JPS60181321A - Manufacture of carbon product - Google Patents

Manufacture of carbon product

Info

Publication number
JPS60181321A
JPS60181321A JP3470484A JP3470484A JPS60181321A JP S60181321 A JPS60181321 A JP S60181321A JP 3470484 A JP3470484 A JP 3470484A JP 3470484 A JP3470484 A JP 3470484A JP S60181321 A JPS60181321 A JP S60181321A
Authority
JP
Japan
Prior art keywords
pitch
line
carbon
spinning
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3470484A
Other languages
Japanese (ja)
Other versions
JPH0461089B2 (en
Inventor
Kimio Ishimaru
公生 石丸
Hiroshi Nagata
寛 永田
Tadayoshi Fujiwara
忠義 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP3470484A priority Critical patent/JPS60181321A/en
Publication of JPS60181321A publication Critical patent/JPS60181321A/en
Publication of JPH0461089B2 publication Critical patent/JPH0461089B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbon product having improved qualities such as tensile strength, by irradiating molten pitch fluid with microwave in the production process of a carbon product, thereby promoting the orientation of the aromatic plane of the molecule constituting the pitch. CONSTITUTION:Molten pitch fluid is irradiated with microwave (preferably 800- 10,000MHz frequency) to obtain a carbon product such as carbon fiber, needle coke, etc. For example, needle coke can be produced by removing the quinoline- insoluble component from the pitch and irradiating the pitch with microwave 21 in the line 19 for the transport of the hot pitch to the coke drum 23.

Description

【発明の詳細な説明】 技術分野 本発明は、ピッチを原料とする炭素製品の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a method for manufacturing carbon products using pitch as a raw material.

一従来技術 炭素製品においては、構成成分分子の配向性がその性能
に大きな影響を及はす場合が多い。例えば、炭素繊維に
おいては、主成分たる芳香族分子平面が繊維軸に平行に
配列した場合−に高強度のものが得られ1.更に芳香族
分子平面が繊維軸に同心円状に配列した場合にはよシ一
層強度が向上する。
1. Prior Art In carbon products, the orientation of constituent molecules often has a significant effect on their performance. For example, in carbon fibers, high strength can be obtained when the planes of the aromatic molecules, which are the main components, are arranged parallel to the fiber axis.1. Furthermore, when the aromatic molecular planes are arranged concentrically with the fiber axis, the strength is further improved.

又、炭素質電極において紘、成分分子が同一方向に配列
すると、当該方向に高い電気伝導性が付与されるという
好ましい性質が発現される。従って、 ″炭素質電極そ
の他の各種炭素製品の中間原料であるニードルコークス
においても、高度の配向性が要求されている。
Furthermore, when the carbonaceous electrodes and component molecules are arranged in the same direction, a desirable property of imparting high electrical conductivity in that direction is exhibited. Therefore, needle coke, which is an intermediate raw material for carbonaceous electrodes and other various carbon products, is also required to have a high degree of orientation.

ピッチを原料として高度に配向した炭素製品を得る為に
は、例え杜ピッチを熱処理して予め構成成分分子を配向
しやすい性質(易黒鉛化性)のものに改質した後、該熱
処理ピッチの一方向に応力を与えることによシ、所望の
製品とすることが行なわれているが、所期の効果が達成
されているとは言い難い。炭素繊維を例にとるならば、
ピッチが種々の多環芳香族炭化水素を主成分とする混合
物であって品質が一定でないこと、炭素繊維の前駆体と
してのピッチ繊維に高度の配向性をもたせることが困難
であること等の理由によシ、得られる炭素繊維の引張強
度が低い(約100 kg7mf’以下)。従って、ピ
ッチ系炭素繊維の引張強度を改善する目的で、原料ピッ
チを予め水素化、熱処理等の前処理に供した後、得られ
る光学的異方性ピッチを紡糸し、次いで炭素繊維化する
方法も行なわれているが、現状では引張強度300 k
g 7m2以上の高品質の炭素繊維を得ることは困難で
ある。
In order to obtain a highly oriented carbon product using pitch as a raw material, for example, after heat-treating Mori pitch and modifying it into a property that facilitates the orientation of constituent molecules (easily graphitized), the heat-treated pitch must be Although it has been attempted to produce a desired product by applying stress in one direction, it is difficult to say that the desired effect has been achieved. Taking carbon fiber as an example,
Reasons include that pitch is a mixture whose main components are various polycyclic aromatic hydrocarbons and its quality is not constant, and that it is difficult to impart a high degree of orientation to pitch fibers as a precursor of carbon fibers. Unfortunately, the tensile strength of the carbon fiber obtained is low (approximately 100 kg 7 mf' or less). Therefore, in order to improve the tensile strength of pitch-based carbon fibers, a method of subjecting raw material pitch to pre-treatments such as hydrogenation and heat treatment, spinning the resulting optically anisotropic pitch, and then forming carbon fibers. However, currently the tensile strength is 300 k.
It is difficult to obtain high quality carbon fiber with a size of 7 m2 or more.

発明の構成 本発明者は、ピッチを原料とする炭素製品の品質向上を
図るべく種々研究を重ねた結果、炭素製品の製造工程に
おいて溶融ピッチが一方向に流動している状態で、これ
に特定周波数のマイクロ波を照射する場合には、ピッチ
構r&成分の分子の芳香族平面の配列が促進され、その
結果、得られる炭素製品の品質が著るしく改善されるこ
とを見出した◇即ち、本発明は、ピッチを原料として炭
素繊維、ニードルコークス等の炭素製品を製造する方法
において、流動する溶融ピッチにマイクロ波を照射する
ことを特徴とする炭素製品の製造方法に係る。
Structure of the Invention As a result of various research aimed at improving the quality of carbon products that use pitch as a raw material, the inventor discovered that in the manufacturing process of carbon products, molten pitch flows in one direction. It has been found that when irradiated with microwaves of high frequency, the aromatic plane alignment of the molecules of the pitch structure r&component is promoted, and as a result, the quality of the resulting carbon product is significantly improved◇i.e. The present invention relates to a method for producing carbon products such as carbon fibers and needle coke using pitch as a raw material, which is characterized by irradiating flowing molten pitch with microwaves.

以下図面を参照しつつ、本発明を更に詳細に説明する。The present invention will be explained in more detail below with reference to the drawings.

第1図に示すフo−、52イヤタラムにおいて、原料重
質油は、ライン(1)から蒸留工程(3)に送られ、ラ
イン(5)からのガス及び軽質油分とライン(7)から
のピッチ分とに分けられる。原料重質前としては、種々
の石炭系及び石油系重質油が使用可能であシ、コールタ
ール、コールタールピッチ、石炭液化物等の石炭系重質
油、並びに辷れ等の熱処理にょシ副生するタール及びじ
ツチ;オイルサンドじチューメン、石油軽質油の熱分解
重質残油等の石油系重質油等が具体的に例示される。ピ
ッチ分は、ライン(7)を経てQl(十ノリン不溶分)
除去工程(9)に送られ、ここで得られたQll夫夫ピ
ッチ、ライン(II)及びライン(至)を経てニードル
コークス製造工程に送られるか又はラインQη及びライ
ンに)を経て後述の炭素繊維製造工程に送られる。
In the 52-year thalam shown in Figure 1, raw heavy oil is sent from line (1) to the distillation process (3), gas and light oil from line (5), and gas and light oil from line (7). It is divided into pitch and pitch. Various coal-based and petroleum-based heavy oils can be used as the raw material. Specific examples include by-produced tar and dirt; petroleum-based heavy oils such as oil sand tarmen and heavy residual oil from thermal decomposition of light petroleum oils. The pitch portion passes through line (7) to Ql (tenorine insoluble portion)
The carbon is sent to the removal step (9), and the carbon obtained here is sent to the needle coke production process via line (II) and line (to), or to line Qη and line (to), which will be described later. Sent to textile manufacturing process.

ニードルコークス製造の場合には、QI除夫夫ピッチ、
加熱工程(lのに送られ、通常350〜600℃程度に
加熱された後、ラインQlを経てコークドラムに)に入
る。この際、ラインQ嗜内を溶融状態で流動するQI除
夫夫ピッチ線、矢印10で示される周波数的500〜4
0000MIIICにl)好−*しくは約800〜10
0o100ooのマイクロ波が0、0003 〜1秒間
程度照射される。かくして、励起によシ分子の一方向へ
の配列が促進されたピッチは、コークドラムに)内にお
いてピッチの重縮合反応が進行するとともに、重質留分
分子の配向が更に進んで、高品質の生ニードルコークス
を生成する。得られた生ニードルコークスは、ライン(
ハ)を経て焼成工程(図示せず)に送られ、通常約10
00〜l 500 ’Oで焼成されてニードルコークス
となる0コークドラムに)内で分解生成する軽質留分線
、ラインに)を通って蒸留工程四に送ら払生成するガス
及び軽質油は、ラインcI◇を経て、ライン(至)を通
るコークドラム(ホ)からのガス及び軽質油と併せて、
系外に取出される。蒸留工程翰からの残余の留分は、ラ
インに)を経て加熱工程a’hに循環され、QII去ヒ
ツチの一部として使用される。
In the case of needle coke production, QI exodus pitch,
It enters the heating process (after being sent to line Ql and heated to usually about 350 to 600°C, it passes through line Ql and enters the coke drum). At this time, the QI pitch line flowing in a molten state within the line Q, the frequency of which is 500 to 4 as indicated by the arrow 10.
0000MIIIC l) Preferably - *preferably about 800 to 10
Microwaves of 0o100oo are irradiated for about 0,0003 to 1 second. In this way, the excited pitch promotes the alignment of the molecules in one direction, and as the polycondensation reaction of the pitch progresses in the coke drum (in the coke drum), the orientation of the heavy fraction molecules further progresses, resulting in a high quality product. of raw needle coke. The obtained raw needle coke is transferred to the line (
c) and then sent to the firing process (not shown), usually about 10
The gas and light oil produced are sent to the distillation step 4 through the line), and the gas and light oil produced are sent to the distillation step 4 through the line. Together with the gas and light oil from the coke drum (e) that passes through cI◇ and the line (to),
Taken out of the system. The remaining fraction from the distillation stage is recycled via line ) to the heating stage a'h and used as part of the QII evaporator.

炭素繊維製造の場合には、Qll夫夫ツチ拡、ラインα
η及びQIを経て水素添加工程(ロ)に送られ、水素化
処理された後、ラインに)を経て熱処理重縮合工程(ロ
)K送られる。この際、水素化処理されたQl除去ピッ
チをラインに)、的、■及び(至)を経て前記の加熱工
程0ηに送シ、ニードルコークス製造原料として使用し
ても良い。熱処理重縮合工程(ロ)からの反応生成物は
、ラインθηを経て紡糸工程に)に入ル、溶融流動状態
の紡糸ピッチとして、矢印ψpで示されるマイクロ波の
照射を受ける◎マイクロ波の照射時間、周波数等は、前
記ニードルコークス製造の場合と同様で良い。熱処理重
縮合工程(財)からの反応生成物も、ライン671、曽
、(至)及びQiを経て加熱工程αのに送シ、ニードル
コークス製造原料として使用することができる。紡糸ピ
ッチは、ラインーを経て焼成工程−に送られた後、炭素
繊維としてライン輪から収得される。
In the case of carbon fiber manufacturing, Qll Huo Tsuchi Expansion, Line α
It is sent to the hydrogenation step (b) through η and QI, and after being hydrogenated, it is sent to the heat treatment polycondensation step (b) K through the line (b). At this time, the hydrotreated Ql-removed pitch may be sent to the line through steps 1, 2, and 3 to the heating step 0η, and used as a raw material for producing needle coke. The reaction product from the heat treatment polycondensation step (b) enters the spinning step through the line θη, where it is irradiated with microwaves as indicated by the arrow ψp as a spinning pitch in a molten fluid state.◎Microwave irradiation The time, frequency, etc. may be the same as in the case of needle coke production. The reaction product from the heat-treated polycondensation step can also be sent to the heating step α via line 671, Zeng, (to) and Qi, and can be used as a raw material for producing needle coke. The spinning pitch is sent to the firing process through the line and then collected from the line ring as carbon fiber.

第2図及び第3図は、炭素繊維の製造方法の1例をよシ
詳細に示すフロータイヤクラムである。
FIGS. 2 and 3 are flow tire crumbs showing in detail one example of a method for producing carbon fibers.

原料重質油は、タンク(4o工)からライン(1ox)
、水添反応器(1O=S) 、ライン(1o))、熱処
理重縮合反応器(ヱ09)及びライ:J(1エエ)を経
て溶融状態で紡糸ノズル(41s)に送られる。熱処理
重縮合反応反応が進行し、後続の紡糸時に分子の配列が
容易に進行する様に改質される。紡糸時の溶融温度は、
原料の種類、性状等によシ大巾に異なるが、通常300
〜450℃程度である。本発明においては、紡糸ノズル
(zlx)からの紡糸ピッチに周波数500〜4000
(1#Jより好ましくは800〜100100O0のマ
イクロ波(z1=s) 、−・(zz=s)を0.00
01□ 〜1秒間照射する。紡糸ノール′(エエ′3)の断面の
一部を拡大して模式的に示す第3図から明らかな様に、
このマイクロ波(エエッ)、・・・・′(工15)の照
射にょシ、紡糸ピッチ(工17)の構成成分分子の繊維
軸方向への配向が促進される。マイクロ波の照射を受け
た複数本の紡糸ピッチ(227) 、・・・・(工1?
)は、紡糸装置(zz9)を出た後、合糸されて繊維糸
(1ax )となる。繊維糸(tax)は、ロール(1
a3)及び(工25)を経て不融化炉(127)に送ら
れる。不融化処理条件は、公知のピッチ系炭素繊維の製
造方法のそれとは特に異なるところはなく、酸化性雰囲
気中150〜350℃程度で1〜7時間程度処理する・
不融化処理を終えた1a雑糸(429)は、次いで熱処
理炉(工31)で焼成処理される。焼成処理条件も、公
知の方法の場合と特に異なるところはなく、通常窒素雰
囲気中1000〜2000℃程度で1〜10分間程度焼
成する。かくして得られ死屍素繊維は、ドラム(工33
)に巻取られる。
Raw material heavy oil is transferred from the tank (4o) to the line (1ox)
, a hydrogenation reactor (1O=S), a line (1o)), a heat treatment polycondensation reactor (E09), and a lie J (1E) before being sent in a molten state to a spinning nozzle (41s). The heat treatment polycondensation reaction progresses, and the molecules are modified so that the arrangement of molecules can easily proceed during subsequent spinning. The melting temperature during spinning is
Although it varies depending on the type and properties of raw materials, it is usually 300
~450°C. In the present invention, the spinning pitch from the spinning nozzle (zlx) has a frequency of 500 to 4000.
(Microwave of 800 to 100,100 O0 (z1=s), -.(zz=s) of 0.00
01□ Irradiate for ~1 second. As is clear from FIG. 3, which schematically shows an enlarged part of the cross section of the spinning knoll'(E'3),
The irradiation of this microwave (yep)...' (Step 15) promotes the orientation of the constituent molecules of the spinning pitch (Step 17) in the fiber axis direction. Multiple spinning pitches irradiated with microwaves (227) ,...(Work 1?
) leaves the spinning device (zz9) and is combined into a fiber yarn (1ax). The fiber yarn (tax) is rolled (1
It is sent to the infusibility furnace (127) via a3) and (step 25). The infusibility treatment conditions are not particularly different from those of known pitch-based carbon fiber manufacturing methods, and are treated in an oxidizing atmosphere at about 150 to 350°C for about 1 to 7 hours.
After the infusibility treatment, the 1a miscellaneous yarn (429) is then fired in a heat treatment furnace (step 31). The firing conditions are also not particularly different from those of known methods, and firing is usually performed at about 1000 to 2000° C. for about 1 to 10 minutes in a nitrogen atmosphere. The dead cellulose fibers obtained in this way are placed in a drum (Engineering 33).
).

以下に本発明の実施例を示し、本発明の特級とするとこ
ろをよシ一層明確にする。
Examples of the present invention will be shown below to further clarify the special features of the present invention.

実施例 菫 先ず下記の操作によシ原料を調製した。Example violet First, a raw material was prepared by the following procedure.

(a)!石炭高温乾留タール(以下タールAとする)か
ら十ノリン不溶分(−次Ql)を除去し、得られたター
ル(以下タールBとする)を蒸留して沸点500℃以下
の留分を除去することにょシじツチ(以下じツチAとす
る)を得た。
(a)! Decanoline insoluble matter (-order Ql) is removed from the coal-high-temperature carbonization tar (hereinafter referred to as tar A), and the obtained tar (hereinafter referred to as tar B) is distilled to remove the fraction with a boiling point of 500°C or lower. I obtained Totonyo Shijitsuchi (hereinafter referred to as Jitsuchi A).

<b> : eフチA30W&とテトラしF−o士ノリ
シフ。
<b>: Tetra with e-edge A30W&F-o Shinorishifu.

部とからなる混合物を自生臣下450 ’Cで1゜分間
熱処理してピッチ(以下じツチBとする)を得た後、大
気圧下窒素ガスを吹込みっり該じッチBt450℃で1
時間熱処理してピッチを得た(以下じツチCとする)。
After heat-treating the mixture consisting of 450°C for 1° to obtain pitch (hereinafter referred to as ``Jittsuchi B''), nitrogen gas was blown into the pitch at 450°C under atmospheric pressure.
A pitch was obtained by heat treatment for a period of time (hereinafter referred to as "C").

(e)=st−ybAをN s /Ma/J Z a 
Os 触媒の存在下水素EE 100に9/cd、 3
80”Cテ1時間水添処理した後、触媒及び−次Qlf
trih央し、田−葺替によシ沸点480℃以下の留分
を除去して、ピッチを得た(′以下ピッチDとする)。
(e)=st-ybA N s /Ma/J Za
Os Hydrogen in the presence of catalyst EE 9/cd to 100, 3
After hydrogenation for 1 hour at 80"C, the catalyst and
After the distillation was carried out, the distillate having a boiling point of 480° C. or less was removed by a rice-covering process to obtain pitch (hereinafter referred to as pitch D).

次いで、じツチDを大気圧下窒素ガスを吹込みクク45
0℃で1時間熱処理してピッチを得元(以下ピッチEと
する)。
Next, nitrogen gas was blown into Jitsuchi D under atmospheric pressure for 45 minutes.
Heat treated at 0°C for 1 hour to obtain pitch (hereinafter referred to as pitch E).

上記タールA−,,B及びじツチA−Eの十ノリシネ溶
分(QI)、ベンゼン不溶分(Bl”)、C7゜及び軟
化点(S、P、)を第1表に示す。
Table 1 shows the tenoricine soluble content (QI), benzene insoluble content (Bl''), C7° and softening points (S, P,) of the tars A-, B and A-E.

第 1 表 次いで、ピッチC及びEを350℃に加熱し、窒素ガス
圧11g/d −Gの加圧下に口径0.311nの紡糸
ノズルから押出し、形成されるフィラメントを500m
/分で巻取った。この際、紡糸ノズルを出たフィラメン
トに2450MH1のマイクロ波をo、 oos秒間照
射することにょシ、高速紡糸が容易となシ、フィラメン
ト内の結晶構造を長さ方向に均質に配向させることが出
来た。
Table 1 Pitches C and E were then heated to 350°C and extruded from a spinning nozzle with a diameter of 0.311n under a nitrogen gas pressure of 11g/d-G to form a filament of 500m.
/min. At this time, the filament exiting the spinning nozzle was irradiated with microwaves of 2450 MH1 for o, oo seconds, which facilitated high-speed spinning and made it possible to uniformly orient the crystal structure within the filament in the length direction. Ta.

かくして得られたフィラメントを酸化雰囲気の電気炉中
温度300℃で2時間不融化処理し、次いで窒素算囲気
中1400℃で5分間加熱炭化して、炭素繊維を得た。
The filament thus obtained was subjected to infusibility treatment in an electric furnace in an oxidizing atmosphere at a temperature of 300° C. for 2 hours, and then heated and carbonized at 1400° C. for 5 minutes in a nitrogen atmosphere to obtain carbon fibers.

第2表に得られた炭素繊維の物性(15木の平均値)を
示す。
Table 2 shows the physical properties of the obtained carbon fibers (average values for 15 trees).

又、第2表には、マイクロ波を照射しない以外は本実施
例と同様にして得た炭素繊維(但し紡糸速度が低いので
、径は大きい)の物性を併せて示すO 第 2 表 第2表に示す結果から、本発明方法によシ得られた炭素
繊維の引張シ強度が約30%増大して、300 kg/
m2 を超えていることが明らかである。
Table 2 also shows the physical properties of carbon fibers obtained in the same manner as in this example except that microwave irradiation was not performed (however, the diameter was large because the spinning speed was low). From the results shown in the table, the tensile strength of the carbon fiber obtained by the method of the present invention increased by about 30%, and reached 300 kg/
It is clear that it exceeds m2.

実施例 2 実施例1と同様にして得たタールBを蒸留することによ
シ、下記第3表に示す物性を有するヒツチFを得た後、
これを圧力6 kQlCA G 、温度490°Cの条
件下に熱処理し、次いでコークドラムにチャージした。
Example 2 By distilling tar B obtained in the same manner as in Example 1, hitch F having the physical properties shown in Table 3 below was obtained.
This was heat treated under conditions of a pressure of 6 kQlCA G and a temperature of 490°C, and then charged into a coke drum.

この際、コークドラムの入口において流動状態にある溶
融ピッチにマイクロ波(2450MHz )を0.01
秒間照射することによシ、ピッチを励起し、その結晶構
造を一定方向に均質化した。
At this time, microwaves (2450MHz) of 0.01 MHz were applied to the molten pitch in a fluidized state at the inlet of the coke drum.
By irradiating it for seconds, the pitch was excited and its crystal structure was homogenized in a certain direction.

コークドラム内では、じツチを圧力6#/dG。Inside the coke drum, the pressure is 6#/dG.

温度490℃の条件下に10時間保持し、コークス化を
行なった。次いで、得られた生コークスを1400℃で
仮焼することによシ、第4表に示す物性を有するニード
ルコークスを得た。尚、第4表には、マイクロ波を照射
しない以外は本実施例と同様にして得たニードルコーク
スの物性を併せて示す。
The mixture was maintained at a temperature of 490° C. for 10 hours to form coke. Next, the obtained raw coke was calcined at 1400°C to obtain needle coke having the physical properties shown in Table 4. Table 4 also shows the physical properties of needle coke obtained in the same manner as in this example except that microwave irradiation was not performed.

第 3 表 第 4 表 第4表に示す結果から明らかな如く、本発明方法による
ニードルコークス線、真比重が大きく、熱膨張係数が低
く、異常膨張がないという優れた性質を備えている。
As is clear from the results shown in Tables 3 and 4, the needle coke wire produced by the method of the present invention has excellent properties such as a high true specific gravity, a low coefficient of thermal expansion, and no abnormal expansion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の大要を示すフロータイ1フグラ
ム、第2図は、本発明による炭素繊維製造方法の一例を
示すフ0−タイ′pグラム、第3図は、第2図に示す紡
糸ノズルの一部を拡大して模式的に示す断面図である。 (3)・・・・蒸留工程、(9)・・・・Ql除去工程
、Q′7)・・・・加熱工程、Ql)・・・・マイクロ
波、翰・・・・コークドラム、(2)・・・・蒸留工程
、c3θ・・・・水素添加工程、@p・・・・熱処理重
縮合工程、θ呻・・・・紡糸工程、6カ・・・・マイク
ロ波、6′/)・・・・焼成工程、(xol)・・・・
原料タンク、(1o=s)・・・・水添反応器、(i0
9)・・・・熱処理重縮合反応器、(il:S)・・・
・紡糸ノズル、(tx=s)・・・・マイクロ波、(1
エマ)・・・・紡糸ピッチ、(工19)・・・・紡糸装
置、(z21)・・・・繊維糸、(12s)・・・・0
−ル、(12=s)・・・・0−ル、(工27)・・・
・不融化炉、(工29)・・・・不融化処理繊維糸、(
zxl)・・・・熱処理炉、(133)・・・・ドラム
。 (以 上) 第2図 第3図
FIG. 1 is a flow tie 1 diagram showing an outline of the method of the present invention, FIG. FIG. 2 is an enlarged cross-sectional view schematically showing a part of the spinning nozzle shown in FIG. (3)...Distillation process, (9)...Ql removal process, Q'7)...Heating process, Ql)...Microwave, kiln...Coke drum, ( 2)...Distillation process, c3θ...Hydrogenation process, @p...Heat treatment polycondensation process, θ groan...Spinning process, 6...Microwave, 6'/ )...Baking process, (xol)...
Raw material tank, (1o=s)...Hydrogenation reactor, (i0
9) Heat treatment polycondensation reactor, (il:S)...
・Spinning nozzle, (tx=s)...Microwave, (1
Emma)...spinning pitch, (technique 19)...spinning device, (z21)...fiber yarn, (12s)...0
-ru, (12=s)...0-ru, (eng 27)...
・Infusibility furnace, (Engineering 29)... Infusibility treated fiber yarn, (
zxl)...Heat treatment furnace, (133)...Drum. (That's all) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] ■ ピッチを原料として炭素繊維、ニードルコークス等
の炭素製品を製造する方法において、溶融ピッチに流動
状態でマイクロ波を照射することを特徴とする炭素製品
の製造方法。
■ A method for producing carbon products such as carbon fiber and needle coke using pitch as a raw material, which is characterized by irradiating molten pitch with microwaves in a fluid state.
JP3470484A 1984-02-24 1984-02-24 Manufacture of carbon product Granted JPS60181321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3470484A JPS60181321A (en) 1984-02-24 1984-02-24 Manufacture of carbon product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3470484A JPS60181321A (en) 1984-02-24 1984-02-24 Manufacture of carbon product

Publications (2)

Publication Number Publication Date
JPS60181321A true JPS60181321A (en) 1985-09-17
JPH0461089B2 JPH0461089B2 (en) 1992-09-29

Family

ID=12421740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3470484A Granted JPS60181321A (en) 1984-02-24 1984-02-24 Manufacture of carbon product

Country Status (1)

Country Link
JP (1) JPS60181321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181162A1 (en) * 2009-07-28 2012-07-19 Marina Vladimirovna Soboleva Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181162A1 (en) * 2009-07-28 2012-07-19 Marina Vladimirovna Soboleva Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre

Also Published As

Publication number Publication date
JPH0461089B2 (en) 1992-09-29

Similar Documents

Publication Publication Date Title
Maeda et al. Preparation of isotropic pitch precursors for general purpose carbon fibers (GPCF) by air blowing—I. Preparation of spinnable isotropic pitch precursor from coal tar by air blowing
US3716607A (en) Heat treatment of molten carbonaceous material prior to its conversion to carbon fibers and other shapes
US4197283A (en) Carbon fibres
JPS58220805A (en) Production of precursor pitch for carbon fiber
KR880002095B1 (en) Carbon fiber pitch
JPS60181321A (en) Manufacture of carbon product
JPS58214531A (en) Preparation of pitch for producing pitch type carbon fiber
JPH0148312B2 (en)
US4579645A (en) Starting pitch for carbon fibers
JPS60202189A (en) Pitch for carbonaceous material and its preparation
JPH0148314B2 (en)
JPS59223315A (en) Production of pitch based carbon fiber
JPH0320432B2 (en)
CN114940918B (en) Mesophase pitch prepared from hydrogenated tail oil and method thereof
JPH0144751B2 (en)
JPH0144750B2 (en)
JPS59147081A (en) Pitch as starting material of carbon fiber
JPS58136835A (en) Production of pitch for carbon fiber
JPH0150273B2 (en)
JPS61127788A (en) Production of meso-phase pitch for carbon fiber
JPS6126692A (en) Preparation of pitch for carbon material
JPS60252692A (en) Production of pitch for spinning
JPH0144753B2 (en)
JPS59136384A (en) Preparation of pitch for producing carbon fiber
JPS6223084B2 (en)