JPS60182670A - Rechangeable battery - Google Patents

Rechangeable battery

Info

Publication number
JPS60182670A
JPS60182670A JP59038163A JP3816384A JPS60182670A JP S60182670 A JPS60182670 A JP S60182670A JP 59038163 A JP59038163 A JP 59038163A JP 3816384 A JP3816384 A JP 3816384A JP S60182670 A JPS60182670 A JP S60182670A
Authority
JP
Japan
Prior art keywords
activated carbon
negative electrode
carbon fiber
battery
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59038163A
Other languages
Japanese (ja)
Inventor
Teruichiro Matsumura
松村 輝一郎
Jun Tsukamoto
遵 塚本
Shin Kashiwara
柏原 伸
Satoru Saito
哲 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Toray Industries Inc
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Toray Industries Inc
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Toray Industries Inc, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP59038163A priority Critical patent/JPS60182670A/en
Publication of JPS60182670A publication Critical patent/JPS60182670A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a high performance secondary battery having high discharge voltage by using electrolyte comprising organic solvent and solute and using specific carbon material having different property in a positive electrode and a negative electrode. CONSTITUTION:Activated carbon or activated carbon fiber is used in a positive electrode 2 and graphite or graphitized carbon fiber is used in a negative electrode 1, and electrolyte comprising organic solvent and solute is used. As the activated carbon material, for example, coconut shell activated carbon having a surface area of 500-1,000m<2>/g or activated carbon fiber having a surface area of 300-3,000m<2>/g is used. As graphite material for the negative electrode, highly graphitized material such as graphite powder or graphitized carbon fiber is preferable, especially cloth or felt having large surface area comprising highly graphitized carbon fiber is preferable in terms of electrode production. As solute of the electrolyte, LiCIO4, LiBF4, LiPF6<->, LiAsF6 having Li<+> is preferable.

Description

【発明の詳細な説明】 本発明は有機溶媒と溶質からなる電解液を用い、正極と
負極とで物性の異なる炭素材料を用いることにより、す
なわら、正極に活性炭あるいは活性炭素繊維(以下両者
を総称して活性炭材料ともいう)を用い、負極に黒鉛あ
るいは黒鉛化炭素繊維(以下両者を総称して黒鉛材料と
もいう)を用いることにより、放電電圧の高い高性能な
充放電可能な電池を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses an electrolytic solution consisting of an organic solvent and a solute, and uses carbon materials with different physical properties for the positive electrode and the negative electrode. By using graphite or graphitized carbon fiber (hereinafter collectively referred to as graphite materials) for the negative electrode, we can create high-performance chargeable and dischargeable batteries with high discharge voltage. This is what we provide.

従来、電極に炭素月利を用いる電池としては、正極に黒
鉛(グラファイトともいう)を用い、負極に金属リヂウ
ムを用いるものがあったが、電圧があまりに高いため電
解液の溶媒の分解が起ること、充放電のクーロン効率が
低いこと、自己放電が大きいことなどの欠点があった。
Previously, batteries that used carbon as electrodes used graphite (also called graphite) for the positive electrode and metal lithium for the negative electrode, but the voltage was too high and the solvent in the electrolyte decomposed. However, there were drawbacks such as low coulombic efficiency for charging and discharging, and large self-discharge.

また別に正極、負極ともに活性炭あるいは活性炭素繊維
を用いる電池も提案されているが、これは電圧が約2■
と低いこと、及び充放電のクーロン効率が低いことなど
の欠点があった(公開特許公報昭58−35881 )
Another battery that uses activated carbon or activated carbon fiber for both the positive and negative electrodes has been proposed, but this has a voltage of about 2.
There were disadvantages such as low coulombic efficiency and low charge/discharge coulomb efficiency (Publication of Patent Publication No. 58-35881).
.

本発明は活性炭材料に代えて黒鉛材料を負極に用いるこ
とにより、活性炭材料に比べ著しく卑な電位で安定した
放電電圧を示すことを見出したことに基づくものであっ
て、従来の炭素材料を電極とする電池の欠点を除去する
ものである。黒鉛材料を負極に用いると、卑な電圧で安
定した放電電圧を示す以外に、充放電におけるクーロン
効率が高い長所がある。
The present invention is based on the discovery that by using a graphite material in the negative electrode instead of an activated carbon material, a stable discharge voltage can be exhibited at a significantly lower potential than the activated carbon material. This eliminates the drawbacks of batteries. When a graphite material is used for the negative electrode, it has the advantage of not only exhibiting a stable discharge voltage at a base voltage but also high coulombic efficiency during charging and discharging.

一般に黒鉛材料は六員環網状平面の炭素層が平行に積み
重なった層状構造をもち、この層間に充放電により電解
液中のイオンが入ったり、出たりすることが出来る。層
間にイオンが入る過程をド。
In general, graphite materials have a layered structure in which six-membered ring network planar carbon layers are stacked in parallel, and ions in the electrolyte can enter and exit between these layers by charging and discharging. Describes the process by which ions enter between layers.

−ブ、層間からイオンが出る過程をアンドープと呼lυ
でいる。
-The process in which ions come out from between layers is called undoping.
I'm here.

活性炭材料より黒鉛材料の方が負極として卑な電位を示
す理由は、黒鉛材料では陽イオンのドープが起って層間
化合物が出来るのに対し、活性炭材料では層状構造を持
たないため、陽イオンのドープが起らず電解液相に電気
二重層を形成するにとどまるためと推測される。
The reason why graphite materials exhibit a more base potential as a negative electrode than activated carbon materials is that graphite materials are doped with cations and form intercalation compounds, whereas activated carbon materials do not have a layered structure, so doping of cations occurs. This is presumed to be because no doping occurs and only an electric double layer is formed in the electrolyte phase.

また、黒鉛材料を正極として用いた場合、負極として用
いる場合と異なってクーロン効率が低いのは、陰イオン
のドープが起りにくく、副反応が起るためと推測される
。黒鉛材料は正極としては性能が悪く、負極として用い
るとづ−ばらしい性能を発揮するのである。
Furthermore, when a graphite material is used as a positive electrode, the Coulombic efficiency is lower than when it is used as a negative electrode, presumably because anion doping is difficult to occur and side reactions occur. Graphite materials have poor performance as positive electrodes, but exhibit excellent performance when used as negative electrodes.

本発明は正極として活性炭材料を、負極に黒鉛材料を用
い、有機溶媒と溶質からなる電解液を用いるものである
が、本発明に用いる活性炭材料としては500〜100
0イ/gの表面積をもつヤシガラ活性炭、表面積が30
0〜300(lnJ / (Iの活性炭繊維等がある3
、活性炭繊維はセルロース系繊維等の繊維を焼成賦活す
ることによって得られる。
The present invention uses an activated carbon material as a positive electrode, a graphite material as a negative electrode, and an electrolytic solution consisting of an organic solvent and a solute.
Coconut shell activated carbon with a surface area of 0 i/g, a surface area of 30
0~300(lnJ/(I) activated carbon fiber etc.3
Activated carbon fibers are obtained by firing and activating fibers such as cellulose fibers.

活性炭繊維の場合単繊維以外にクロス、フェルト、織物
などの形状で得られるので、電極製造が簡単かつ容易に
なる利点がある。
Activated carbon fibers can be obtained in the form of cloth, felt, woven fabric, etc. in addition to single fibers, which has the advantage of making electrode manufacturing simple and easy.

本発明における負極に用いられる黒鉛化材料としては、
黒鉛粉末、黒鉛化炭素繊維等の高黒鉛化炭素体が好まし
いが、高黒鉛化炭素繊維によるクロス、フェルト、織物
等の形状を右する構造体のような比表面積が大きく電極
製造の簡単な材料が好ましく用いられる。高黒鉛化繊維
としては、ポリアクリニトリル系繊維、レーヨン系$1
iIff、ピッチ系繊維、リグニンポバール系繊維、芳
香族ポリマー繊維、縮合ポリマー繊維等、高温焼成によ
り高黒鉛化度か可能ならばいずれでも本発明に使用でき
る。
As the graphitized material used for the negative electrode in the present invention,
Highly graphitized carbon bodies such as graphite powder and graphitized carbon fiber are preferred, but materials with a large specific surface area and easy electrode manufacturing such as structures that control the shape of cloth, felt, textiles, etc. made of highly graphitized carbon fiber are preferred. is preferably used. Highly graphitized fibers include polyacrynitrile fibers and rayon $1
iIff, pitch-based fibers, lignin poval-based fibers, aromatic polymer fibers, condensed polymer fibers, etc., which can be highly graphitized by high-temperature firing, can be used in the present invention.

本発明においていう高黒鉛化炭素体とは、以下のような
ものである。一般に炭素体はアルゴン・イオンレーザ−
光(5145人)によるラマンビーク1−ルにおいて、
1350an−’付近と1580 +i+−1イ」近ど
に特徴的なラマンビークが現われる。炭素体にJ3ける
黒鉛化の進行に伴なって1350c++i−’ 付近の
ピ一りは減少し、1580a++−’ 付近のピークは
増大する。したがって、1580ao−’のピーク強度
に対する1350CnI−1のピーク強度の比率は、炭
素体の黒鉛化度を示す指標と考えることができ、この比
率が小ざいほど黒鉛化度は高いど言える(F、 Tui
nstra 、 J、 l−、Koenig、 J、 
Chem 、 Phys 。
The highly graphitized carbon body referred to in the present invention is as follows. Generally, carbon bodies are argon ion laser
In the Raman beak 1-le by light (5145 people),
Characteristic Raman beaks appear near 1350 an-' and 1580 +i+-1 a'. As the graphitization of the carbon body J3 progresses, the peak around 1350c++i-' decreases, and the peak around 1580a++-' increases. Therefore, the ratio of the peak intensity of 1350CnI-1 to the peak intensity of 1580ao-' can be considered as an index indicating the degree of graphitization of the carbon body, and the smaller this ratio, the higher the degree of graphitization (F, Tui
nstra, J. l-, Koenig, J.
Chem, Phys.

陳−、1126(1970> ) 。Chen, 1126 (1970>).

本発明で負極として用いられる高黒鉛化炭素体とは、ラ
マンビークl−ルにおける上述のピーク比率か0.4以
下のものである。例えば、活性炭ではこのピークl上率
は約1程度であり、本発明の負極には不適であるが、ポ
リアクリロニトリルm維を高黒鉛化したものはピーク比
率が0.25以下と小さく、本発明のI高黒鉛化炭素体
にあたり、本発明の負極材としての使用が可能である。
The highly graphitized carbon body used as the negative electrode in the present invention is one having the above-mentioned peak ratio in the Raman vehicle of 0.4 or less. For example, activated carbon has a peak l increase ratio of about 1, making it unsuitable for the negative electrode of the present invention, but highly graphitized polyacrylonitrile m fibers has a small peak ratio of 0.25 or less, and is therefore unsuitable for the negative electrode of the present invention. This highly graphitized carbon body can be used as the negative electrode material of the present invention.

黒鉛化炭素繊維の場合、単am以外にクロス。In the case of graphitized carbon fiber, cross in addition to single am.

フ丁ル1−1織物すどの形状で得られるので、電極製造
が簡単かつ容易なる利点がある。
Since the fabric 1-1 can be obtained in the shape of a woven fabric, the electrode has the advantage of being simple and easy to manufacture.

本発明において用いる電解液の溶媒としては有1幾溶媒
が分解電圧が高く望ましい。有機溶媒として一般の電池
に用いるものでよく、プロピレン7J−ボネイト、テト
ラハイドロフラン、7′ −ブチロラクl〜ン、1.2
−ジメトキシエタンあるいはこれらの混合溶媒などがあ
る。これら有機溶媒に溶解さす溶質としては陽イオンが
Li” 、 Na“、(n−Ehl)4N“となり、陰
イオンがClO4−、BF4− 。
As the solvent for the electrolytic solution used in the present invention, certain solvents are desirable because of their high decomposition voltage. Organic solvents used in general batteries may be used, such as propylene 7J-bonate, tetrahydrofuran, 7'-butyrolacone, 1.2
-Dimethoxyethane or a mixed solvent thereof. The solutes dissolved in these organic solvents include cations such as Li'', Na'', and (n-Ehl)4N'', and anions such as ClO4- and BF4-.

P F6− 、 As’Fa −トなルLICI04 
、1−IS Fa 。
P F6-, As'Fa-tor LICI04
, 1-IS Fa.

11!1cI04 、(n=8u) 4 NCl0aな
どの無機塩がある。中でも陰イオンがLi +T” h
 ルLi CI Oa 、 l−i BF4 、 Li
P F6− 、 LIASFaなどが望ましい。
There are inorganic salts such as 11!1cI04, (n=8u)4NCl0a. Among them, the anion is Li +T”h
Le Li CI Oa, l-i BF4, Li
PF6-, LIASFa, etc. are preferable.

本発明にJ3いては電池の両極に炭素材料を使用するた
めに種々の利点が生じる。すなわち炭素材料はそれ自体
高電導性であるのぐ集電体が不要でありまた化学的に安
定であるなど電極材料どして有利である。
In J3 of the present invention, various advantages arise because carbon materials are used for both electrodes of the battery. That is, carbon materials are advantageous as electrode materials because they are highly conductive, do not require a current collector, and are chemically stable.

つぎに本発明の実施例につき説明する。Next, examples of the present invention will be described.

第1図は本発明の一実施例を示づ電池断面図であり、(
1)、は負極で黒鉛化炭素繊維からなるクロスである。
FIG. 1 is a cross-sectional view of a battery showing one embodiment of the present invention;
1) is a negative electrode made of graphitized carbon fiber.

(2)は正極で活性炭素繊維からなるクロスである。(
3)はポリプロピレンの不様布からなるしパレータであ
る。(4)はニッケルからなる電池ケースで負極端子を
兼ねる。(5)はニッケルからなる電池カバーで正極端
子を兼ねる。(6)はポリプロピレンからなるバッキン
グで、電池ケース(4)と電池カバー(5)とを電気的
に絶縁し、かつ両者間を気密に封口している。
(2) is a positive electrode, which is a cloth made of activated carbon fiber. (
3) is a pallet made of irregular polypropylene cloth. (4) is a battery case made of nickel and also serves as a negative terminal. (5) is a battery cover made of nickel that also serves as the positive terminal. (6) is a backing made of polypropylene, which electrically insulates the battery case (4) and the battery cover (5) and seals the space between them airtight.

じパレータには電解液どして 1.Omol/父の過塩
素酸リチウムのプロピレンカーボネイ]・溶液をしみこ
まI!τいる。正極は直径25 m n+で厚み0.5
mmの、活性炭素繊維クロスを2枚重ねた。負極は直径
251I1mで厚み0.25n+mの黒tS)化炭素繊
維クロスを2枚重ねた。
1. Pour the electrolyte into the same parator. Omol/Father's Lithium Perchlorate Propylene Carboney] Soak the solution into it! There is τ. The positive electrode has a diameter of 25 m n+ and a thickness of 0.5
Two sheets of activated carbon fiber cloth with a diameter of 2 mm were stacked together. The negative electrode was made by stacking two sheets of black tS) coated carbon fiber cloth with a diameter of 251I1m and a thickness of 0.25n+m.

この負極に用いた黒鉛化炭素繊維は、ポリアクリロニト
リルを主成分とJる繊維を耐炎化処理し!ζ後3000
℃で1時間熱処理することによって得られた。この繊維
の黒鉛化度をみるため、アルゴンイオンレー!J” (
5145人)によるラマンスペクトルを測定した結果を
第2 (a )aに示す。1580cm−1のピーク強
度に対する1350an−’のピーク強度比は約0.2
であり、したがって、この負極材料は高い黒鉛化度をも
つものと言える。一方、正極に用いた活性炭素Ili帷
のラマンスペクトルは第2(b)図のようになり、13
50a++−’イq近のピークが大きく、強度比は1に
近い、ずなわら非晶質炭素体であることがわかる。
The graphitized carbon fiber used for this negative electrode is a fiber whose main component is polyacrylonitrile and has been treated to be flame resistant! ζ after 3000
Obtained by heat treatment at ℃ for 1 hour. To check the degree of graphitization of this fiber, use argon ion ray! J” (
The results of Raman spectra measured by 5145 people are shown in Section 2(a)a. The ratio of the peak intensity of 1350an-' to the peak intensity of 1580cm-1 is about 0.2
Therefore, this negative electrode material can be said to have a high degree of graphitization. On the other hand, the Raman spectrum of the activated carbon Ili film used as the positive electrode is as shown in Figure 2(b), and 13
It can be seen that the peak near 50a++-'q is large and the intensity ratio is close to 1, indicating that it is an amorphous carbon body.

本発明になる電池をA、従来の正・負極に活性炭材料を
用いる電池をBとし、室温で10 mAで充放電をJ3
こなったときの特性を第3図に示す。本発明になる電池
△の開路電圧は3.8■に対し、電池Bの開路電圧は2
.OVであって、電池Δの方が1.8Vも電圧が高い。
The battery according to the present invention is designated as A, and the conventional battery using activated carbon material for the positive and negative electrodes is designated as B, and the battery is charged and discharged at 10 mA at room temperature as J3.
Figure 3 shows the characteristics when this occurs. The open circuit voltage of battery △ according to the present invention is 3.8■, while the open circuit voltage of battery B is 2.
.. OV, the voltage of battery Δ is 1.8V higher.

また充放電におりるクー1」ン効率を比較すると電池A
が98%であったのに対し電池Bは90%であった。
Also, when comparing the cooling efficiency during charging and discharging, battery A
was 98%, while battery B was 90%.

電池Aと電池Bとの違いは負極にもとづくものであるが
、両者の負極の電圧性P1をリチウム照合電極を基準に
して測定したものを第4図に承り。
The difference between battery A and battery B is based on the negative electrode, and the voltage characteristics P1 of the negative electrodes of both were measured using a lithium reference electrode as a reference, as shown in FIG.

充電において電池Aの負極では黒鉛材料に電解液中の1
1+イオンがドープされ、このイオンが黒鉛材料の層間
に入って安定な層間化合物を・形成し、放電においてL
1+イオンがアンドープされて電解液にもどるのに対し
、’Fi池Bの負極では電解液中のしl′″イAイオド
ープされることはなく電解液の負極界面にとどまるため
電位が員となるものと11L測される。
During charging, at the negative electrode of battery A, 1 in the electrolyte is added to the graphite material.
1+ ions are doped, and these ions enter between the layers of the graphite material to form a stable intercalation compound, and in the discharge, L
While the 1+ ions are undoped and return to the electrolyte, at the negative electrode of the 'Fi pond B, the 1+ ions in the electrolyte are not doped and remain at the negative electrode interface of the electrolyte, so the potential becomes a member. It was measured to be 11L.

IJa3、本発明は充放電可能な電池のみならず容愚の
大きいコンデンリーーどしても利用することが可能であ
る。
IJa3, the present invention can be used not only for chargeable/dischargeable batteries but also for large condenser batteries.

本発明は上述したごとく正極に活性炭材料を、負極に黒
鉛材料を用いることにより電圧が高く、充放電のクーロ
ン効率の高い、すぐれた電池を可能にするものである。
As described above, the present invention uses an activated carbon material for the positive electrode and a graphite material for the negative electrode, thereby making possible an excellent battery with high voltage and high Coulombic efficiency in charging and discharging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す電池断面図である。第
2(a)図は負極に用いる黒鉛化炭素繊維のラマンスペ
クトル図であり、第2(b)図は正極に用いる活性炭素
l1lf#のラマンスペクトル図である。第3図は本発
明になる電池Aと従来の電池Bとの充放電曲線を示した
図である。第4図は本発明になる電池Aと従来の電池B
との負極の充放電曲線を示した図である。 1・・・負極、2・・・正極、3・・・ヒバレータ冨2
(2)l¥1 ラマンシフ ト/Cm−を 藻2(b]コ ラマンシフ17/G’rr1−1 第3肥 蕃ヰ図
FIG. 1 is a sectional view of a battery showing an embodiment of the present invention. FIG. 2(a) is a Raman spectrum diagram of graphitized carbon fiber used for the negative electrode, and FIG. 2(b) is a Raman spectrum diagram of activated carbon l1lf# used for the positive electrode. FIG. 3 is a diagram showing charge/discharge curves of battery A according to the present invention and conventional battery B. Figure 4 shows a battery A according to the present invention and a conventional battery B.
It is a figure showing the charge-discharge curve of the negative electrode with. 1...Negative electrode, 2...Positive electrode, 3...Hibareta depth 2
(2) l\1 Raman shift/Cm- to algae 2 (b) Raman shift 17/G'rr1-1 3rd fertilization diagram

Claims (1)

【特許請求の範囲】[Claims] 1、正極に活性炭あるいは活性炭素繊維を、負極に黒鉛
あるいは黒鉛化炭素−1Ji維をそれぞれ用い、電解液
が有機溶媒と溶質からなることを特徴とする充放電可能
な電池。
1. A chargeable/dischargeable battery characterized in that the positive electrode uses activated carbon or activated carbon fiber, the negative electrode uses graphite or graphitized carbon-1Ji fiber, and the electrolyte consists of an organic solvent and a solute.
JP59038163A 1984-02-28 1984-02-28 Rechangeable battery Pending JPS60182670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59038163A JPS60182670A (en) 1984-02-28 1984-02-28 Rechangeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59038163A JPS60182670A (en) 1984-02-28 1984-02-28 Rechangeable battery

Publications (1)

Publication Number Publication Date
JPS60182670A true JPS60182670A (en) 1985-09-18

Family

ID=12517732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59038163A Pending JPS60182670A (en) 1984-02-28 1984-02-28 Rechangeable battery

Country Status (1)

Country Link
JP (1) JPS60182670A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229670A (en) * 1986-03-28 1987-10-08 Pentel Kk Cell
JPS6313282A (en) * 1986-07-02 1988-01-20 Sharp Corp Nonaqueous electrolyte secondary battery
JPS6324555A (en) * 1986-03-27 1988-02-01 Sharp Corp Electrode and its manufacture
JPS63100009A (en) * 1986-10-14 1988-05-02 Kuraray Co Ltd Activated carbon
JPS63114056A (en) * 1986-10-31 1988-05-18 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS63124372A (en) * 1986-11-11 1988-05-27 Sharp Corp Nonaqueous electrolyte battery
JPS63193462A (en) * 1987-02-04 1988-08-10 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS63193463A (en) * 1987-02-04 1988-08-10 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS63216272A (en) * 1987-03-03 1988-09-08 Asahi Glass Co Ltd Nonaqueous electrolyte energy storage device
JPS63226882A (en) * 1987-03-17 1988-09-21 Toshiba Battery Co Ltd Nonaqueous solvent secondary cell
JPS63245855A (en) * 1987-03-31 1988-10-12 Sharp Corp Electrode and battery
JPS63304572A (en) * 1987-06-03 1988-12-12 Toshiba Battery Co Ltd Nonaqueous solvent secondary cell
JPH0195471A (en) * 1987-10-06 1989-04-13 Sharp Corp Secondary battery
WO1992016026A1 (en) * 1991-03-02 1992-09-17 Sony Corporation Negative electrode material, manufacturing thereof, and nonaqueous electrolyte battery made therefrom
WO1995018467A1 (en) * 1992-04-30 1995-07-06 Sony Corporation Material for cathode and method of its manufacture
EP0697747A1 (en) 1994-07-21 1996-02-21 Sharp Kabushiki Kaisha Carbon electrode for nonaqueous secondary battery, fabrication method for the same and nonaqueous secondary battery using the same
US5643426A (en) * 1993-12-28 1997-07-01 Sony Corporation Anode material and method of manufacturing the same
US5716732A (en) * 1992-04-30 1998-02-10 Imoto; Hiroshi Anode material and method of manufacturing the same
US6316146B1 (en) 1998-01-09 2001-11-13 Matsushita Electric Industrial Co., Ltd. Carbon materials for negative electrode of secondary battery and manufacturing process
KR100415810B1 (en) * 1996-06-12 2004-05-14 니기소 가부시키가이샤 Non-aqueous electrolyte secondary battery
WO2005031773A1 (en) * 2003-09-30 2005-04-07 Fuji Jukogyo Kabushiki Kaisha Organic electrolytic capacitor
JP2005259726A (en) * 2004-03-09 2005-09-22 Yuasa Corp Electrochemical device and manufacturing method therefor
WO2005088658A1 (en) * 2004-03-10 2005-09-22 Power Systems Co., Ltd. Power storage element and electrical double-layer capacitor
JP2008258213A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Manufacturing method of electrode for electric double-layer capacitor
WO2009063966A1 (en) 2007-11-16 2009-05-22 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type storage element
US8159815B2 (en) 2006-09-19 2012-04-17 Daihatsu Motor Co., Ltd. Electrochemical capacitor
CN105140042A (en) * 2015-09-08 2015-12-09 哈尔滨工业大学 Method for preparing bacterial cellulose/active carbon fiber/carbon nanotube film material and application
JP2016225397A (en) * 2015-05-28 2016-12-28 パナソニックIpマネジメント株式会社 Electricity storage device and manufacturing method thereof
EP2295399A3 (en) * 2001-03-26 2018-04-04 Nisshinbo Industries, Inc. Liquid electrolytes for electrical storage devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135581A (en) * 1982-02-06 1983-08-12 Yoshiharu Matsuda Positive electrode of secondary battery using nonaqueous solution as electrolyte
JPS58192266A (en) * 1982-04-23 1983-11-09 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Storage element for electric energy
JPS59207568A (en) * 1983-04-29 1984-11-24 モ−ビル オイル コ−ポレ−ション Bulb with cathode of graphite-containing sheet and anode of carbon sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135581A (en) * 1982-02-06 1983-08-12 Yoshiharu Matsuda Positive electrode of secondary battery using nonaqueous solution as electrolyte
JPS58192266A (en) * 1982-04-23 1983-11-09 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Storage element for electric energy
JPS59207568A (en) * 1983-04-29 1984-11-24 モ−ビル オイル コ−ポレ−ション Bulb with cathode of graphite-containing sheet and anode of carbon sheet

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324555A (en) * 1986-03-27 1988-02-01 Sharp Corp Electrode and its manufacture
JPS62229670A (en) * 1986-03-28 1987-10-08 Pentel Kk Cell
JPS6313282A (en) * 1986-07-02 1988-01-20 Sharp Corp Nonaqueous electrolyte secondary battery
JPS63100009A (en) * 1986-10-14 1988-05-02 Kuraray Co Ltd Activated carbon
JPS63114056A (en) * 1986-10-31 1988-05-18 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH0578909B2 (en) * 1986-11-11 1993-10-29 Sharp Kk
JPS63124372A (en) * 1986-11-11 1988-05-27 Sharp Corp Nonaqueous electrolyte battery
JPS63193462A (en) * 1987-02-04 1988-08-10 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS63193463A (en) * 1987-02-04 1988-08-10 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS63216272A (en) * 1987-03-03 1988-09-08 Asahi Glass Co Ltd Nonaqueous electrolyte energy storage device
JPS63226882A (en) * 1987-03-17 1988-09-21 Toshiba Battery Co Ltd Nonaqueous solvent secondary cell
JPS63245855A (en) * 1987-03-31 1988-10-12 Sharp Corp Electrode and battery
JPS63304572A (en) * 1987-06-03 1988-12-12 Toshiba Battery Co Ltd Nonaqueous solvent secondary cell
JPH0195471A (en) * 1987-10-06 1989-04-13 Sharp Corp Secondary battery
WO1992016026A1 (en) * 1991-03-02 1992-09-17 Sony Corporation Negative electrode material, manufacturing thereof, and nonaqueous electrolyte battery made therefrom
US5294498A (en) * 1991-03-02 1994-03-15 Sony Corporation Anode material, method for producing it and non-aqueous electrolyte cell employing such anode materials
WO1995018467A1 (en) * 1992-04-30 1995-07-06 Sony Corporation Material for cathode and method of its manufacture
US5716732A (en) * 1992-04-30 1998-02-10 Imoto; Hiroshi Anode material and method of manufacturing the same
US5643426A (en) * 1993-12-28 1997-07-01 Sony Corporation Anode material and method of manufacturing the same
EP0697747A1 (en) 1994-07-21 1996-02-21 Sharp Kabushiki Kaisha Carbon electrode for nonaqueous secondary battery, fabrication method for the same and nonaqueous secondary battery using the same
KR100415810B1 (en) * 1996-06-12 2004-05-14 니기소 가부시키가이샤 Non-aqueous electrolyte secondary battery
US6316146B1 (en) 1998-01-09 2001-11-13 Matsushita Electric Industrial Co., Ltd. Carbon materials for negative electrode of secondary battery and manufacturing process
EP2295399A3 (en) * 2001-03-26 2018-04-04 Nisshinbo Industries, Inc. Liquid electrolytes for electrical storage devices
JP2011146734A (en) * 2003-09-30 2011-07-28 Fuji Heavy Ind Ltd Organic electrolyte capacitor
WO2005031773A1 (en) * 2003-09-30 2005-04-07 Fuji Jukogyo Kabushiki Kaisha Organic electrolytic capacitor
JPWO2005031773A1 (en) * 2003-09-30 2006-12-07 富士重工業株式会社 Organic electrolyte capacitor
KR100863562B1 (en) * 2003-09-30 2008-10-15 후지 주코교 카부시키카이샤 Organic electrolytic capacitor
JP4751199B2 (en) * 2003-09-30 2011-08-17 富士重工業株式会社 Organic electrolyte capacitor
US7443651B2 (en) 2003-09-30 2008-10-28 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor
JP2005259726A (en) * 2004-03-09 2005-09-22 Yuasa Corp Electrochemical device and manufacturing method therefor
US7626804B2 (en) 2004-03-10 2009-12-01 Masaki Yoshio Power storage element and electric double layer capacitor
WO2005088658A1 (en) * 2004-03-10 2005-09-22 Power Systems Co., Ltd. Power storage element and electrical double-layer capacitor
US8159815B2 (en) 2006-09-19 2012-04-17 Daihatsu Motor Co., Ltd. Electrochemical capacitor
JP2008258213A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Manufacturing method of electrode for electric double-layer capacitor
WO2009063966A1 (en) 2007-11-16 2009-05-22 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type storage element
US8248757B2 (en) 2007-11-16 2012-08-21 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type storage element
JP2016225397A (en) * 2015-05-28 2016-12-28 パナソニックIpマネジメント株式会社 Electricity storage device and manufacturing method thereof
CN105140042A (en) * 2015-09-08 2015-12-09 哈尔滨工业大学 Method for preparing bacterial cellulose/active carbon fiber/carbon nanotube film material and application

Similar Documents

Publication Publication Date Title
JPS60182670A (en) Rechangeable battery
US5919589A (en) Rechargeable battery
KR101670580B1 (en) Separator for secondary battery, method of fabricating the same, and lithium secondary battery comprising the same
AU2020264696B2 (en) Rechargeable battery cell
JPH04237971A (en) Nonaqueous electrolyte secondary battery
JP2668678B2 (en) Rechargeable battery
CN113851608A (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
US7311998B1 (en) Lithium polymer battery with a crosslinked electrolyte
JP3046055B2 (en) Non-aqueous secondary battery
EP1479118B9 (en) Electrochemical cell comprising carbonaceous material and molybdenum carbide as anode
KR20000056339A (en) Lithium ion secondary battery
JP2002083602A (en) Nonaqueous electrolytic solution secondary battery and its manufacturing method
JPS6369154A (en) Nonaqueous electrolyte secondary battery
JPS6054181A (en) Rechargeable battery
JPS6369155A (en) Nonaqueous electrolyte secondary battery
JPS63121263A (en) New nonaqueous battery
JPS61206170A (en) Secondary battery and its electrode
JP2811389B2 (en) Rechargeable battery
JPH06150931A (en) Negative electrode for secondary battery
JPH1125974A (en) Lithium secondary battery
JPS59157974A (en) Secondary battery
JPS62165857A (en) Nonaqueous electrolyte secondary cell
JP3144929B2 (en) Non-aqueous electrolyte secondary battery
JP3398771B2 (en) Carbon electrode and secondary battery using the same
CN117423905A (en) Lithium secondary battery