JPS60182012A - Thin film magnetic recording medium - Google Patents

Thin film magnetic recording medium

Info

Publication number
JPS60182012A
JPS60182012A JP3638984A JP3638984A JPS60182012A JP S60182012 A JPS60182012 A JP S60182012A JP 3638984 A JP3638984 A JP 3638984A JP 3638984 A JP3638984 A JP 3638984A JP S60182012 A JPS60182012 A JP S60182012A
Authority
JP
Japan
Prior art keywords
alloy
magnetic
metal
bismuth
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3638984A
Other languages
Japanese (ja)
Inventor
Toshio Masutani
枡谷 俊雄
Kenji Yazawa
健児 矢沢
Hiroyuki Sagawa
佐川 広行
Kazuhiko Nakamura
一彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3638984A priority Critical patent/JPS60182012A/en
Publication of JPS60182012A publication Critical patent/JPS60182012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide high coercive force and squareness ratio on a nonmagnetic base body even in the case when a diagonal vapor deposition is not used and to make the magnetic characteristic isotropic within the plane thereof by constituting a bismuth alloy of bismuth and specific weight % of a metal of >=1 kinds selected from Pb, Sn, Cd, In, Sb, Ga and Zn. CONSTITUTION:A bismuth alloy is constituted of Bi and a metal of >=1 kinds selected from Pb, Sn, Cd, In, Sb, Ga and Zn and the ratio of the metal except Bi is selected within a 5-45wt% range. A nonmagnetic underlying layer 2 of the bismuth alloy and a magnetic metallic layer is formed on a nonmagnetic base body 1 to obtain a thin film magnetic recording medium. A high polymer film consisting of, for example, polyethylene terephthalate, etc. are used for the nonmagnetic base body and the underlying layer 2 consisting of the bismuth alloy is deposited by sputtering on the base body 1. The reason for selecting the bismuth alloy lies in that said alloy contg. >=55wt% Bi has the property to expand in volume, unlike ordinary metals, during solidification. The layer 3 is formed by depositing any of Co, Fe and Ni or the alloy thereof by ordinary vapor deposition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気テープ、磁気シート等に適用して好適なR
V、M磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is suitable for application to magnetic tapes, magnetic sheets, etc.
V, M relates to magnetic recording media.

♂r景技術とその問題点 近年、磁気記録の11°(f密度化の1−」的06月(
目1t1.111;lL型の磁気記録媒体即ち非磁性基
体」−に真空蒸着、ヌバソタリング等の方法によりCo
、 Fe、 Ni等の&+ 1!1金属、或いはこれら
の合金による数白へ〜略1μのIVさの強磁性金属薄膜
を形成させた磁気記録媒体についての伺究が盛んである
♂r technology and its problems In recent years, the 11° (1-) of magnetic recording
1t1.111: Co is applied to a L-type magnetic recording medium, i.e., a non-magnetic substrate, by a method such as vacuum evaporation or nuba sottering.
There has been much research into magnetic recording media in which a ferromagnetic metal thin film with an IV diameter of approximately 1 μm is formed using &+1!1 metals such as , Fe, and Ni, or alloys thereof.

しかしながら、この種の薄11¥型の磁気記録媒体にお
い”ζ、そのCo等の磁性金属を単に非磁性基体−1−
に例えば蒸着しただけCは、充分ll]1い抗磁ノ月1
cを有する磁性j−を得ることは困難である。このよう
な薄膜型磁気記録媒体において、I口fい抗磁ノ月IC
を有する磁性1@をiυる方法としては、非磁性基体に
対しζ、上述の磁性金属の蒸発粒子を斜めに入射させる
斜め蒸着法が提案され′Cいる。とごろがごのような斜
め蒸着法による場合、蒸着効率が低く生産f!I+に劣
るという欠点がある。
However, in this type of thin 11-inch magnetic recording medium, the magnetic metal such as Co is simply used as a non-magnetic substrate.
For example, the amount of C deposited on the surface is sufficient
It is difficult to obtain magnetic j- with c. In such a thin-film magnetic recording medium, an antimagnetic IC with a large diameter
As a method for producing magnetic 1@ having iυ, an oblique vapor deposition method has been proposed in which evaporated particles of the above-mentioned magnetic metal are obliquely incident on a non-magnetic substrate. When using the diagonal deposition method, the deposition efficiency is low and the production f! It has the disadvantage of being inferior to I+.

発明の目的 本発明は、斜め蒸着法によらない場合にA6いCも、非
磁性基体上に商い抗磁力及び角形比を有し、その面内C
磁気特性が等人的とされた薄膜磁気記録媒体を青ようと
するものである。
Purpose of the Invention The present invention provides that A6 C has a coercive force and a squareness ratio on a non-magnetic substrate when not using an oblique vapor deposition method, and the in-plane C
This is an attempt to create a thin film magnetic recording medium whose magnetic properties are considered to be uniform.

発明の4汎要 本発明は、非磁性基体」二にヒスマス系合金のト地層と
金属磁性IHを積層形成してなる磁気記録媒体である。
4. Summary of the Invention The present invention is a magnetic recording medium comprising a non-magnetic substrate, a hismuth-based alloy layer, and a metal magnetic IH layered thereon.

ヒスマス系合金としCは、旧とPly、 Sn、 Cd
、 In。
Hismuth-based alloys include C, Old, Ply, Sn, and Cd.
, In.

Sb、 Ga、 Znから選ばれた1種以−1−の金属
とから構成され、その旧以外の金属の−)す合は5〜4
5市量%の範囲内に選ばれる。
It is composed of one or more metals selected from Sb, Ga, and Zn, and the sum of the other metals is 5 to 4.
Selected within 5% of market volume.

この発明の磁気記録媒体では、磁気的に面内等力1?l
をイ1し、11つ高い抗磁力及び角型比が得られる。ま
た製造に際しても:IFii’j蒸着であるから生産性
も良好である。
In the magnetic recording medium of this invention, the in-plane magnetic force is 1? l
1, and 11 higher coercive force and squareness ratio can be obtained. Also, during manufacturing: IFii'j vapor deposition is used, so productivity is also good.

実施例′ 本発明においCは第1図に示すように非磁性基体(1)
上にビスマス系合金の非磁性−ト地Jf4 (21と金
属la4’、I層を形成してン1シ股磁気記録媒体を得
る。
Example' In the present invention, C is a non-magnetic substrate (1) as shown in FIG.
A bismuth-based alloy non-magnetic substrate Jf4 (21) and a metal la4', I layer are formed on top to obtain a one-piece magnetic recording medium.

非磁性基体としζは例えばポリエチレンテレフタレー1
−、ポリアミド、ポリ゛〆ミドイミド、ポリイミド等の
高分子フィルム、ガラス、セラミック、9・ファイア或
いは表面を酸化した金属扱等を用いることができる。
The non-magnetic substrate is ζ, for example, polyethylene terephthalate 1
Polymer films such as -, polyamide, polyimide-imide, polyimide, glass, ceramic, 9-fire, or metal treated with an oxidized surface can be used.

ビスマス系合金の土地層(2)は基体fit−,1:に
スパッタリングによって被着するもので、II4と5〜
45重量%のPb、 Sn、 Cd、 In、 Sb、
 G8. Znから選ばれた1種以上の金属から成る二
元系、三ノじ系或いは四ノじ系合金によって構成され、
そのjソさは50〜300人に選定される。ヒスマス系
合金を選択したのは8kが55重量%以」−のものは凝
固時に通常の金属と異なり体積が膨張する(II *を
存するためである。
The ground layer (2) of bismuth-based alloy is deposited on the substrate fit-, 1: by sputtering, and II4 and 5-
45% by weight of Pb, Sn, Cd, In, Sb,
G8. Consisting of a binary, three-way or four-way alloy consisting of one or more metals selected from Zn,
The number of participants will be selected between 50 and 300 people. The reason why a hismuth-based alloy was selected is that a hismuth-based alloy containing 55% by weight or more of 8k expands in volume during solidification (exists II*), unlike ordinary metals.

金属磁性層(3)は通1贋の蒸着によ−J ’CCo、
 Re、 Niのいずれか、或いはその合金例えばCo
−Ni合金等を50〜600人好ましくは200〜30
0人の厚さに被着するごとによっ°ζJj宅成し得る。
The metal magnetic layer (3) is formed by evaporation of 1-J'CCo,
Either Re, Ni, or an alloy thereof such as Co
-Ni alloy etc. 50-600 people preferably 200-30 people
°ζJj can be made by applying each layer to a thickness of 0.

第2図は上地層(2)、金属磁性l@f31を形成する
装置の一例Cある。図中(4ンは真空容器で、この内部
が4つの室、ずなわら供給ロール(5)が配された供給
室(6八巻き取りロール(力が配された巻き取り室(8
)、スパッタリング室(9)及び蒸着室001に仕切ら
れ、供給ロール(5)から繰り出された非磁性基体[1
,)が金属キ中ン(11)及び(!2)を繞っ゛ζスパ
ッタリング室(9)及び蒸着室001に移送され、これ
より巻き取りロール(7)に巻き取られるようになされ
る。
FIG. 2 shows an example C of an apparatus for forming the upper layer (2) and the metal magnetic l@f31. In the figure (4) is a vacuum container, which has four chambers inside, a supply chamber (6) in which the Zunawara supply roll (5) is arranged (6) and a winding chamber (8) in which the winding roll (force is arranged).
), a sputtering chamber (9) and a deposition chamber 001, and a non-magnetic substrate [1
, ) is transported over the metal pins (11) and (!2) to the sputtering chamber (9) and the vapor deposition chamber 001, from where it is wound onto a winding roll (7).

スパッタリング室(9)の金1jAキャン(11)に対
向する]・方には金属クーケノ1−(13)が配置され
、このターゲット(13)と金属キャン(If)間に1
11■周波?li源よりの高周波が印加されるようにな
される。また蒸着室θ0)の金17Mキャン(12)に
対向するド方位置には蒸着源(14)が配置される。8
石綿(14)は図刀マしないが例えば電子銃からの電子
ビームご加熱される。(15)は非硼111基体を所定
温度に加熱Jるための赤外線ランプ、(16)はJJI
気目である。
A metal 1jA can (11) in the sputtering chamber (9) is placed on the opposite side, and a metal 1-(13) is placed between the target (13) and the metal can (If).
11 ■ Frequency? A high frequency wave from an li source is applied. Further, a vapor deposition source (14) is arranged at a position facing the gold 17M can (12) in the vapor deposition chamber θ0). 8
Asbestos (14) is heated by an electron beam from an electron gun, for example. (15) is an infrared lamp for heating the non-boron 111 substrate to a predetermined temperature, (16) is JJI
It's a mood.

実施例1 第2図の装置を使用し、2 X 1O−2Torrの真
空I・で厚さ50μのポリイミドフィルムよりなる非磁
性基体+1+を走行させ、先ずスパッタリング室(9)
で旧57.5mjf%、5n17.3m1量%、In2
5.2車量%からなる合金ターゲット(13)を用い′
Cスパッタ条件を適度に調節した1111周波スパッタ
リング処理にょっ−(厚さ200人の旧−5n−In合
金1・地層(2)を被着した。引き続き蒸着室001に
おい゛C非磁性基体(1)の基体温度をB1−5n−I
n合金1・地1m (21の凝固点79℃以上の150
℃に保持した状態で蒸着源(14)よりGo−35%N
+合金を250人の厚さに蒸着して旧−3n−In合金
1・“地1tii(21j−にCo−Ni合金磁性1m
 (31を被着した。このようにして得られた薄般磁気
記録媒体を実施例1とした。
Example 1 Using the apparatus shown in Fig. 2, a non-magnetic substrate +1+ made of a polyimide film with a thickness of 50 μm was run in a vacuum I of 2 × 10-2 Torr, and first the sputtering chamber (9) was opened.
Old 57.5mjf%, 5n17.3m1 volume%, In2
Using an alloy target (13) consisting of 5.2 car mass%'
A layer (2) of the former -5n-In alloy 1 with a thickness of 200 mm was deposited using a 1111 frequency sputtering process in which C sputtering conditions were appropriately adjusted. ) is the substrate temperature of B1-5n-I
n alloy 1・ground 1m (150
Go-35%N from the evaporation source (14) while maintained at ℃
+ alloy was evaporated to a thickness of 250 mm and Co-Ni alloy magnetic 1 m was deposited on the old -3n-In alloy 1.
(31) was deposited. The thin general magnetic recording medium thus obtained was referred to as Example 1.

比較例1 基体温度をB1−5n−In合金ト地In f21の凝
固点以上の50℃とし、その他は実施例1と同じにして
作!I11メジた薄膜磁気記録媒体を比較例1とした。
Comparative Example 1 The substrate temperature was set to 50°C above the freezing point of the B1-5n-In alloy substrate Inf21, and the other conditions were the same as in Example 1! Comparative Example 1 was a thin film magnetic recording medium with an I11 deviation.

」二記各例の磁気記録媒体の抗研〕月1G及び角型非R
sを下記表に不ず。
” 2. Resistant grinding of magnetic recording media of each example] Moon 1G and square non-R
s is shown in the table below.

表 この表より明らかなように1−地層のn、;4度をその
凝固温度以上に+l]i くすると磁気特性の改善が顕
著である。一方、−1−地層の温度がその凝固li+!
1度より低いと上地層の効果がなく好ましくない。
Table As is clear from this table, when the n,; On the other hand, the temperature of the -1- formation is the solidification li+!
If it is lower than 1 degree, the upper layer will not be effective and it is not preferable.

実施例2 実施例1と同様の方法をとるも、1・地層用物餉とし′
ζ旧50市量%、Pb31.2市9%、5nll+、8
ml;t%の合金ターゲット(13)を用い′ζ基体d
、14度を150 ”Cとし′ζ旧−3n−In合金1
〜地層(2)を形成した薄nA磁気記録媒体を実施例2
とした。なおこの旧−3n−In合金1・地層の凝固点
は94℃である。
Example 2 The same method as Example 1 was used, but 1.
ζ Old 50 market weight%, Pb31.2 city 9%, 5nll+, 8
ml; t% alloy target (13) was used for ′ζ substrate d
, 14 degrees is 150 "C'ζ old-3n-In alloy 1
~Example 2 of a thin nA magnetic recording medium with a geological layer (2) formed
And so. Note that the freezing point of this former -3n-In alloy 1 layer is 94°C.

比較例2 基体611L度を50℃とし、その他は実施例迄と同様
にして作製した薄膜磁気記録媒体を比較例2としAm。
Comparative Example 2 Comparative Example 2 is a thin film magnetic recording medium manufactured in the same manner as in the examples up to the examples except that the temperature of the substrate 611L is 50° C. and the temperature is Am.

この実h1シ例2及び比較例2の抗磁力及び角型比の結
果はほぼ実施例1及び比較例1と同様ごあっノこ。
The results of the coercive force and squareness ratio of Example 2 and Comparative Example 2 are almost the same as those of Example 1 and Comparative Example 1.

面、合金ターゲット(13)としCは、例えば第3図に
示すようにビスマス基41i(21)上に合金を構成」
る成分基鈑例えば実hi!]例2の場合にはPb基扱(
22)とSn基板(23)を所定の割合となるように、
11つ各成分、基板(22) (23)が非磁性基体(
1,1の幅方向に延在J−るように配列し、しかもこの
クーゲノ1−(13)のリツif (l Iが非磁II
[基体(1)の’I’ftlρ2.1り人(j!2>j
!1 )となるよ)に構成する。このような合金ターゲ
ットを用いれは、非磁イ11基体+11のll’iii
方向に膜質の均一化が図れる。
For example, as shown in FIG. 3, C constitutes an alloy on a bismuth base 41i (21).
For example, real hi! ] In the case of Example 2, Pb-based treatment (
22) and Sn substrate (23) in a predetermined ratio,
Each of the 11 components, the substrate (22) (23) is a non-magnetic substrate (
1, 1 are arranged so as to extend in the width direction of J-.
['I'ftlρ2.1 of base (1) (j!2>j
! 1). When such an alloy target is used, a non-magnetic 11 base + 11 ll'iii
The film quality can be made uniform in both directions.

また金属(M M: IN (:(+は一層に191!
られるものではなく上述のト地層を介在さセた多層構造
とすることもできる。
Also metal (M M: IN (:(+ is even more 191!
It is also possible to have a multi-layered structure with the above-mentioned strata interposed therebetween.

発明の効果 」−述したように本発明によれば、凝固時に体積膨張す
るビスマス系合金の土地層を介して金jだ磁性層を形成
することにより、このド地1t4の体積膨張に因る磁性
層の被着面の表向性によってこれの1−に形成する金属
磁(!1゛屓が、はぼ東向方向からの蒸着Cも微細化さ
れ、JJi+、)抗磁力11cを21マし、また1目1
い角型比Rsを示す薄膜磁気記録媒体が1!Iられる。
Effects of the Invention - As described above, according to the present invention, by forming a gold magnetic layer through a layer of bismuth-based alloy that expands in volume during solidification, Due to the superficiality of the surface to which the magnetic layer is adhered, the metal magnetic layer formed on this 1- (!1゛ layer, but the vapor deposition C from the eastward direction is also made finer, JJi+,) coercive force 11c is 21 mm. , also 1 eye 1
A thin film magnetic recording medium exhibiting a high squareness ratio Rs is 1! I get caught.

この磁気記録媒体は面内で磁気特性が等人的となされる
ものである。また、製造に際し゛てもほぼ中−直Fi着
であるから生産性も良好である。
This magnetic recording medium has uniform magnetic properties within the plane. In addition, since the manufacturing process is almost straight-to-center firing, the productivity is also good.

【図面の簡単な説明】[Brief explanation of drawings]

第1し1は本発明によるηシ膜磁気IiL!録媒体の断
面し1、第2図は本発明の一ト地層と金属磁性層を形成
する装置の一例をボず路線的構成図、第3図はその合金
クーゲソ1−の例を不ず)V−面図である。 (1)は非磁性基体、(2)はビスマス系合金のド地1
−1(3)は金属(ククl’l lt!!i(ある。 代理人 炉層 貞 同 松隈秀盛 第1図 113図 21 囚 第2図
The first is η film magnetism IiL! according to the present invention! Figures 1 and 2 are cross-sectional diagrams of a recording medium, and Figure 3 shows an example of an apparatus for forming a magnetic layer and a metal magnetic layer according to the present invention, and Figure 3 shows an example of the alloy. It is a V-plane view. (1) is a non-magnetic substrate, (2) is a bismuth alloy base 1
-1 (3) is a metal (kuku l'l lt!!i). Agent Furnace Teido Matsukuma Hidemori Figure 1 113 Figure 21 Prisoner Figure 2

Claims (1)

【特許請求の範囲】 非磁性基体上にビスマス系合金の1・地1督と、金属磁
性層が積層形成され、該ビスマス系合金はビスマスと5
−4s車量%のPb、 Sn、 Cd、 In+ Sb
、 Ga。 Znから選ばれた1種以上の金属とから構成されてなる
薄膜磁気記録媒体。
[Claims] A bismuth-based alloy of 1 and 5 and a metal magnetic layer are laminated on a non-magnetic substrate, and the bismuth-based alloy contains bismuth and 5
-4s vehicle volume% Pb, Sn, Cd, In+ Sb
, Ga. A thin film magnetic recording medium composed of one or more metals selected from Zn.
JP3638984A 1984-02-28 1984-02-28 Thin film magnetic recording medium Pending JPS60182012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3638984A JPS60182012A (en) 1984-02-28 1984-02-28 Thin film magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3638984A JPS60182012A (en) 1984-02-28 1984-02-28 Thin film magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60182012A true JPS60182012A (en) 1985-09-17

Family

ID=12468492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3638984A Pending JPS60182012A (en) 1984-02-28 1984-02-28 Thin film magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60182012A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217525A (en) * 1987-02-25 1988-09-09 コマッグ・インコーポレイテッド Magnetic disc construction and manufacture thereof
JPH03189922A (en) * 1989-10-05 1991-08-19 Internatl Business Mach Corp <Ibm> Magnetic memory medium and method of manufacturing the same
JPH05282648A (en) * 1992-03-16 1993-10-29 Internatl Business Mach Corp <Ibm> Magnetic recording medium and its production and magnetic recording device
WO2017099215A1 (en) * 2015-12-11 2017-06-15 旭硝子株式会社 Sputtering target, laminate, multi-layer body, and method for producing laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63217525A (en) * 1987-02-25 1988-09-09 コマッグ・インコーポレイテッド Magnetic disc construction and manufacture thereof
JPH03189922A (en) * 1989-10-05 1991-08-19 Internatl Business Mach Corp <Ibm> Magnetic memory medium and method of manufacturing the same
JPH0561685B2 (en) * 1989-10-05 1993-09-06 Ibm
JPH05282648A (en) * 1992-03-16 1993-10-29 Internatl Business Mach Corp <Ibm> Magnetic recording medium and its production and magnetic recording device
WO2017099215A1 (en) * 2015-12-11 2017-06-15 旭硝子株式会社 Sputtering target, laminate, multi-layer body, and method for producing laminate

Similar Documents

Publication Publication Date Title
JPS6321254B2 (en)
US4543301A (en) Magnetic recording medium
JPS60182012A (en) Thin film magnetic recording medium
US4539264A (en) Magnetic recording medium
JPH04153910A (en) Magnetic recording medium
JPS5883327A (en) Magnetic recording medium
JPS6339124A (en) Magnetic recording medium and its production
JPS59157833A (en) Magnetic recording medium
JPS58158030A (en) Magnetic recording medium
JPS60163233A (en) Magnetic recording medium and its production
JPS60237625A (en) Magnetic recording medium
JPS60231911A (en) Magnetic recording medium
JPH0198124A (en) Production of magnetic recording medium
JPS61139919A (en) Magnetic recording medium
JPS60202524A (en) Magnetic recording medium
JPH01169719A (en) Magnetic disk and its manufacture
JPS6043915B2 (en) Vacuum deposition method
JPH04356728A (en) Production of magnetic recording medium
JPS63249926A (en) Magnetic recording medium
JPS60202525A (en) Magnetic recording medium
JPS59157826A (en) Production of magnetic recording medium
JPS59157830A (en) Magnetic recording medium
JPS59157829A (en) Magnetic recording medium
JPH0381202B2 (en)
JPS59148126A (en) Magnetic recording medium for vertical recording