JPS6018212B2 - Regeneration method of catalyst for methacrylic acid production - Google Patents

Regeneration method of catalyst for methacrylic acid production

Info

Publication number
JPS6018212B2
JPS6018212B2 JP52066629A JP6662977A JPS6018212B2 JP S6018212 B2 JPS6018212 B2 JP S6018212B2 JP 52066629 A JP52066629 A JP 52066629A JP 6662977 A JP6662977 A JP 6662977A JP S6018212 B2 JPS6018212 B2 JP S6018212B2
Authority
JP
Japan
Prior art keywords
catalyst
activity
acid
water
methacrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52066629A
Other languages
Japanese (ja)
Other versions
JPS542293A (en
Inventor
直樹 安藤
章 飯尾
昌敏 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP52066629A priority Critical patent/JPS6018212B2/en
Publication of JPS542293A publication Critical patent/JPS542293A/en
Publication of JPS6018212B2 publication Critical patent/JPS6018212B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、メタクロレィン、イソブチルアルデヒド、及
び/又はィソ酪酸と分子状酸素を含有するガスを燐−モ
リブデンーアルカリ又はタリウムーバナジン系触媒と接
触させてメタクロレインを酸化し、メタクリル酸を得る
方法において、長時間の使用時により活性の低下したる
触媒を廃棄せず、ほとんどそのまま新触媒として再使用
できる様にする為の触媒再生法にに関するものである。
Detailed Description of the Invention The present invention involves the oxidation of methacrolein by contacting a gas containing methacrolein, isobutyraldehyde, and/or isobutyric acid, and molecular oxygen with a phosphorus-molybdenum-alkali or thallium-vanadine catalyst. However, the present invention relates to a method for regenerating a catalyst in a method for obtaining methacrylic acid so that the catalyst whose activity has decreased due to long-term use can be reused as a new catalyst without being discarded.

本発明における再生法とは、通常に言う触媒賦活法のこ
とではなく、新触媒調製用の原料として、活性低下した
触媒をほとんどそのまま使用することを示しており、触
媒製造にかかる原材料費の大中な削減をもたらすに、有
効な手段を与えるものである。従来、ィソブデンから工
業的に非常な有用な中間原料であるメタクリル酸を気相
接触酸化法で製造する方法に関し、多大の研究がなされ
、種々の触媒系が特許等に報告されている。
The regeneration method in the present invention does not refer to the usual catalyst activation method, but refers to using a catalyst with reduced activity almost as is as a raw material for preparing a new catalyst, which reduces the cost of raw materials for catalyst production. This provides an effective means for achieving moderate reductions. Conventionally, a great deal of research has been conducted on methods for producing methacrylic acid, which is an industrially very useful intermediate raw material, from isobutene by gas phase catalytic oxidation, and various catalyst systems have been reported in patents and the like.

現在、ィソブデンからメタクリル酸を合成するにあたっ
ては、イソブデンを一旦メタクロレィンに酸化し、続い
て、メタクロレィンをメタクリル酸まで酸化するという
二段酸化法をとるのが最も適当と見られている。このう
ち、メタクロレインよりメタクリル酸を合成する、いわ
ゆる二段自用触媒の開発は非常に困難で有ったが、近年
になって続々と報告がされている。この二段自用触媒と
して、活性、寿命とも最も好ましいのは、燐−モリブデ
ンーアルカリ系触媒と見られる。最近の研究によれば、
燐−モリブデン−アルカリ系触媒は、ィソブチルアルデ
ヒドの酸化反応に対しても非常に有効であり、やはりメ
タクリル酸が高収率で得られることがわかった(特磯昭
52−39027(特関昭53−124210号公報参
照)、同52−39028(特開昭53一124211
号公報参照))。
Currently, in synthesizing methacrylic acid from isobutene, it is considered most appropriate to use a two-step oxidation method in which isobutene is first oxidized to methacrolein, and then methacrolein is oxidized to methacrylic acid. Among these, the development of so-called two-stage proprietary catalysts for synthesizing methacrylic acid from methacrolein was extremely difficult, but reports have been made one after another in recent years. As this two-stage self-use catalyst, the most preferable one in terms of activity and lifespan is a phosphorus-molybdenum-alkaline catalyst. According to recent research,
It was found that the phosphorus-molybdenum-alkali catalyst is also very effective in the oxidation reaction of isobutyraldehyde, and that methacrylic acid can also be obtained in high yield (Tokuiso Sho 52-39027 (Tokukan Sho 52-39027). (See Japanese Patent Application Publication No. 53-124210), No. 52-39028 (Japanese Unexamined Patent Publication No. 53-124211)
(see publication)).

燐−モリブデンーアルカリ系触媒は、活性、寿命とも現
在報告されている他の触媒系より優れている様であるが
、本発明者らの研究によると、この触媒系は、主に、燐
−モリブデン酸塩型のへテロポリ酸構造をとっていると
きが好ましく、これが破壊された状態、例えば、高温焼
成によって構造変化を起した場合や、還元性雰囲気下で
高温に保ったりして、モリブデンが還元され、構造的に
も変化を生じた場合には、活性が大きく減ずることがわ
かった。したがって、酸化反応は、注意深く行ない、ヘ
テ。ポリ酸構造の変化を起こさない程度の反応状態で行
なわねばならない。その意味で燐−モリブデン酸アルカ
リ酸として最も熱分解温度の高いセシウム塩は、寿命を
保つ上から言って好ましいアルカリである。そのアルカ
リ成分としてカリウム、ルビジウム、セシウム、タリウ
ム(タリウムはアルカリ金属ではないが、アルカリ類似
元素であり、ここでは便宜上含めて述べることとする。
)のうち、反応活性はカリウムがやや低い程度でイオン
径が大きくなるほど次第に大きくなる様であり、寿命的
にも類似した傾向が有る。したがって、工業的にメタク
リル酸を製造する場合には、少くとも触媒は、高温下で
長時間、例えば約1年間、曝される為、触媒として用い
る燐−モリブデンーアルカリ系触媒のアルカリ成分とし
ては最も高い熱安定性を与えるセシウムを、又は少くと
もセシウムを含有するアルカリ混合物を使用することが
好ましい。
The phosphorus-molybdenum-alkaline catalyst seems to be superior to other catalyst systems currently reported in terms of activity and lifespan, but according to the research of the present inventors, this catalyst system mainly It is preferable that it has a molybdate-type heteropolyacid structure, and when this is destroyed, for example, when a structural change occurs due to high-temperature calcination, or when kept at high temperature in a reducing atmosphere, molybdenum is It was found that when it is reduced and structural changes occur, its activity is greatly reduced. Therefore, the oxidation reaction must be performed carefully. The reaction must be carried out under conditions that do not cause changes in the polyacid structure. In this sense, cesium salt, which has the highest thermal decomposition temperature among the phosphorus-molybdate alkaline acids, is a preferable alkali from the viewpoint of maintaining life. Its alkali components include potassium, rubidium, cesium, and thallium (thallium is not an alkali metal, but is an alkali-like element, and will be included here for convenience.
), the reaction activity seems to be slightly lower for potassium and gradually increases as the ion diameter increases, and there is a similar tendency in terms of lifespan. Therefore, when producing methacrylic acid industrially, at least the catalyst is exposed to high temperatures for a long time, for example, about one year, so the alkali component of the phosphorus-molybdenum-alkali catalyst used as the catalyst is Preference is given to using cesium, or at least an alkaline mixture containing cesium, which gives the highest thermal stability.

本発明者らはセシウムを使用する場合、価格が高く一年
間の使用の後に廃棄することは非常に不経済と考え、使
用後触媒からの、セシウム等有効成分の再資源化につい
て鋭意研究を続けて来た。
The inventors of the present invention believe that when using cesium, it is expensive and extremely uneconomical to dispose of it after one year of use, and have continued to conduct intensive research into recycling active ingredients such as cesium from used catalysts. I came.

その結果使用後触媒よりセシウムやモリブデン等を抽出
分離するという様な複雑な化学操作を経るのではなく、
驚くべきことに鮫煤そのものを水中でスラリー化し、塩
酸を加えて十分熟成させることによりそのまま新しい触
媒に近い活性のものに再調製することが可能であること
がわかり、本発明に到達した。即ち、本発明は、燐、モ
リブデン、X、バナジン及び酸素(ここでXは、カリウ
ム、ルビジウム、セシウム、タリウムの群より選ばれる
少くとも一種)を必須成分とする、メタクロレィン、ィ
ソプチルアルデヒド及び/又はィソ酪酸よりメタクリル
酸を気相接触酸化によって製造する為の触媒において、
長時間の使用等によりその活性が低下したるものを塩酸
中で熟成し、得られたものを触媒調製原料として使用し
て、再度活性の復活した触媒とすることを特徴とする触
媒の再生方法に関するものである。
As a result, instead of going through complicated chemical operations such as extracting and separating cesium and molybdenum from the catalyst after use,
Surprisingly, it was found that by slurrying shark soot itself in water, adding hydrochloric acid, and sufficiently aging it, it was possible to reconstitute it into a catalyst with an activity close to that of a new catalyst, leading to the present invention. That is, the present invention provides methacrolein, isoptyraldehyde and / Or a catalyst for producing methacrylic acid from isobutyric acid by gas phase catalytic oxidation,
A method for regenerating a catalyst, which is characterized by aging a catalyst whose activity has decreased due to long-term use, etc. in hydrochloric acid, and using the obtained product as a raw material for catalyst preparation to obtain a catalyst whose activity has been restored again. It is related to.

更に詳しく使用できる触媒の種類、熟成条件等について
記述する。
The types of catalysts that can be used, aging conditions, etc. will be described in more detail.

侍閥昭49−133298には、モリブデン酸アンモン
、リン酸アンモン、メタバナジン酸アンモンの水溶液を
混合して蒸発乾固し、得られたものを500qoで熱分
解して均密な混合酸化物とした後、これを水中に投入し
、長時間放置することにより、次第に熔解するりンバナ
ドモリブデン酸の水溶液を得、しかる後、蒸発濃縮して
、リンパナドモリブデン酸の結晶を得る方法が記載され
ている。このことから水中にて混合酸化物のスラリーか
ら水溶一性のへトロポリ酸であるリンパナドモリブデン
酸が徐々に生成し、溶解していくことが予想される。本
発明者らは、メタクリル酸合成用燐−モリブデンーアル
カリ系触媒で最も優れていると見られる燐−モリブデン
ーアルカリーバナジン系触媒につきこれを意図的に失活
させ、再生を計るテストをくりかえした。
In Samurai Batsu 133298/1977, aqueous solutions of ammonium molybdate, ammonium phosphate, and ammonium metavanadate were mixed and evaporated to dryness, and the resulting product was thermally decomposed at 500 qo to form a homogeneous mixed oxide. This is then poured into water and allowed to stand for a long time to obtain an aqueous solution of phosphonadomolybdic acid that gradually dissolves, followed by evaporation and concentration to obtain crystals of lymphanadomolybdic acid. There is. From this, it is expected that lymphanadomolybdic acid, which is a water-soluble heteropolyacid, will gradually be produced and dissolved from the mixed oxide slurry in water. The present inventors intentionally deactivated a phosphorus-molybdenum-alkali vanadine catalyst, which is considered to be the most excellent phosphorus-molybdenum-alkaline catalyst for methacrylic acid synthesis, and conducted repeated tests to regenerate it. Ta.

この触媒系において、前述した特開昭49一13329
8による方法を直接利用することは出来ない。何故なら
、燐一モリブデンーアルカリーバナジン系触媒は完全な
水溶液ではなく、一部が水に熔解するものの、大部分は
黄〜褐色の水に水溶性の物質だからである。失活により
破壊されていたへトロポリ酸構造が水中にて再度組立て
られるとしても、元来不溶性の部分は、侍関昭49−1
332斑で扱っているリンパナドモリプデン酸の場合と
異ってうまくもとにもどりにくいのではないかと想像さ
れる。実際、失活した触媒を水中に投入し、室温下、又
は沸騰下に長時間放置熟成する方法により触媒成分の再
生を行ったところ、触媒の活性はかなり回復することが
わかった。
In this catalyst system, the above-mentioned Japanese Patent Application Laid-Open No. 49-13329
8 cannot be used directly. This is because the phosphorous-molybdenum-alkaline vanadine catalyst is not a complete aqueous solution, and although a portion of it dissolves in water, most of it is a substance that is soluble in yellow to brown water. Even if the heteropoly acid structure that was destroyed by deactivation is reassembled in water, the originally insoluble part
Unlike the case of lymphanadomorybdic acid, which is treated in 332 spots, it is thought that it may be difficult to return to its original state. In fact, when the catalyst components were regenerated by putting a deactivated catalyst into water and leaving it to age at room temperature or under boiling water for a long time, it was found that the activity of the catalyst was considerably recovered.

しかしながら初期活性までは至らず、工業用触媒再生法
としては十分でなかった。しかしながら、水性スラリー
の状態にすることによって、触媒に好ましい変化がある
ことを認めたわけで、これを更に推し進める方法が適当
であることがわかった。さて、本発明者らが再生実験用
に・使用した触媒の種類としては、メタクリル酸を合成
するに有効な組成であるところのもの、即ちモリブデン
、燐、X、バナジン、酸素(×はカリウム、ルビジウム
、セシウム、タリウムの群より選ばれる少くとも一種)
を必須成分とするものであって、Mo:P:×:Vニ1
2:(0.5−2):(0.5−3):(0.1一2)
のものが特に対象として好ましい組成のものである。
However, this method did not reach the initial level of activity and was not sufficient as an industrial catalyst regeneration method. However, it was recognized that there were favorable changes in the catalyst by forming it into an aqueous slurry, and it was found that a method to further promote this change was appropriate. Now, the types of catalysts used by the present inventors for regeneration experiments are ones with an effective composition for synthesizing methacrylic acid, namely molybdenum, phosphorus, At least one type selected from the group of rubidium, cesium, and thallium)
The essential component is Mo:P:×:Vni1
2:(0.5-2):(0.5-3):(0.1-2)
Those with particularly preferable compositions are targeted.

この組成範囲以外のものでは触媒としての性能が劣る。
例えば×成分を加えなくともメタクリル酸を合成できる
触媒は調製できるし、しかもこれらの触媒の多くは水溶
性であるがX成分を含まぬものは熱安定性が劣り、寿命
的に不満足であって工業的な触媒となり得ない。上記し
た必須成分の元素の他に少量の他の元素、すなわちリチ
ウム、ナトリウムh鋼、カルシウム、ストロンチウム、
亜鉛、カドミウム、チタン、ジルコン、錫、鉛、ヒ素、
アンチモン、ビスマス、クロム、タングステン、ロジウ
ムの群より選ばれる少くとも一種を含有する触媒にも本
発明は用いられる。この様な触媒の例として種々あげる
ことができる。
If the composition is outside this range, the performance as a catalyst will be poor.
For example, it is possible to prepare a catalyst that can synthesize methacrylic acid without adding component X, and most of these catalysts are water-soluble, but those that do not contain component X have poor thermal stability and are unsatisfactory in terms of life. It cannot be used as an industrial catalyst. In addition to the above-mentioned essential elements, small amounts of other elements such as lithium, sodium steel, calcium, strontium,
Zinc, cadmium, titanium, zircon, tin, lead, arsenic,
The present invention is also applicable to catalysts containing at least one member selected from the group of antimony, bismuth, chromium, tungsten, and rhodium. Various examples of such catalysts can be listed.

(例えば特関昭50一101316、同50−1307
15、同50−130710同50−13191&同5
0一123619)さらに塩酸処理の具体的な方法につ
いて述べる。長時間の使用により活性が低下した触媒、
反応温度又は焼成温度等を高くあげすぎて、触媒の劣化
を招き活性低下した触媒、及び、反応中酸素の供給が不
足して触媒の還元劣化を招き活性低下した触媒等が本発
明の対象となる活性低下触媒又は失猪触媒であり、まず
これらの触媒を空気雰囲気下300〜600ooで、好
ましくは400〜50び○で1〜5餌時間焼成すること
が好ましい。この操作は主に還元化した触媒に十分酸素
を与えるための措置であるので、必ずせねばならぬ操作
ではなく、失活した原因に応じて行なう。次に、失活し
た触媒を水(好ましくは蒸留水又はイオン交換水)又は
塩酸中に投入し成型した担体を含むもの等は櫨拝するこ
とにより担体と触媒スラリーに分離して担体を除く。
(For example, Tokuseki Sho 50-1101316, Sho 50-1307
15, 50-130710 50-13191 & 5
0123619) Further, a specific method of hydrochloric acid treatment will be described. Catalysts whose activity has decreased due to long-term use,
The subject of the present invention is a catalyst whose reaction temperature or calcination temperature is raised too high, resulting in deterioration of the catalyst and a decrease in activity, and a catalyst whose activity is decreased due to insufficient supply of oxygen during the reaction, resulting in reductive deterioration of the catalyst. It is preferable to first calcinate these catalysts in an air atmosphere at 300 to 600 oo, preferably at 400 to 50 oo for 1 to 5 hours. Since this operation is mainly a measure to provide sufficient oxygen to the reduced catalyst, it is not an essential operation, but is performed depending on the cause of the deactivation. Next, if the deactivated catalyst is placed in water (preferably distilled water or ion-exchanged water) or hydrochloric acid and contains a molded carrier, it is separated into the carrier and catalyst slurry by washing, and the carrier is removed.

担体は水洗し洗浄後の液は先ほどのスラリーに混入する
。担体はさらに水洗し、乾燥して再使用することが可能
である。なお、触媒からの坦体の分離は水中でなくても
、機械的衝撃を与えることで行うことが可能であるが、
湿式の方が坦体の破損が少いという利点がある。
The carrier is washed with water, and the washed liquid is mixed into the slurry. The carrier can be further washed with water, dried and reused. It should be noted that separation of the carrier from the catalyst can be done by applying mechanical impact, even if it is not in water.
The wet method has the advantage of less damage to the carrier.

一方得られた触媒有効成分のスラリーは、これに塩酸を
加えてそのまま、又は耐圧容器に移し、0〜200℃、
好ましくは50〜150q0にて少くとも30分以上熟
成する。
On the other hand, the obtained slurry of the catalytic active ingredient can be heated as it is by adding hydrochloric acid to it, or transferred to a pressure-resistant container and heated at 0 to 200°C.
Preferably, it is aged at 50 to 150 q0 for at least 30 minutes.

好ましい熟成時間はもちろん湿度により異なり、室温下
では長く、高温下では短い。
The preferred aging time will of course vary depending on the humidity, and will be longer at room temperature and shorter at higher temperatures.

耐圧容器の不要な限界である100qo近くが最も工業
的実施に適しており、この温度においては熟成時間は、
好ましくは1時間以上、更に好ましくは一昼夜程度放置
又は凝梓熟成させるのが適当である。熟成時の塩酸はス
ラリー中の水分も合せて計算して濃度0.01重量%以
上、好ましくは0.01〜血重量%、さりこ好ましくは
0.05〜3重量%が用いられる。この範囲の濃度で目
的を達成でき、10重量%を越えるほど濃くしても以後
の扱いが困難になるのみであり十分とはいえない。塩酸
は触媒的に働らいているものと見られ、低い濃度のもの
で十分目的を達成できる。低い濃度のものほど、後の工
程である蒸発乾固や焼成時に塩化水素ガスの発生量が少
なく、トラブルが少ない。触媒有効成分と液量について
は特に制限はないが、実際上ト液量は触媒有効成分が十
分浸す量であることが必要であるし、又一方液があまり
多すぎると、以後の濃縮、蒸発乾固工程に手間がかかり
不能率なものとなる。これらの点から見て、触媒有効成
分に対し5〜5“音程度の液量が工業的には好ましいも
のと見られる。熟成が終了したら蒸発乾固し、得られた
ものを空気又は酸素の存在下、200〜600qo、好
ましくは300〜500qoにて焼成した後触媒とする
ことができる。
A temperature close to 100 qo, which is the unnecessary limit of a pressure vessel, is most suitable for industrial implementation, and at this temperature the ripening time is
Preferably, it is appropriate to leave it for one hour or more, more preferably for about a day and night, or to ripen it by curdling. The concentration of hydrochloric acid used during aging is 0.01% by weight or more, preferably 0.01 to 3% by weight, preferably 0.05 to 3% by weight, including the water in the slurry. The purpose can be achieved with a concentration within this range, and even if the concentration exceeds 10% by weight, it will only become difficult to handle later and cannot be said to be sufficient. Hydrochloric acid appears to act as a catalyst, and a low concentration is sufficient to accomplish the purpose. The lower the concentration, the less hydrogen chloride gas will be generated during the later steps of evaporation to dryness and calcination, causing fewer problems. There are no particular restrictions on the catalyst active component and the amount of liquid, but in practice, the amount of liquid must be sufficient to soak the catalyst active component, and on the other hand, if there is too much liquid, subsequent concentration and evaporation may occur. The drying process is time consuming and has a high rate of failure. From these points of view, it seems that a liquid amount of about 5 to 5 inches per catalytic active ingredient is industrially preferable.After aging is completed, it is evaporated to dryness, and the obtained product is immersed in air or oxygen. It can be used as a catalyst after being calcined in the presence of 200 to 600 qo, preferably 300 to 500 qo.

焼成物は、例えば粉砕の上適当な担体(もちろん先さほ
ど回収した担体があればそれでよい)に付着もしくは、
打錠成型後、そのままあるいは再度焼成して触媒とする
方法が実際的である。本発明によれば、次のような効果
を奏する。{11 メタクロレィン、イソブチルアルデ
ヒド及び/又はィソ酪酸よりメタクリル酸を気相接触酸
化によって製造する為の触媒系において長時間の使用等
によりその活性が低下した触媒を、使用前の新しい触媒
並に再生することができる。即ち、本発明の再生方法に
より、メタクロレィンの転化率、メタクリル酸への選択
率、メタアクリル酸メチルの収率等の反応成績を使用前
の新しい触媒並に向上させせることができる■ さらに
、触媒製造における原材料費の大中な削減をもたらすこ
とができる。
The fired product is, for example, pulverized and attached to a suitable carrier (of course, the carrier recovered earlier is fine), or
After tableting, it is practical to use the catalyst as it is or by calcining it again. According to the present invention, the following effects are achieved. {11 In a catalyst system for producing methacrylic acid from methacrolein, isobutyraldehyde and/or isobutyric acid by gas phase catalytic oxidation, a catalyst whose activity has decreased due to long-term use etc. can be regenerated as a new catalyst before use. can do. That is, by the regeneration method of the present invention, reaction results such as the conversion rate of methacrolein, the selectivity to methacrylic acid, and the yield of methyl methacrylate can be improved as compared to the new catalyst before use. It can bring about a significant reduction in raw material costs in manufacturing.

以下、実施例により説明する。Examples will be explained below.

ただし、実施例中の転化率、選択率、収率は以下の定義
による。メタクロレィンの転化率=漢籍E声葦多参宮E
壬≧達三E≧X・〇。
However, the conversion rate, selectivity, and yield in the examples are as defined below. Conversion rate of methacrolein = Chinese classic E Seishita Sangu E
壬≧TatsusanE≧X・〇.

(%)メタクリル酸への選択率=消生費成昔者ラヲタ多
…七隻塵き害毒≧三)X・oo(%)酢酸への選択率=
生成した酢酸(モル) 消費比〆タク仙イン(柵×学(%) C02、COへの選択率= 消費生害史穿き享吉旨筈害毒箸ル)X1基o(%)又、
ィソブチルアルデヒド及びィソ酸酸からメタクリル酸を
生成する反応においても同じ計算法を用いた。
(%) Selectivity to methacrylic acid = A large number of consumers who have grown up... Seven dust poisons ≧ 3) X・oo (%) Selectivity to acetic acid =
Produced acetic acid (mol) Consumption ratio 〆Takusenin (fence x science (%) Selectivity to CO2, CO = consumption history of ecological harm) X1 groups o (%)
The same calculation method was used for the reaction to produce methacrylic acid from isobutyraldehyde and isoacidic acid.

なお、以下の例における%は、特にことわらない限り、
モル%による。
In addition, unless otherwise specified, % in the following examples is
By mole%.

実施例 1 1〆ビーカーに燐モリブデン酸45.6夕(12.50
ミリモル)をとり、水で溶解し、85%生燐酸0.86
夕(7.5ミリモル)を含む水溶液を加え、よく蝿拝し
た。
Example 1 1. In a beaker, add 45.6 liters of phosphomolybdic acid (12.50
Take 0.86 mmol of 85% raw phosphoric acid and dissolve it in water.
An aqueous solution containing chloride (7.5 mmol) was added and mixed well.

続いて硝酸セシウム9.75夕(50ミリモル)を含む
水溶液と、メタバナジン酸アンモン1.08夕(9.2
5ミリモル)を含む水溶液を混合し、前液に添加してよ
く櫨拝した。得られた懸濁液を湯煎上で蒸発乾固した。
内容物をルツボに移し、マッフル炉を使用して450q
Cで2時間焼成した。炉より取出して放冷し、乳鉢にて
粉砕した。1クビーカーに粒状の溶融アルミナ担体(粒
径3側J)26夕をとり、水をスプレーにて噂露しつつ
上記の触媒成分の粉末を少しづつふりかけ、よく鷹拝し
てぬりつけた。
This was followed by an aqueous solution containing 9.75 mmol (50 mmol) of cesium nitrate and 1.08 mmol (9.2 mmol) of ammonium metavanadate.
An aqueous solution containing 5 mmol) was mixed, added to the previous solution, and mixed well. The resulting suspension was evaporated to dryness over a water bath.
Transfer the contents to a crucible and heat to 450q using a muffle furnace.
It was baked at C for 2 hours. It was taken out from the furnace, allowed to cool, and ground in a mortar. A granular molten alumina carrier (particle size 3 side J) was placed in a beaker for 26 hours, and while spraying with water, the powder of the catalyst component described above was sprinkled little by little, and the mixture was thoroughly spread.

時々熱風をかけて乾燥し、表面に水分がにじみ出ない様
にしつつ何回も同じ手順をくりかえして粉末を合計39
タ付着させた。得られたものを空気流通下で乾燥し、そ
の後ルッポにとって再びマッフル炉にて400ooで2
時間焼成し、触媒とした。この触媒中に含まれる、酸素
を除く有効成分の元素比はMo:P:Cs:Vニ12:
1.3:2:0.37であった。このようにして得られ
た触媒50ccを内径2仇舷の石英製反応管に充填し、
メタクロレイン4.0%、空気40.0%、水蒸気56
.0%よりなる原料ガスを空間速度100伽r‐1(0
℃1気圧基準)で通過させた。反応温度(触媒層中の最
高温度)を325qoにあわせて反応を開始し、昼夜兼
行の連続運転にて触媒活性の経時変化を測定した。
Dry with hot air from time to time, and repeat the same process many times to prevent moisture from seeping on the surface to make a total of 39 powders.
It was attached. The resultant was dried under air circulation, then taken to Luppo and heated again in a muffle oven at 400 oo
It was fired for a period of time and used as a catalyst. The elemental ratio of the active components other than oxygen contained in this catalyst is Mo:P:Cs:V2:
The ratio was 1.3:2:0.37. 50 cc of the catalyst thus obtained was filled into a quartz reaction tube with an inner diameter of 2 m.
Methacrolein 4.0%, air 40.0%, water vapor 56%
.. The raw material gas consisting of 0%
℃ (1 atm standard). The reaction was started by adjusting the reaction temperature (the highest temperature in the catalyst layer) to 325 qo, and the change in catalyst activity over time was measured by continuous operation day and night.

表−1にその結果を示す。表一1から明らかな様に、活
性は最初から1000時間後程度までには少し低下した
後一担落ちつくが、300餌時間後程度から又徐々に低
下を始めた。
Table 1 shows the results. As is clear from Table 1, the activity decreased slightly from the beginning to about 1000 hours and then leveled off, but after about 300 hours of feeding, it started to gradually decrease again.

反応温度を次第に上昇せしめて800畑時間(約1年)
反応させた。805蛇時間後の数値は最初の反応温度に
もどした数値である。収率で言って初期の68%分にま
で低下してしまった。反応終了後、触媒をとり出してそ
の25cc(32夕)を蒸留水200ccとともに1そ
ビーカー中に投入し、1時間放置の後よく蝿拝した。
Gradually increase the reaction temperature for 800 field hours (about 1 year)
Made it react. The value after 805 hours is the value after returning to the initial reaction temperature. The yield was reduced to 68% of the initial value. After the reaction was completed, the catalyst was taken out and 25 cc (32 cc) of it was put into a beaker together with 200 cc of distilled water, and after being left for 1 hour, it was thoroughly poured.

なお、32夕の触媒中、有効成分の重量は、触媒調製時
の付着率計算から約19夕である。触媒に含まれていた
担体は分離し、触媒有効成分はスラリーとなった。スラ
リーを別のビーカーに移し、担体と分離した。担体は更
に200ccの蒸留水を使って水洗し、水洗後の液は先
ほどのスラリー液に加えた。更に蒸留水を用いて担体を
洗い、その後乾燥した。得られたアルミナ担体は、未使
用品と比較して見かけ上何ら変るところがなかった。一
方、スラリー液約400ccに対し濃塩酸10夕を加え
て湯煎上で加熱放置した。
In addition, the weight of the active ingredient in the catalyst weighs about 19 centimeters based on the calculation of the adhesion rate at the time of catalyst preparation. The carrier contained in the catalyst was separated, and the active components of the catalyst became a slurry. The slurry was transferred to another beaker and separated from the carrier. The carrier was further washed with 200 cc of distilled water, and the washed solution was added to the slurry solution. The carrier was further washed with distilled water and then dried. The obtained alumina carrier showed no difference in appearance compared to an unused product. On the other hand, 10 minutes of concentrated hydrochloric acid was added to about 400 cc of the slurry liquid, and the mixture was left to heat in a water bath.

このときの塩酸濃度は0.9重量%である。時々蒸留水
を追加しつつ2独時間加熱し、2独特間後に再び濃塩酸
10夕を加えた。そして引続いて更に2岬時間加熱を続
け、その後蒸留水の供給を断って蒸発乾固させた。得ら
れたものをルッボに移し、マッフル炉にて450午0で
2時間焼成した。得られたものを粉砕し、触媒粉末とし
た。1クビーカ−に先ほど得られた回収した担体を入れ
、スプレーにて水を噴霧しつつ最初の付着法と同様にし
て触媒粉末を担体に付着させた。
The hydrochloric acid concentration at this time was 0.9% by weight. The mixture was heated for 2 hours while occasionally adding distilled water, and after 2 hours, concentrated hydrochloric acid was added again for 10 hours. Heating was then continued for an additional 2 hours, after which the supply of distilled water was cut off and the mixture was evaporated to dryness. The obtained product was transferred to a rubbo and fired in a muffle furnace at 450 pm for 2 hours. The obtained material was pulverized to obtain catalyst powder. The recovered carrier obtained earlier was placed in a beaker, and the catalyst powder was deposited on the carrier in the same manner as the first deposition method while spraying with water.

付着後、これを空気流通下で乾燥し、その後ルッボにと
って再びマッフル炉にて400qoで2時間焼成して触
媒とした。この触媒は23.8ccあった。
After deposition, this was dried under air circulation, then taken to Rubbo and calcined again in a muffle furnace at 400 qo for 2 hours to obtain a catalyst. This catalyst weighed 23.8 cc.

最初と同様に内径20肋の石英製反応管に充填し、メタ
クロレィン4.0%、空気40.0%、水蒸気56.0
%よりなる原料ガスを空間速度100加r‐1で反応温
度325℃で通過させた。反応開始、2岬時間後におい
て、転化率81.2%でありメタクリル酸、酢酸、及び
炭素酸化物への選択率は各々66.5%、9.8%、1
9.5%、更にメタクリル酸収率は54.0%で新しい
触媒に比較して遜色が無かった。比較例 1 実施例1にて活性低下した触媒の残りの25ccを用い
てテストした。
As before, a quartz reaction tube with an inner diameter of 20 ribs was filled with 4.0% methacrolein, 40.0% air, and 56.0% water vapor.
% was passed through the reactor at a reaction temperature of 325°C at a space velocity of 100 r-1. Two hours after the start of the reaction, the conversion rate was 81.2%, and the selectivity to methacrylic acid, acetic acid, and carbon oxide was 66.5%, 9.8%, and 1, respectively.
The yield of methacrylic acid was 9.5%, and the yield of methacrylic acid was 54.0%, which was comparable to the new catalyst. Comparative Example 1 A test was conducted using the remaining 25 cc of the catalyst whose activity was reduced in Example 1.

活性低下触媒より再生触媒を調製するにあたって濃塩酸
を全つたく加えなかった他は実施例一1と同様にして、
再生触媒を調製しこれをテストした。再生触媒は使用し
て反応温度325午0で行なった結果は、反応開始24
時間後において、転化率64.9%であり、メタクリル
酸、酢酸、及び炭素酸化物への選択率は各々69.8%
、9.5%、15.8%、更にメタクリル酸収率は45
.3%であった。水性スラリーとして処理することによ
り明らかに活性は上昇したがまだまだ初期活性にもどっ
ていないことがわかる。
In preparing a regenerated catalyst from a catalyst with decreased activity, the same procedure as in Example 11 was carried out except that concentrated hydrochloric acid was not added at all.
A regenerated catalyst was prepared and tested. The results were obtained using a regenerated catalyst at a reaction temperature of 325 pm.
After hours, the conversion rate was 64.9%, and the selectivity to methacrylic acid, acetic acid, and carbon oxide was 69.8% each.
, 9.5%, 15.8%, and the methacrylic acid yield was 45%.
.. It was 3%. It can be seen that although the activity clearly increased by processing it as an aqueous slurry, it still did not return to its initial activity.

実施例 2 1そビーカーに、燐モリブデン酸91.2夕(25ミリ
モル)をとり、水で溶解し、85%正燐酸1.72夕(
15ミリモル)を含む水溶液を加えた。
Example 2 1. In a beaker, take 91.2 mmol (25 mmol) of phosphomolybdic acid, dissolve it in water, and add 1.72 mmole (25 mmol) of 85% orthophosphoric acid.
An aqueous solution containing 15 mmol) was added.

更に二酸化ジルコン6.16夕(50ミリモル)を加え
湯煎上で2独特間加熱し続けた。その後放冷しこれに硝
酸セシウム9.74夕(50ミリモル)、水酸化カリウ
ム2.80夕(50ミリモル)を含む水溶液と、メタバ
ナジン酸アンモン2.16夕(18.5ミリモル)を含
む水溶液を混合した液を加えてよく鷹拝した。得られた
懸濁液を湯煎上で蒸発乾固した。内容物をルッボに移し
、マツフル炉にて45030で2時間焼成した後乳鉢で
粉砕した。その後、実施例−1と同機の手順にて溶融ア
ルミナ担体4部に触媒粉末6部を付着させ、乾燥、焼成
を行なって触媒とした。この触媒中に含まれる酸素を除
く有効成分の元素比は、Mo:P:Zr:K:C3:V
二12:1.3:1:1:1:0.37であった。この
触媒25ccを用いて、実施例一1と同組成の原料ガス
を使用し、空間速度1000hrl反応温度330午0
にて反応させた。
Furthermore, 6.16 mmol of zircon dioxide (50 mmol) was added, and the mixture was continued to be heated in a water bath for 2 hours. After that, it was allowed to cool, and an aqueous solution containing 9.74 mmol of cesium nitrate (50 mmol), 2.80 mmol of potassium hydroxide (50 mmol), and an aqueous solution containing 2.16 mmol of ammonium metavanadate (18.5 mmol) was added to it. Add the mixed liquid and stir well. The resulting suspension was evaporated to dryness over a water bath. The contents were transferred to Rubbo, fired in a Matsufuru furnace at 45030 for 2 hours, and then crushed in a mortar. Thereafter, 6 parts of catalyst powder was adhered to 4 parts of the molten alumina carrier using the same procedure as in Example 1, followed by drying and firing to obtain a catalyst. The elemental ratio of the active components excluding oxygen contained in this catalyst is Mo:P:Zr:K:C3:V
212:1.3:1:1:1:0.37. Using 25 cc of this catalyst, a raw material gas having the same composition as in Example 11, a space velocity of 1000 hr and a reaction temperature of 330 pm.
The reaction was carried out at

その結果を表−2に示す。続いて、銭こりの触媒をルッ
ボにとり、マッフル炉にて500℃で5時間焼成した。
The results are shown in Table-2. Subsequently, the catalyst of the coin was placed in a rubbo and calcined at 500° C. for 5 hours in a muffle furnace.

この触媒を再び反応管に充填して同じ反応条件にて反応
した結果を表−2に示す。表−2から明らかな様に著し
く活性が低下していることがわかる。続いて、この活性
低下を来たしている触媒25ccをとり、実施例一1と
全つた〈同様にして塩酸処理をし再生触媒を調製した。
This catalyst was filled into the reaction tube again and the reaction was carried out under the same reaction conditions. The results are shown in Table 2. As is clear from Table 2, the activity was significantly reduced. Subsequently, 25 cc of this catalyst with decreased activity was taken and treated with hydrochloric acid in the same manner as in Example 11 to prepare a regenerated catalyst.

この触媒を使用して反応を行なった結果を表−2に示す
。比較例 2 実施例−2において意図的に活性低下させた触媒(表−
2の■)を25ccとり、比較例一1と全つた〈同様に
して水中における処理を行ない再生触媒を調製した。
Table 2 shows the results of a reaction using this catalyst. Comparative Example 2 Catalyst whose activity was intentionally lowered in Example-2 (Table-
2) was taken, and the same procedure as in Comparative Example 11 was carried out to prepare a regenerated catalyst in water.

その結果を表−2の‘41に示す。水性スラリーにて処
理することにより、収率的にはかなり回復しているがま
だ十分でないことがわかる。比較例 3 実施例−2において意図的に活性低下させた触媒(表−
2の‘21)を25ccとり、塩酸のかわりに硝酸を使
用した他は、実施例−2と全つたく同様にして処理をし
、触媒を調製した。
The results are shown in '41 of Table 2. It can be seen that although the yield was considerably improved by treatment with the aqueous slurry, it was still not sufficient. Comparative Example 3 Catalyst whose activity was intentionally lowered in Example-2 (Table-
A catalyst was prepared in the same manner as in Example 2, except that 25 cc of 2'21) was taken and nitric acid was used instead of hydrochloric acid.

そのテスト結果を表−2の{5}に示す。硝酸を使用し
た場合、その結果は、元の触媒よりはよくなっていたも
のの単に水で処理した場合(比較例−2)よりもかえっ
て悪い結果であった。
The test results are shown in {5} of Table 2. When nitric acid was used, the results were better than the original catalyst, but were worse than when treated simply with water (Comparative Example-2).

実施例 3 実施例−2と同様にして酸素を除く金属組成比がM。Example 3 The metal composition ratio excluding oxygen was M in the same manner as in Example-2.

:P:Zr:K:CS:V三12:1・3:・:・:1
:0.37のアルミナ担持触媒を調製した。この触媒2
5ccを用いて、メタクロレイン4.0%、空気40.
0%、水蒸気56.0%の原料ガスを330℃、空間速
度100肋r‐1にて通過反応させた。反応を2岬時間
継続した後、反応ガスを以下のものに切りかえた。即ち
メタクロレイン4.0%、空気10.0%、水蒸気86
.0%である。この状態で1幼時間反応させた後再び元
の原料ガスに切りかえた。反応温度は常に330℃にな
る様調節した。途中で使用した原料ガスは、酸素が不足
しており反応層内は還元的雰囲気になっていることが予
測される。泰一3に酸素不足の原料ガスを通過させる以
前と以後の反応成績を示す。明らかに活性低下を超こて
いることがわかる。元の原料ガスにもどしてから1餌時
間反応させた後(通算で4斑時間後)メタクロレィンの
供V給を停止して空気だけを2独特間流した。
:P:Zr:K:CS:V312:1・3:・:・:1
:0.37 alumina supported catalyst was prepared. This catalyst 2
Using 5cc, methacrolein 4.0%, air 40.
A raw material gas containing 0% water vapor and 56.0% water vapor was passed through and reacted at 330°C and a space velocity of 100 r-1. After the reaction continued for 2 hours, the reaction gas was switched to: That is, methacrolein 4.0%, air 10.0%, water vapor 86
.. It is 0%. After reacting in this state for 1 hour, the original raw material gas was switched again. The reaction temperature was always adjusted to 330°C. It is predicted that the raw material gas used during the process lacks oxygen, resulting in a reducing atmosphere within the reaction layer. The reaction results before and after passing oxygen-deficient raw material gas through Taiichi 3 are shown. It can be seen that the activity clearly exceeds the decrease. After returning to the original raw material gas and reacting for 1 hour (after 4 hours in total), the supply of methacrolein was stopped and only air was allowed to flow for 2 hours.

このときの反応管内の温度は330ご0となる様調節し
た。これは触媒を十分な酸素雰囲気下として活性を賦宿
できぬかと考えたのである。その後再び最初と同じ原料
ガスを通じて反応成績を見た。その結果を表−3に示す
。活性は賦活によりわずかにもどったが全つたく不十分
であった。反応を停止し、触媒をとり出してルッボに移
し、マツフル炉にて500qoで5時間焼成した。
At this time, the temperature inside the reaction tube was adjusted to 330°C. The idea was that it would be possible to impart activity to the catalyst by placing it in a sufficient oxygen atmosphere. After that, the reaction results were checked again using the same raw material gas as the first time. The results are shown in Table-3. Although the activity was slightly restored by activation, it was completely insufficient. The reaction was stopped, the catalyst was taken out, transferred to Rubbo, and calcined in a Matsufuru furnace at 500 qo for 5 hours.

その後実施例−1と全つたく同様にして塩酸を使用した
再生触媒の調製を行なった。その結果を表一3に示す。
活性は最初のものとほとんど同一であった。還元雰囲気
下のもとで活性を低下させた触媒も本発明により再生で
きることがわかる。実施例 4〜20水酸化リチウム、
硝酸ナトリウム、塩化第一銅、硝酸カルシウム、硝酸ス
トロンチウム、硝酸バリウム、硝酸亜鉛、硝酸カドミウ
ム、四塩化チタン、酸化第二錫、硝酸鉛、亜ヒ酸、三酸
化ァンチモン、硝酸ビスマス、三酸化クロム、パラタン
グステン酸アンモン、三塩化ロジウムの水溶液、塩酸々
性水溶液(チタン、アンチモン)、硝酸々性水溶液(ビ
スマス)又は粉末(銅、錫)を実施例一1における触媒
スラリーの調製時の最後に添加して組成比がMo:P:
Cs:V:aコ12:1.3:2:0.37:0.1の
アルミナ坦持触媒を調製した。
Thereafter, a regenerated catalyst using hydrochloric acid was prepared in exactly the same manner as in Example-1. The results are shown in Table 3.
The activity was almost the same as the first one. It can be seen that a catalyst whose activity has been reduced under a reducing atmosphere can also be regenerated by the present invention. Examples 4-20 Lithium hydroxide,
Sodium nitrate, cuprous chloride, calcium nitrate, strontium nitrate, barium nitrate, zinc nitrate, cadmium nitrate, titanium tetrachloride, tin oxide, lead nitrate, arsenite, antimony trioxide, bismuth nitrate, chromium trioxide, Ammonium paratungstate, aqueous solution of rhodium trichloride, aqueous hydrochloric acid solution (titanium, antimony), aqueous nitric acid solution (bismuth), or powder (copper, tin) were added at the end of the preparation of the catalyst slurry in Example 11. The composition ratio is Mo:P:
An alumina-supported catalyst having a ratio of Cs:V:a of 12:1.3:2:0.37:0.1 was prepared.

これらの触媒を各々25ccを使用し、メタクロレィン
4.0%、空気40.0%、水蒸気56.0%よりなる
ガスを33000、空間速度100皿r−1にて反応し
た結果と、同じ触媒を500qoで5時間焼成して活性
を低下せしめた後、同反応条件にて反応テストを行なっ
た結果、及び活性低下せしめた触媒を実施例一1と同様
にして塩酸処理して再生触媒を調製し、同反応条件にて
反応テストした結果を表−4に示した。表−4より明ら
かに活性低下した触媒は本発明の再生方法により転化率
、選択率、MAA収率、等の効果が最初の触媒性能並に
向上していることがわかる。実施例 21 実施例−2で使用した処の、通常の触媒と、活性低下触
媒、及び再生触媒を使用して、ィソブーチルアルデヒド
4.0%、空気40.0%、水蒸気56.0%の原料ガ
スを反応温度320oo、空気速度1000hr‐1で
通過せしめた。
Using 25 cc of each of these catalysts, the same catalyst was used to react a gas consisting of 4.0% methacrolein, 40.0% air, and 56.0% water vapor at 33,000 ml and a space velocity of 100 plate r-1. After firing at 500 qo for 5 hours to reduce the activity, a reaction test was conducted under the same reaction conditions, and the catalyst with reduced activity was treated with hydrochloric acid in the same manner as in Example 11 to prepare a regenerated catalyst. Table 4 shows the results of a reaction test under the same reaction conditions. From Table 4, it can be seen that the catalyst whose activity has clearly decreased is improved in conversion rate, selectivity, MAA yield, etc. by the regeneration method of the present invention to the same level as the initial catalyst performance. Example 21 Using the normal catalyst, the reduced activity catalyst, and the regenerated catalyst used in Example-2, isobutyraldehyde 4.0%, air 40.0%, water vapor 56.0% % of raw material gas was passed through the reactor at a reaction temperature of 320 oo and an air velocity of 1000 hr-1.

使用触媒量は20ccであった。その結果を表−5に示
す。表−5より明らかに活性低下した触媒は本発明の再
生方法により最初の触媒の性能並に復活していることが
わかる。実施例 22 ィソ酪酸4.0%、空気40.0%、水蒸気56.0%
の原料ガスを用いた他は、実施例−21と全つた〈同様
にテストを行なった。
The amount of catalyst used was 20 cc. The results are shown in Table-5. Table 5 shows that the catalyst whose activity has clearly decreased is restored to the same performance as the original catalyst by the regeneration method of the present invention. Example 22 Isobutyric acid 4.0%, air 40.0%, water vapor 56.0%
The test was carried out in the same manner as in Example 21 except that the raw material gas was used.

Claims (1)

【特許請求の範囲】 1 モリブデン、燐、X、バナジン及び酸素(ここでX
は、カリウム、ルビジウム、セシウム及びタリウムより
なる群から選ばれる少なくとも一種の元素)を必須成分
とし、モリブデン、燐、X、バナジンの元素比が12:
(0.5−2):0.5−3):(0.1−2)の範囲
のもので、メタクロレイン、イソブチルアルデヒド及び
/又はイソ酪酸よりメタクリル酸を気相接触酸化によつ
て製造する為の触媒において、その活性が低下した触媒
を塩酸の共存下に0〜200℃にて30分以上熟成させ
た後、蒸発乾固し、得られた固形物を空気又は酸素の存
在下に焼成することを特徴とするメタクリル酸製造用触
媒の再生法。 2 活性が低下した触媒を塩酸で処理する前に、触媒に
水を加えて撹拌して触媒をスラリー状とし、担体が共存
する場合はこれを分離する特許請求の範囲第1項記載の
方法。 3 活性が低下した触媒を塩酸で処理する前に、触媒を
空気雰囲気下で焼成する特許請求の範囲第1項記載の方
法。 4 活性が低下した触媒を、空気雰囲気下で焼成し、次
いで水を加えて撹拌して触媒をスラリー状とした後塩酸
で処理する特許請求の範囲第1項記載の方法。
[Claims] 1. Molybdenum, phosphorus, X, vanadine and oxygen (herein, X
has at least one element selected from the group consisting of potassium, rubidium, cesium, and thallium as an essential component, and the elemental ratio of molybdenum, phosphorus, X, and vanadine is 12:
(0.5-2):0.5-3):(0.1-2), produced by gas phase catalytic oxidation of methacrylic acid from methacrolein, isobutyraldehyde and/or isobutyric acid. After aging the catalyst whose activity has decreased at 0 to 200°C for 30 minutes or more in the presence of hydrochloric acid, it is evaporated to dryness, and the resulting solid is evaporated in the presence of air or oxygen. A method for regenerating a catalyst for producing methacrylic acid, which comprises firing. 2. The method according to claim 1, wherein before treating the catalyst with reduced activity with hydrochloric acid, water is added to the catalyst and stirred to make the catalyst into a slurry, and if a carrier is present, this is separated. 3. The method according to claim 1, wherein before treating the catalyst with reduced activity with hydrochloric acid, the catalyst is calcined in an air atmosphere. 4. The method according to claim 1, wherein the catalyst whose activity has decreased is calcined in an air atmosphere, and then water is added and stirred to make the catalyst into a slurry, which is then treated with hydrochloric acid.
JP52066629A 1977-06-08 1977-06-08 Regeneration method of catalyst for methacrylic acid production Expired JPS6018212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52066629A JPS6018212B2 (en) 1977-06-08 1977-06-08 Regeneration method of catalyst for methacrylic acid production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52066629A JPS6018212B2 (en) 1977-06-08 1977-06-08 Regeneration method of catalyst for methacrylic acid production

Publications (2)

Publication Number Publication Date
JPS542293A JPS542293A (en) 1979-01-09
JPS6018212B2 true JPS6018212B2 (en) 1985-05-09

Family

ID=13321367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52066629A Expired JPS6018212B2 (en) 1977-06-08 1977-06-08 Regeneration method of catalyst for methacrylic acid production

Country Status (1)

Country Link
JP (1) JPS6018212B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835955Y2 (en) * 1978-02-01 1983-08-13 三菱電機株式会社 air conditioner
JPS552619A (en) * 1978-06-21 1980-01-10 Nippon Kayaku Co Ltd Preparation of methacrylic acid and catalyst
JPS56163755A (en) * 1980-05-23 1981-12-16 Mitsubishi Chem Ind Ltd Recovery method for heteropolyacid catalyst component
US4314075A (en) * 1980-09-05 1982-02-02 The Standard Oil Company Process for the production of olefinic acids and esters
JP2702864B2 (en) * 1993-03-12 1998-01-26 株式会社日本触媒 Catalyst regeneration method
JP3298978B2 (en) * 1993-04-01 2002-07-08 日本化薬株式会社 Catalyst regeneration method
US5716895A (en) * 1993-04-01 1998-02-10 Nippon Kayaku Kabushiki Kaisha Process for regeneration of catalysts
JP3887511B2 (en) 1999-05-19 2007-02-28 三菱レイヨン株式会社 Catalyst production method
JP4604607B2 (en) * 2003-08-22 2011-01-05 三菱化学株式会社 Catalyst regeneration method
JP4715699B2 (en) * 2006-09-27 2011-07-06 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4951457B2 (en) * 2007-06-20 2012-06-13 三菱レイヨン株式会社 Raw material for production of methacrylic acid catalyst, production method thereof, production method of methacrylic acid synthesis catalyst, and production method of methacrylic acid
JP4957628B2 (en) * 2008-04-09 2012-06-20 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2010264397A (en) * 2009-05-15 2010-11-25 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid and method for manufacturing unsaturated carboxylic acid

Also Published As

Publication number Publication date
JPS542293A (en) 1979-01-09

Similar Documents

Publication Publication Date Title
JP3883755B2 (en) Catalyst production method
US4311611A (en) Process for regenerating an antimony containing oxide catalyst
EP2006273B1 (en) Process for production of acrolein
EP0404529B1 (en) Process for preparing iron-antimony-phosphorus-containing metal oxide catalysts for oxidation
JPS6228139B2 (en)
JPS6018212B2 (en) Regeneration method of catalyst for methacrylic acid production
US4330429A (en) Process for regenerating an antimony containing oxide catalyst
US4208303A (en) Process for regenerating iron-antimony oxide containing catalyst
JPS6025189B2 (en) catalyst composition
KR101640255B1 (en) Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid
KR890002860B1 (en) Preparation method of oxidation catalyst
US4981830A (en) Process for preparing iron-antimony-phosphorus-containing catalyst for fluidized bed process
WO2004073857A1 (en) Catalyst for methacrylic acid production and process for producing the same
JPH0720552B2 (en) Regeneration method of oxidation catalyst
US4219484A (en) Production of maleic anhydride from four-carbon hydrocarbons using catalysts prepared by water reflux techniques
JPH0712434B2 (en) Method for producing oxide catalyst containing phosphorus and antimony
JP3800043B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
US4014927A (en) Process for production of unsaturated acids from corresponding unsaturated aldehydes
JPH08141401A (en) Catalyst for production of nitrile
KR20070014115A (en) Process for preparing mixed metal oxide catalyst to produce unsaturated aldehyde from olefin
JP5611977B2 (en) Method for producing methacrylic acid production catalyst and method for producing methacrylic acid
KR910008727B1 (en) Process for producing antimonycontainig metal oxide catalysts
JPH0731883A (en) Improved phosphorus / vanadium system oxidation catalyst
US4276222A (en) Method of producing maleic anhydride
KR830002071B1 (en) Process for regeneration of antimony containing oxide catalyst