JPS6017968B2 - Decoking method for heat exchanger tubes - Google Patents

Decoking method for heat exchanger tubes

Info

Publication number
JPS6017968B2
JPS6017968B2 JP6117978A JP6117978A JPS6017968B2 JP S6017968 B2 JPS6017968 B2 JP S6017968B2 JP 6117978 A JP6117978 A JP 6117978A JP 6117978 A JP6117978 A JP 6117978A JP S6017968 B2 JPS6017968 B2 JP S6017968B2
Authority
JP
Japan
Prior art keywords
heat exchanger
gas
tube
exchange section
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6117978A
Other languages
Japanese (ja)
Other versions
JPS54153363A (en
Inventor
俊弥 親本
勝昭 槙野
惇 佐々木
守 玉井
義文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6117978A priority Critical patent/JPS6017968B2/en
Publication of JPS54153363A publication Critical patent/JPS54153363A/en
Publication of JPS6017968B2 publication Critical patent/JPS6017968B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 本発明はオレフイン製造用急冷熱交換器または石炭、重
貿油の部分酸化反応後の廃熱ボィラ以外に石油精製、石
油化学、肥料化学、合成化学など広く工業界に使用され
る高温ガス冷却用廃熱ボィラ等の伝熱管等のデコーキン
グ法に関する。
[Detailed Description of the Invention] The present invention is applicable to a wide range of industries such as oil refining, petrochemistry, fertilizer chemistry, and synthetic chemistry, in addition to rapid cooling heat exchangers for olefin production or waste heat boilers after partial oxidation reactions of coal and heavy trade oil. This invention relates to a decoking method for heat exchanger tubes used in waste heat boilers for cooling high-temperature gas.

ェタン、ナフサ、灯油、軽油等の炭化水素の熱分解によ
りオレフインを製造するプロセス、石油系重質油や石炭
の部分酸化、水素化分解によるSNGの製造プロセスお
よび天然ガス、ナフサの水蒸気改質による水素や合成ガ
スの製造プロセスにおいて、分解炉、ガス化炉、改質炉
などを出た生成粗ガス(750−1400%)は反応凍
結や緋熱回収のために急速冷却される。‐「従来この急
速冷却、熱回収方法としては、多管式熱交換器による勤
源用高圧スチーム回収と水や油の贋霧による直接冷却す
る方法の二つがあるが、各々次のような欠点がある。a
多警式熱交換器方法 ィ 天熱管の汚れ、特にコーキング ロ 局部過熱によるチューブ焼損やバーンアウトハ 高
級材料使用によるコストアップ b 直接冷却方式 イ スチーム回収効率の低さ、 ロ プロセスガスの汚染 上記のうち、特にaのイのコーキングは熱分解炉、カス
化炉生成組ガス中に含まれる創生カーボンや高沸点物(
タール状物質)が伝熱管上枕着したのち、コーク積層物
に成長する現象であり、伝熱性能の低下や圧力損失の増
大を招くため、一定時間毎に運転を停止してコークスを
除去する必要があり、プロセスの連続運転上、大きな障
害となり、生産性の低下の原因ともなっている。
A process for producing olefins by thermal decomposition of hydrocarbons such as ethane, naphtha, kerosene, and light oil; a process for producing SNG by partial oxidation and hydrocracking of petroleum heavy oil and coal; and a process for producing SNG by steam reforming of natural gas and naphtha. In the production process of hydrogen or synthesis gas, the produced crude gas (750-1400%) exiting a cracking furnace, gasifier, reformer, etc. is rapidly cooled for reaction freezing and scarlet heat recovery. - ``Conventionally, there are two methods for rapid cooling and heat recovery: recovery of high-pressure steam from the source using a shell-and-tube heat exchanger, and direct cooling using water or oil mist, but each method has the following drawbacks. There is a.
Multi-alarm heat exchanger method - Contamination of the heating tubes, especially caulking Tube burnout and burnout due to local overheating Increased cost due to the use of high-quality materials (b) Direct cooling method - Low steam recovery efficiency (b) Contamination of process gas Of these, coking (a) is especially effective against created carbon and high boiling point substances (
This is a phenomenon in which tar-like substances (tar-like substances) settle on the heat transfer tubes and then grow into a coke laminate, which leads to a decrease in heat transfer performance and an increase in pressure loss, so the operation must be stopped at regular intervals to remove the coke. This is a major hindrance to the continuous operation of the process and causes a decrease in productivity.

コークスの除去方法としては、機械的にコークスを除去
するメカニカル、デコーキング法とスチーム、ェア、デ
コーキング法とがある。
Methods for removing coke include a mechanical decoking method, which mechanically removes coke, and a steam, air, and decoking method.

メカニカルデコーキング法は停止期間が長く且つ機械、
人件費等の費用が多くかかりコストアップとなる。
The mechanical decoking method requires a long stoppage period, and
There are many expenses such as personnel expenses, which increases the cost.

一方、スチーム、ェア、デコーキング法(蒸気と空気の
混合ガスをパイプの中に通し、空気中の酸素でコークス
を燃焼させる)′は装置の構造が複雑となり且つチュー
ブ保護のため厳密な運転条件の維持が必要である。
On the other hand, the steam, air, and decoking methods (in which a mixed gas of steam and air is passed through a pipe and the coke is combusted with oxygen in the air) require complicated equipment structures and require strict operation to protect the tubes. It is necessary to maintain the conditions.

上述のようなコーキング現象は原料の軍質化が進むほど
激しくなり、デコーキングのための費用はより大きくな
ると考えられる。
It is thought that the above-mentioned coking phenomenon becomes more severe as the raw materials become more militarized, and the cost for decoking becomes greater.

本発明は従釆の上記欠点に鑑みてなされてもので、炭化
水素特に原油、量貿油等の蚤質炭化水素の熱分解による
オレフィン製造や石炭の部分酸化や水素化分解によるS
NG製造プロセスにおいて、轍生カーボンや高沸点成分
を含む高温粗ガスを急速冷却し、二次反応を防止するた
めの反応凍結と粗ガスの頭熱を高圧スチームとして回収
するための熱回収の両作用を実施するに当り「既に袴顔
昭51−31総0号、椿関昭51一127101号、特
関昭52一3753号および特関昭52−5805号等
に記載のように流動層型急冷熱交(内部に高圧スチーム
回収用のボィラ水管を内蔵する)が提案されているが、
本発明はこれら既存タイプの欠点である装置の大型化、
オレフイン収率の低下などの欠点を解消することを目的
とする。
The present invention has been made in view of the above-mentioned drawbacks of the related art.
In the NG production process, high-temperature crude gas containing rutted carbon and high-boiling components is rapidly cooled, and both reaction freezing to prevent secondary reactions and heat recovery to recover the head heat of the crude gas as high-pressure steam are performed. In carrying out the action, a fluidized bed type was used, as already described in Hakama-gao Sho 51-31 Sono. A rapid cooling heat exchanger (with a built-in boiler water pipe for recovering high-pressure steam) has been proposed, but
The present invention solves the drawbacks of these existing types, such as increased size of the device,
The purpose is to eliminate drawbacks such as a decrease in olefin yield.

本発明は、車質炭化水素の熱分解や石炭の部分酸化、水
素化分解により生成する創生カーボン、高沸点成分を含
む高温ガス(750〜1400午0)を冷却、熱回収す
るために、急冷し、当該高温度ガスの保有する鯛熱を高
圧スチームとして回収するに当り、その内部に水あるい
はスチームが流れる伝熱管群を有する流動層あるいは暖
流層熱交換部と多管式熱交換部の二部分からなる急冷熱
交換器において、流動層部(噴流層を含む)へ細粒子を
供給することにより、細粒は流動層上部の水管群へ飛ん
で行き管壁面で凝縮、沈着している高沸点成分から成る
凝縮物をブラストすることによりコークスを防止する。
The present invention is designed to cool and recover heat from high-temperature gas (750-1400 am) containing created carbon and high boiling point components produced by thermal decomposition of vehicle hydrocarbons, partial oxidation of coal, and hydrocracking. In order to rapidly cool the sea bream heat possessed by the high-temperature gas and recover it as high-pressure steam, a fluidized bed or warm bed heat exchange section having a group of heat transfer tubes through which water or steam flows and a shell-and-tube heat exchange section are used. In a rapid cooling heat exchanger consisting of two parts, by supplying fine particles to the fluidized bed section (including the spouted bed), the fine particles fly to the water tube group above the fluidized bed, where they condense and settle on the tube wall surface. Coke is prevented by blasting condensate consisting of high boiling components.

次に本発明の一実施例を第1図を参照して説明する。図
において、1はガス供給口、2は流動層熱交換部、3は
水供給口、4はスチーム出口、5は伝熱管、6は粕粒抜
出口、7は固体粒子、8は固体粒子供給装置、9は多管
式熱交換部、10‘ま二重管式簾熱管、1 1はガス出
ロ、12は高圧スチ−ムドラム、13は水あるいはスチ
ーム供給口、14は高圧スチーム出口、15.16は切
換弁、17は紬粒補集用サイクロン、18は紬粒抜出袋
贋「 19はガス出口配管、2川ま細粒出口である。
Next, one embodiment of the present invention will be described with reference to FIG. In the figure, 1 is a gas supply port, 2 is a fluidized bed heat exchange section, 3 is a water supply port, 4 is a steam outlet, 5 is a heat exchanger tube, 6 is a lees extraction port, 7 is a solid particle, and 8 is a solid particle supply 1 is a gas outlet, 12 is a high-pressure steam drum, 13 is a water or steam supply port, 14 is a high-pressure steam outlet, 15 16 is a switching valve, 17 is a cyclone for collecting pongee grains, 18 is a bag for removing pongee grains, 19 is a gas outlet pipe, and 2 rivers are fine grain outlets.

熱分解または部分酸化により生成した高温ガス(可燃性
)は、ガス供給口1より噴流層熱交換部2に入り、流動
層に熱を与え、流動層は伝熱管5と熱交換するとにより
冷却される。ガスは上部の多管式熱交換部9へ導入され
る。伝熱管5は一端に水あるいはスチーム供孫合口3を
、他の一端にスチーム出口「4を有する一本あるいは複
数の管からなり、伝熱管5内の水または蒸気はガスの顕
熱を受けて、高圧スチームとして回収される。多管式熱
交換部9に入ったガスは、複数の二重管式伝熱管10と
熱交換したのち〜ガス出口11から切襖弁15を通して
ガス出口配管19により系外へと導かれる。
High-temperature gas (flammable) generated by thermal decomposition or partial oxidation enters the spouted bed heat exchange section 2 from the gas supply port 1, gives heat to the fluidized bed, and the fluidized bed is cooled by exchanging heat with the heat exchanger tubes 5. Ru. The gas is introduced into the upper shell-and-tube heat exchange section 9. The heat exchanger tube 5 consists of one or more tubes having a water or steam outlet 3 at one end and a steam outlet 4 at the other end, and the water or steam inside the heat exchanger tube 5 receives the sensible heat of the gas. The gas that has entered the multi-tubular heat exchanger section 9 exchanges heat with a plurality of double-tube heat exchanger tubes 10, and then is passed from the gas outlet 11 through the flap valve 15 to the gas outlet piping 19. be led out of the system.

上記二重管式伝熱管10は水あるいはスチーム供孫合口
13より入った水あるいはスチームが内管内を下降しt
反転して外管と内管との間を上昇する間に、ガスの顕熱
により高圧スチームに変換するためのものであり、発生
したスチームは高圧スチームドラム12で気液分離され
高圧スチーム出口14より回収される。以上の正常運転
を一定時間続けていると、噴流層熱交換部2内で流動し
ている固体粒子は高温ガスの持ち込む潮生カーボンがそ
の周囲に付着して成長し大粒子となり、流動状態が悪化
することと、二重管式廉熱管10の外管外壁面に高温ガ
ス中の高沸点成分が凝縮、沈着しコークス物を形成し、
伝熱性が阻害されるという障害が発生するこのような事
態を回避するため、一定時間毎に固体粒子供給口7から
固体粒子供給装置8を経て、新しい固体粒子(再生処理
された固体粒子でも可)を流動層熱交換部2へ供給する
In the double-pipe heat transfer tube 10, water or steam entering from the water or steam outlet 13 descends inside the inner tube.
This is to convert the gas into high-pressure steam by the sensible heat of the gas while it is reversed and ascends between the outer tube and the inner tube, and the generated steam is separated into gas and liquid in the high-pressure steam drum 12 and sent to the high-pressure steam outlet 14. more will be recovered. If the normal operation described above continues for a certain period of time, the solid particles flowing in the spouted bed heat exchange section 2 will become large particles as the tidal carbon brought in by the high temperature gas adheres to their surroundings, causing the fluid state to deteriorate. In addition, high boiling point components in the high temperature gas condense and deposit on the outer wall surface of the outer tube of the double tube type low heat tube 10 to form coke.
In order to avoid such a situation where heat transfer is inhibited, new solid particles (recycled solid particles may also be used) are supplied from the solid particle supply port 7 to the solid particle supply device 8 at regular intervals. ) is supplied to the fluidized bed heat exchange section 2.

供給される固体粒子は予じめ、粕粒と紬粒が一定の比率
に調整されておりト組粒は既に流動している固体粒子と
混合したのち、粗粒抜出口6より外部へ抜出され適当な
再生装置で再生処理される。一方、供給された細粒は、
多管式熱交換部9へ飛んでゆき、二重管式伝熱管10の
外管外壁面に凝縮、沈着しつつある液状物を剥離し、こ
れをその紬粒表面に捉えたのち、ガスと共に切換弁16
を適して、細粒補集用サイクロン17に入り、ここで気
固分離された紬粒は、細粒抜出装置18を通って紬粒出
口20より外部へ抜出され、適当な再生装置で再処理さ
れる。
The supplied solid particles are adjusted in advance to a certain ratio of lees grains and pongee grains, and the mixed grains are mixed with the already flowing solid particles and then extracted to the outside from the coarse grain extraction port 6. The recorded data is then reproduced using a suitable reproduction device. On the other hand, the supplied fine grains are
It flies to the multi-tube heat exchange section 9, peels off the liquid that is condensing and depositing on the outer wall surface of the outer tube of the double-tube heat exchanger tube 10, captures it on the surface of the pongee grains, and then removes it together with the gas. Switching valve 16
The pongee grains enter the cyclone 17 for collecting fine grains, where the pongee grains are separated into gas and solids. Reprocessed.

上記細粒補集用サィクロン17で分離されたガス出口配
管19に出る。上記のとおり、固体粒子の補給時、つま
り流動媒体の置換と二重式穂熱管10のデコーキングの
み外部サイクロン17を使用し、それ以外の正常運転時
には外部サイクロン17をショートカット・バイパスさ
せるように切換運転を実施する。本発明によると、紐粒
を補給することにより、次のような効果が期待できる。
a 多管式熱交換部の二重管式伝熱管のコーキング厚み
は一定値下に抑制され、安定した伝熱管能や圧力損失が
維持される。
The gas separated by the fine particle collecting cyclone 17 exits to an outlet pipe 19. As mentioned above, the external cyclone 17 is used only when replenishing solid particles, that is, replacing the fluidized medium and decoking the double-head heating tube 10, and during other normal operations, the external cyclone 17 is switched to shortcut and bypass. Carry out driving. According to the present invention, the following effects can be expected by replenishing string grains.
a The coking thickness of the double-tube heat exchanger tubes in the multi-tube heat exchange section is suppressed to a certain value, and stable heat exchanger tube performance and pressure loss are maintained.

b デコーキング操作も従来のように炉の運転を停止し
て実施する必要がなく、生産性向上の効果が大きく、ま
た保守が極めて簡略化される。
b) There is no need to stop the furnace operation and perform the decoking operation as in the conventional method, which greatly improves productivity and greatly simplifies maintenance.

なお、サイクロンを省略して急冷熱交換器の後流に設置
される溜壁式熱交換器で細粒子を捕捉することができる
。上記の場合には、細粒子を連続的に供聯合することも
できる。また、粗粒砂の補給(連続的の方が多い)と同
時にこれと共に粕粒を供聯合してもよい。次に本発明の
試験結果について説明する。
Note that the cyclone can be omitted and the fine particles can be captured by a reservoir wall type heat exchanger installed downstream of the quenching heat exchanger. In the above case, fine particles can also be combined continuously. Further, at the same time as coarse sand is replenished (continuously in most cases), lees grains may be added together with it. Next, test results of the present invention will be explained.

冷却試験を続けたところ約5凪rで運転不能になり、装
置開放点検の結果、直管式二重管の外管周囲に約3側厚
さのコーキング物が見られた。
As the cooling test continued, the system became inoperable at about 5 mph, and as a result of opening the equipment and inspecting it, caulking about 3 sides thick was found around the outer pipe of the straight double pipe.

次に2皿rに一回づつ、細粒子を補給して試験を続行し
た結果、コーキング厚みは1側以上には成長せず、かつ
、ェロージョンも見られず40日間以上何等の支障なく
運転することができた。以上の試験で1回当りの細粒子
供給量を20、7ふ150、225k9(固気比0.0
27、1.0、2.0、3.0)と変えてみた結果、多
管式熱交換部の圧力損失と固気化の関係は第2図に示す
ようになった。第2図において、矢印a方向の曲線はコ
ーキング増大の影響を示し、矢印b方向の曲線は岡気比
増大の影響を示している。これにより適正岡気比として
は、1.0k9(粒子)/k9(ガス)付近であり、こ
れ以上では圧力損失が大きくなり、エチレン収率が低下
する。
Next, we continued the test by replenishing fine particles once in each of the two pans.As a result, the coking thickness did not grow beyond the first side, and no erosion was observed, and the operation continued without any problems for over 40 days. I was able to do that. In the above tests, the amount of fine particles supplied per time was 20, 7F150, 225K9 (solid-air ratio 0.0
27, 1.0, 2.0, 3.0), the relationship between pressure loss and solidification in the multi-tubular heat exchange section is as shown in Figure 2. In FIG. 2, the curve in the direction of arrow a shows the effect of increasing caulking, and the curve in the direction of arrow b shows the effect of increasing coking ratio. As a result, the appropriate ratio is around 1.0k9 (particles)/k9 (gas), and if it exceeds this, the pressure loss will increase and the ethylene yield will decrease.

またこれ以下ではデコーキング効果が不足するためか圧
力損失が漸増する煩向が見られた。また、2価r毎に細
粒砂を供鱗舎して、多瞥式熱交換部をサンドプラストし
た時の回収スチーム温度の経時変化を第3図に示すが、
これらも、充分なデコーキング作用が発揮さられている
ことが判る。
Moreover, below this range, the pressure loss tended to gradually increase, probably because the decoking effect was insufficient. In addition, Figure 3 shows the change over time in the temperature of the recovered steam when the multi-layer heat exchanger was sandblasted using fine-grained sand for each divalent r.
It can be seen that these also exert a sufficient decoking effect.

図において、矢印a,bはブラスト1仇hinを示す。
以上のように、固体粒子として細粒砂を間欠的に補給す
ることにより、補給しない場合、2日間の連続運転しか
できなかったものが40日以上に延長できるという顕著
な効果が確認できた。
In the figure, arrows a and b indicate the blast direction.
As described above, by intermittently replenishing fine-grained sand in the form of solid particles, a remarkable effect was confirmed in that continuous operation could be extended to over 40 days instead of only 2 days without replenishment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は間欠
ブラスト方式の対圧力損失の効果を示す図表、第3図は
間欠ブラスト方式の対スチーム回収温度を効果を示す図
表である。 1……ガス供給口、2……流動層熱交換部、3,13…
…水あるいはスチーム供給口、4……スチーム出口、5
……伝熱管、6・・・…相粒抜出口、7・・・・・・固
体粒子供総合口、8・・・・・・固体粒子供v給装置、
9・・・・・・多管式熱交換部、10・・…・二重管式
伝熱管、11・・…・ガス出口、12・・・・・・高圧
スチ−ムドラム、14・・・・・・高圧スチーム出口、
15,16・・・・・・切換弁、17・・・・・・紬粒
補集用サイクロン、18・・・・・・紬粒抜出装置、1
9・・・・・・ガス出口配管、20…・・・細粒出口。 第1図堺Z図 粉3図
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a chart showing the effect of the intermittent blasting method on pressure loss, and Fig. 3 is a chart showing the effect of the intermittent blasting method on steam recovery temperature. be. 1... Gas supply port, 2... Fluidized bed heat exchange section, 3, 13...
...Water or steam supply port, 4...Steam outlet, 5
... Heat exchanger tube, 6 ... Phase particle extraction port, 7 ... Solid particle child general port, 8 ... Solid particle child V feeding device,
9...Multi-tube heat exchange section, 10...Double tube heat exchanger tube, 11...Gas outlet, 12...High pressure steam drum, 14... ...High pressure steam outlet,
15, 16...Switching valve, 17...Cyclone for collecting pongee grains, 18...Pongee grain extraction device, 1
9...Gas outlet piping, 20...Fine particle outlet. Figure 1 Sakai Z drawing powder figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 重質炭化水素の熱分解や部分酸化等により生成する
副生カーボンや高沸点成分を含む高温ガスを流動層型交
換部とこの上部にある多管式熱交換部によりこの順に急
冷し当該ガスの保有する顕熱を回収するに当り、当該ガ
スに伴なわれて飛散する多管式熱交換部ブラスト用の細
粒子を供給することを特徴とする伝熱管のデコーキング
法。
1 High-temperature gas containing by-product carbon and high-boiling components produced by thermal decomposition or partial oxidation of heavy hydrocarbons is rapidly cooled in this order by a fluidized bed exchange section and a multi-tubular heat exchange section above the exchange section. A method for decoking heat exchanger tubes, characterized by supplying fine particles for blasting a multi-tubular heat exchanger section that are scattered along with the gas when recovering the sensible heat held by the gas.
JP6117978A 1978-05-24 1978-05-24 Decoking method for heat exchanger tubes Expired JPS6017968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6117978A JPS6017968B2 (en) 1978-05-24 1978-05-24 Decoking method for heat exchanger tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6117978A JPS6017968B2 (en) 1978-05-24 1978-05-24 Decoking method for heat exchanger tubes

Publications (2)

Publication Number Publication Date
JPS54153363A JPS54153363A (en) 1979-12-03
JPS6017968B2 true JPS6017968B2 (en) 1985-05-08

Family

ID=13163665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6117978A Expired JPS6017968B2 (en) 1978-05-24 1978-05-24 Decoking method for heat exchanger tubes

Country Status (1)

Country Link
JP (1) JPS6017968B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1216572A (en) * 1982-11-26 1987-01-13 Hubertus W.A.A. Dries Method and apparatus for continuously cleaning a heat exchanger during operation
CN105841544A (en) * 2016-04-22 2016-08-10 青岛科创蓝新能源股份有限公司 Heat transfer enhancing and scale preventing and removing device and system for sewage or surface water
CN108827042B (en) * 2018-05-10 2020-04-07 中国石油大学(北京) Finned tube fluidized bed heat collector

Also Published As

Publication number Publication date
JPS54153363A (en) 1979-12-03

Similar Documents

Publication Publication Date Title
US3788281A (en) Process and waste-heat boiler for cooling soot-containing synthesis gas
US4328008A (en) Method for the production of cleaned and cooled synthesis gas
KR101103594B1 (en) Multi fluidized bed water-gas shift reactor and the hydrogen production method by using syngas from waste gasification
JP3649782B2 (en) Transfer partial oxidation treatment equipment and low-temperature conversion process of low-value hydrocarbons
CA1131026A (en) Production of cleaned and cooled synthesis gas
US10309727B2 (en) Multi-stage circulating fluidized bed syngas cooling
US4323446A (en) Multi-zone coal conversion process using particulate carrier material
US4328006A (en) Apparatus for the production of cleaned and cooled synthesis gas
US4936872A (en) Process for cooling raw gas obtained from partial oxidation of carbon-containing material
JPH0597732A (en) Preparation of methanol and reactor unit therefor
JPS5951854B2 (en) Fluidized catalyst regeneration method and device
US4702818A (en) Process for recovering heat of a tar-containing high-temperature gas
US4436530A (en) Process for gasifying solid carbon containing materials
US4482363A (en) Process for the cooling and separating of small particle-containing gases
JPS6158115B2 (en)
US20080149316A1 (en) Apparatus and Process For Cooling Hot Gas
JPS6039115B2 (en) Energy use and recovery method of unconverted carbon in synthesis gas production
US20210122631A1 (en) Method and Systems for Treating Synthesis Gas
JPS5956491A (en) Solid carbonaceous fuel gasification
JPS6017968B2 (en) Decoking method for heat exchanger tubes
JPS59222428A (en) Apparatus for highly efficient methanation
CN215559637U (en) Black water treatment system
JPS5851987B2 (en) How to produce syngas with almost no particles
US4889657A (en) Partial oxidation process
US10590348B2 (en) Slurry bubble column reactor for a fischer-tropsch process