the coarse crystal structure of the opposing portion is converted into a fine crystal grain structure by supplying an extremely large amount of heat from the stainless steel welded portion side in a short period of time so that the stainless steel has a particle diameter of 725 to 110,000. However, as mentioned above, this method requires an extremely large amount of human heat, and the base metal becomes quite hot, which causes carbon to diffuse from the base metal side to the stainless steel settling part.

この炭素の拡散によってステンレス鋼溶着部の炭素量が
増し、炭化クロムなどの炭化物が生成して粒界腐食感受
性が高くなり、かえって母材とステンレス鋼落着部との
中間部分で粒界腐食を生じる。また、母材が725〜1
100q0の高温になるようにステンレス鋼落着部を再
溶融する訳であるが、入熱量が極めて多いため、熔融後
の冷却にかなり時間がかかる。そのためステンレス鋼の
再溶融層ではフェライト相の微細化は進行せず、再熔融
層に耐腐食性をもたせることはできない。本発明は前述
のような構成になっており、第2のステンレス鋼溶着部
は他のステンレス鋼に比べて熱伝導率が良く、しかも融
点が低いため、少なし、入熱量で再溶融ができ、ざらに
入熱量が少ないことから再溶融後の冷却が速く、フェラ
イト相の細粒子化層が全体にわたって均一に形成される
This diffusion of carbon increases the amount of carbon in the stainless steel weld, producing carbides such as chromium carbide, increasing susceptibility to intergranular corrosion, and instead causing intergranular corrosion in the intermediate area between the base metal and the stainless steel weld. . In addition, the base material is 725-1
The stainless steel settling part is remelted to a high temperature of 100q0, but since the amount of heat input is extremely large, it takes a considerable amount of time to cool down after melting. Therefore, in the remelted layer of stainless steel, the ferrite phase does not become finer, and the remelted layer cannot have corrosion resistance. The present invention has the above-mentioned configuration, and since the second stainless steel welded part has better thermal conductivity than other stainless steels and has a lower melting point, it can be remelted with a small amount of heat input. Since the amount of heat input to the grain is small, cooling after remelting is fast, and a fine grained layer of ferrite phase is uniformly formed over the entire surface.

また、第1のステンレス鋼熔着部は他のステンレス鋼に
比べて熱伝導率が悪く、これが母材と第2のステンレス
鋼溶着部の間に介在され、母村と第1のステンレス鋼落
着部との間ならびに第1のステンレス鋼漆着部と第2の
ステンレス鋼溶着部との間にそれぞれ境界面が設けられ
、しかも前述のように第2のステンレス鋼総着部に対す
る入熱量が少なくてすむことから、母材への熱的影響に
ともなう炭化物の生成が抑制できる。このように2つの
ステンレス溶着部の組成を選定し、しかも母材と表面側
ステンレス鋼溶着部との間に熱伝導を妨げる2つの境界
面を設けることにより、表面にフェライト相の細粒子化
層が形成され、しかもそれを形成するときの入熱にとも
なう母材への悪影響を阻止することにより、耐腐食性、
耐応力腐食性を向上することができ、信頼性の高い落着
金属部が得られる。
In addition, the first stainless steel welded part has poor thermal conductivity compared to other stainless steels, and this is interposed between the base material and the second stainless steel welded part, and the first stainless steel welded part is interposed between the base material and the first stainless steel welded part. An interface is provided between the first stainless steel lacquered part and the second stainless steel welded part, and as described above, the amount of heat input to the second stainless steel welded part is small. As a result, the formation of carbides due to thermal effects on the base metal can be suppressed. By selecting the compositions of the two stainless steel welds in this way and providing two interfaces that impede heat conduction between the base metal and the surface stainless steel weld, we created a fine-grained ferrite phase layer on the surface. is formed, and by preventing the adverse effects on the base material due to heat input during formation, corrosion resistance,
Stress corrosion resistance can be improved, and highly reliable deposited metal parts can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は比較例の熔着金属部の要部斜視図、第2図およ
び第3図はその港着金属部における2層目の溶着層の平
面および断面の顕微鏡写真、第4図は本発明の実施例に
係る溶着金属部の要部斜視図、第5図および第6図はそ
の溶着金属部における再熔融層の平面および断面の顕微
鏡写真、第7図は比較例と本発明のものとの溶着金属部
の表面におけるフェライト相の細かさを比較する特性図
、第8図は比較例の溶着金属部の腐食試験結果を示す特
性図、第9図は本発明に係る溶着金属部の腐食試験結果
を示す特性図である。 2・・・・・・309系ステンレス鋼落着部、3・・・
・・・308系ステンレス鋼溶着層、4・・・・・・再
溶融層。 簾/図第4図 第ァ図 第2図 第3図 第5図 第6図 第8図 第9図
Figure 1 is a perspective view of the main part of the welded metal part of the comparative example, Figures 2 and 3 are micrographs of the plane and cross section of the second weld layer in the port-welded metal part, and Figure 4 is the main part of the welded metal part of the comparative example. A perspective view of a main part of a welded metal part according to an example of the invention, FIGS. 5 and 6 are micrographs of a plane and a cross section of a re-melted layer in the welded metal part, and FIG. 7 is a comparative example and that of the present invention. Figure 8 is a characteristic diagram showing the corrosion test results of the welded metal part of the comparative example, and Figure 9 is a characteristic diagram comparing the fineness of the ferrite phase on the surface of the welded metal part according to the present invention. FIG. 3 is a characteristic diagram showing corrosion test results. 2...309 series stainless steel settling part, 3...
...308 series stainless steel welding layer, 4... Remelting layer. Blinds / Figure 4 Figure A Figure 2 Figure 3 Figure 5 Figure 6 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1 母材の表面に、ニツケルを12〜14重量%、クロ
ムを22〜24重量%含有する熱伝導度の低い第1のス
テンレス鋼溶着部を形成し、その第1のステンレス鋼溶
着部の表面にニツケルを9〜12重量%、クロムを18
〜21重量%含有する第2のステンレス鋼溶着部を形成
することにより、第2のステンレス鋼溶着部と前記母材
との間に2つの境界面を設け、前記第2のステンレス鋼
溶着部の表面側を再溶融せしめて表面にフエライト相の
細粒子化層を設けたことを特徴とするステンレス鋼溶着
部の製造方法。
1. A first stainless steel welded part with low thermal conductivity containing 12 to 14% by weight of nickel and 22 to 24% by weight of chromium is formed on the surface of the base material, and the surface of the first stainless steel welded part is 9 to 12% by weight of nickel and 18% of chromium.
By forming a second stainless steel weld containing ~21% by weight, two interfaces are provided between the second stainless steel weld and the base material, and the A method for manufacturing a stainless steel welded part, characterized in that the surface side is remelted to provide a fine grained layer of ferrite phase on the surface.
JP55100471A 1980-07-24 1980-07-24 Manufacturing method for stainless steel welds Expired JPS6018269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55100471A JPS6018269B2 (en) 1980-07-24 1980-07-24 Manufacturing method for stainless steel welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55100471A JPS6018269B2 (en) 1980-07-24 1980-07-24 Manufacturing method for stainless steel welds

Publications (2)

Publication Number Publication Date
JPS5725282A JPS5725282A (en) 1982-02-10
JPS6018269B2 true JPS6018269B2 (en) 1985-05-09

Family

ID=14274815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55100471A Expired JPS6018269B2 (en) 1980-07-24 1980-07-24 Manufacturing method for stainless steel welds

Country Status (1)

Country Link
JP (1) JPS6018269B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2057084T5 (en) * 1988-12-21 1999-12-01 Mitsubishi Materials Corp TOOL ELEMENT COATED WITH DIAMOND, CORRESPONDING SUBSTRATE AND METHOD TO MANUFACTURE IT.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874414A (en) * 1971-12-30 1973-10-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874414A (en) * 1971-12-30 1973-10-06

Also Published As

Publication number Publication date
JPS5725282A (en) 1982-02-10

Similar Documents

Publication Publication Date Title
CA2830543C (en) Fine grained ni-based alloys for resistance to stress corrosion cracking and methods for their design
Radhakrishna et al. The formation and control of Laves phase in superalloy 718 welds
CA2660107C (en) Welding alloy and articles for use in welding, weldments and method for producing weldments
DuPont Solidification of an alloy 625 weld overlay
CA2335894C (en) Welding alloy and articles for use in welding, weldments and methods for producing weldments
KR100196989B1 (en) Wear-resistant copper-based alloy
US4964926A (en) Ferritic stainless steel
EP2422919B1 (en) Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same
JP2013237064A (en) Ni-based alloy weld metal, strip electrode and welding method
CN106541222A (en) The nuclear power nickel-based welding wire of high-temp and high-strength flawless defect and its preparation and use
JPH028840B2 (en)
Kangazian et al. Characterization of structure–property relationship of Incoloy 825 and SAF 2507 dissimilar welds
Najafi et al. Microstructure and phase analysis of multilayer Ni–Cr–Mo clad for corrosion protection
US4846885A (en) High molybdenum nickel-base alloy
JP2622530B2 (en) Welding material for austenitic steel with excellent high-temperature strength
Stalder et al. Slow strain rate stress corrosion cracking of type 304 stainless steels
Kulkarni et al. Critical aspects of pulse current GMA welding of stainless steel influencing metallurgical characteristics
JPS6018269B2 (en) Manufacturing method for stainless steel welds
Saluja et al. Depiction of detrimental metallurgical effects in grade 304 austenitic stainless steel arc welds
Yaman et al. Hot Cracking Susceptibilities in the Heat-affected Zone of Electron Beam–welded Inconel 718
Santella An overview of the welding of Ni 3 Al and Fe 3 Al alloys
Jafarzadegan et al. Investigation of microstructure and corrosion resistance of AISI 304 stainless steel joint with ER308 and ERNiCr-3 filler metals by GTAW
Tian et al. Dynamic laser welding hot cracking behavior and mechanism of new structural material Ni–28W–6Cr alloy for molten salt reactor
JPH0426937B2 (en)
Konadu The effect of stabilizing elements, specifically titanium and niobium, on the susceptibility of ferritic stainless steels to solidification cracking