JPS60177198A - Production of thin film-like porous body of al2o3 - Google Patents

Production of thin film-like porous body of al2o3

Info

Publication number
JPS60177198A
JPS60177198A JP3214784A JP3214784A JPS60177198A JP S60177198 A JPS60177198 A JP S60177198A JP 3214784 A JP3214784 A JP 3214784A JP 3214784 A JP3214784 A JP 3214784A JP S60177198 A JPS60177198 A JP S60177198A
Authority
JP
Japan
Prior art keywords
porous
layer
thin film
al2o3
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3214784A
Other languages
Japanese (ja)
Inventor
Hideo Kawahara
秀夫 河原
Takuji Aida
拓司 合田
Hirotsugu Nagayama
永山 裕嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP3214784A priority Critical patent/JPS60177198A/en
Publication of JPS60177198A publication Critical patent/JPS60177198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To produce easily a thin film-like porous body of Al2O3 having a less pressure drop by forming a porous Al2O3 layer on the surface of an aluminum object by an anodic oxidation treatment, subjecting further the layer to a cathodic reduction treatment and separating the porous layer. CONSTITUTION:A porous Al2O3 layer having about 100-400Angstrom pore size is formed on the surface of an aluminum object by subjecting said object to an anodic oxidation treatment using a sulfuric acid bath, etc. having about 10- 20% concn. at about 0.6-2A/dm<2> current density, about 10-25V voltage and about 15-25 deg.C bath temp. Such aluminum object coated with the porous layer is subjected to a cathodic reduction treatment at about 15-30 deg.C temp. and about 0.5-1.5A/dm<2> current density in the same treating bath to separate the above- mentioned pours layer from the aluminum object which is the base material. The thin film-like porous body of Al2O3 is thus obtd. Formation of a filter having capability of ultrafine filtration is made possible by sandwiching the thin film with meshed carriers.

Description

【発明の詳細な説明】 a 産業上の利用分野 本発明は厚味の薄い多孔質体の製造方法に関する。更に
詳しくは、薄膜状AA’203多孔質体の多孔方体に関
する。
DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to a method for producing a thin porous body. More specifically, the present invention relates to the porous parallelepiped of the thin film-like AA'203 porous body.

b 従来技術 今日、7ミクロン(μ)以下の大きさの細孔を有する多
孔質体が注目され、具体的には海水の脱塩を目的とした
逆浸透膜、各種酵素の固定化等生化学への応用、自動車
排気ガス用触媒などの担体。
b. Prior art Today, porous materials with pores of 7 microns (μ) or less in size are attracting attention, and specifically, they are used in biochemical applications such as reverse osmosis membranes for the purpose of desalinating seawater, immobilization of various enzymes, etc. applications, carriers for automobile exhaust gas catalysts, etc.

気体−気体の分離膜、あるいはその比表面積の大きさを
利用し種々の物質に対する吸着剤としての輯利用など多
くの方面で新しい機能性材料としての開発が進められて
いる。。
The development of new functional materials is progressing in many fields, such as gas-gas separation membranes and their use as adsorbents for various substances by taking advantage of their large specific surface area. .

多孔質体の材料としてはセラミックスやガラスなどの無
機材料の他、ポリアクリルアミド、アガロース、セルロ
ース系物質など有機材料についても材料開発が進められ
ている。このうち有機材料については(11大規模な工
業レベルでの使用にiえる充分な強度がないこと。(2
)膨張・収縮を起し易い。(3)高温で使用できない。
In addition to inorganic materials such as ceramics and glass, the development of porous materials is also progressing on organic materials such as polyacrylamide, agarose, and cellulose materials. Among these, organic materials (11) do not have sufficient strength for use on a large-scale industrial level. (2)
) Easily expands and contracts. (3) Cannot be used at high temperatures.

等の難点があることから、近年特に無機材料についての
開発に力が注がれている。
Due to these difficulties, in recent years, efforts have been particularly focused on the development of inorganic materials.

無機系材料では多孔質セラミックスとしてAlz03m
 ’rio2.5i02 e Ti02−Aj?203
 、 zro2が既ニツくられ実用に供されている。一
方、多孔質ガラスも早くから研究され、例えばNa20
−B2O3−8i02から成る。ホウケイ酸ガラスをr
oo”c以上に加熱してNa20−B2O3と5i02
の2相に分相させ、その後同ガラスを酸性液中に浸すこ
とで目J溶成分のNa20−B2O3相を抽出し、後v
c Sio2の多孔質層を残すという方法も開発されて
いる。
Among inorganic materials, Alz03m is used as porous ceramics.
'rio2.5i02 e Ti02-Aj? 203
, ZRO2 has already been developed and put into practical use. On the other hand, porous glasses were also studied early on, such as Na20
-B2O3-8i02. borosilicate glass
Heating to oo”c or higher produces Na20-B2O3 and 5i02
After separating the glass into two phases, the same glass is immersed in an acidic solution to extract the Na20-B2O3 phase, which is the soluble component of the glass.
A method of leaving a porous layer of c Sio2 has also been developed.

しかしながら、これらの多孔質体においては、脱塩用逆
浸透膜、酵素固定用、気体分離膜のように貫通細孔を必
要とし、かつ細孔中を気体・液体などの媒体が通過する
ような場合、媒体の透過性を高めるために高圧で圧送す
る必要が生じる。このため多孔質体を支持管などに圧力
封着するにも少なからぬ問題があった。あるいは気体分
離において気体の種類によっては高圧にすることで分離
効率が低下するという問題があった。
However, these porous materials require through-pores, such as reverse osmosis membranes for desalination, enzyme immobilization, and gas separation membranes, and media such as gases and liquids pass through the pores. In some cases, it may be necessary to pump at high pressure to increase the permeability of the medium. For this reason, there were considerable problems in pressure-sealing the porous body to a support tube or the like. Alternatively, in gas separation, depending on the type of gas, there is a problem that the separation efficiency decreases due to high pressure.

C発明の目的 本発明は、新規な薄膜状AA203多孔質体の製造方法
を提供することを目的とし、圧力損失の少ない多孔質体
の製造方法を提供することを目的とする。
C.Object of the Invention The present invention aims to provide a novel method for manufacturing a thin film-like AA203 porous body, and an object of the present invention is to provide a method for manufacturing a porous body with little pressure loss.

d 発明の構成 本発明は、陽極酸化処理によりアルミニウム物体の表面
に多孔質の酸化アルミニウム層を形成せしめ、しかる稜
線多孔質層被覆アルミニウム物体を陰極還元処理して該
多孔質層を母体アルミニウム物体から分離させることを
特徴とする薄膜状Al2O3多孔質体の製造方法である
d.Structure of the Invention The present invention involves forming a porous aluminum oxide layer on the surface of an aluminum object by anodizing treatment, and then cathodically reducing the ridgeline porous layer-coated aluminum object to separate the porous layer from the base aluminum object. This is a method for producing a thin film-like Al2O3 porous material, which is characterized by separation.

陽極酸化法によりアルミニウムの表面に酸化アルミニウ
ム層を形成することは古くから行なわれ、また酸化アル
ミニウム層が多孔質構造を有することも早くから知られ
ていた。しかしながら、従来のアルミニウムの陽極酸化
被膜は主としてアルミニウム表面への装飾的効果の付与
や、化学的耐久性の向上を目的としたもので、近年その
多孔質構造が注目され、エレクトロクロミック素子、磁
性記録拐料など電子材料への応用も研究されているがい
ずれもアルミニウム表面の多孔質酸化アルミニウム層と
しての利用を図ろうとするものであった。本発明はこれ
ら多孔質層をアルミニウム母体からハク熱させ、薄膜型
の多孔質体を提供する処に特徴がある。
Forming an aluminum oxide layer on the surface of aluminum by anodic oxidation has been practiced for a long time, and it has also been known for a long time that the aluminum oxide layer has a porous structure. However, conventional anodic oxide coatings on aluminum were mainly used to add decorative effects to the aluminum surface and improve chemical durability; however, in recent years, its porous structure has attracted attention, and it has been used for electrochromic devices, magnetic recording devices, etc. Applications to electronic materials such as nanoparticles have also been studied, but in all cases the aim has been to use it as a porous aluminum oxide layer on the aluminum surface. The present invention is characterized in that these porous layers are heated from an aluminum matrix to provide a thin film type porous body.

アルミニウムを陽極酸化するには、硫酸、シーウ酸、ク
ロム酸、リン酸、スルファミン酸、ベンゼンスルポン酸
などの二塩基酸中にアルミ阜つムを陽4iMとして浸清
し、陰極として鉛、鉄、黒鉛。
To anodize aluminum, aluminum is immersed in a dibasic acid such as sulfuric acid, sulfuric acid, chromic acid, phosphoric acid, sulfamic acid, or benzenesulfonic acid as a positive 4iM, and lead or iron is used as a negative electrode. ,graphite.

ケイ素鉄等を用い、両極間で電解操作を行なうのが通常
である。この場合、二塩基酸溶液の濃度。
Usually, silicon iron or the like is used and electrolysis is performed between the two electrodes. In this case, the concentration of the dibasic acid solution.

1’i1M度、電流密度および浴電圧が重要で、一般に
は液温か低く、電流密度が大きく、また液の濃度が低い
ほど多孔度が小さくなる。望ましい条件ぼ電解液の種類
によって異なり、硫酸浴の場合は濃度10−20%、電
流密度0.乙〜zA/dm2.電圧10〜2t(V)+
温湿1s−2s″Cが好ましいとされている。その他、
よく用いられる電解液としてシュウ酸系浴、クロム酸系
浴があり、シュウ酸系の場合、概ね濃度λ〜S%、電流
密度/〜3A/dm2.′ii1圧q。
1'i1M degrees, current density, and bath voltage are important; generally, the lower the liquid temperature, the higher the current density, and the lower the concentration of the liquid, the smaller the porosity. Desirable conditions vary depending on the type of electrolyte; in the case of a sulfuric acid bath, the concentration is 10-20% and the current density is 0. Otsu~zA/dm2. Voltage 10~2t(V)+
It is said that a temperature and humidity of 1s-2s''C is preferable.Others:
Commonly used electrolytes include oxalic acid baths and chromic acid baths, and in the case of oxalic acid baths, the concentration is approximately λ~S% and the current density is /~3A/dm2. 'ii1 pressure q.

〜xO(v)、液11Ii 20〜30″Cの条件が用
いられ、クロム酸系浴の場合濃度2〜3%、電流密度0
./〜0.3A/dm21 電圧110〜jO(’V)
 、浴f、30〜’io”cが適当とされている。この
ようにして多孔質構造を有するアルミニウムの陽極酸化
被膜が得られるが、孔の大きさは100〜1Ioohで
あり、多孔質層の厚さは電解時間や電流密度の大きさと
ともに厚くなり、条件によっては数700μにもなる。
~xO(v), liquid 11Ii 20~30''C conditions are used, and in the case of a chromic acid bath, the concentration is 2~3%, and the current density is 0.
.. /~0.3A/dm21 Voltage 110~jO('V)
, bath f, 30~'io''c is considered to be appropriate.In this way, an anodic oxide film of aluminum having a porous structure is obtained, but the pore size is 100~1Iooh, and the porous layer The thickness increases with the electrolysis time and current density, and can reach several 700 μm depending on the conditions.

一方、これらの多孔質層をアルミニウム母体からハク熱
させるためには酸性液中へ同多孔体を浸漬するのみでも
よいが、簡単には多孔質膜を作成した処理洛中で同多孔
質体何アルミニウムを陰極とし、別に鉛、黒鉛、鉄など
の陽極を準備し、両極間で電解操作することで実現でき
る。すなわち陰極還元処理を施すことで多孔質薄膜をア
ルミニウム母体からハク熱させることができる。この場
合、浸漬液のPH1′liA度、電流密度が重要でそれ
ぞれ6.0≧PH、浴温度tS〜30°C1電流密度0
.!;−/JA/ dm 2 が望ましい。ここでPH
>t、0ではアルカリにより得られた膜が溶解するおそ
れがあり、/S°C未満の浴温度では膜のハク熱が起こ
りにくく、又ハク熱に長時間を要し、30″Cより高い
浴温度ではハク熱する膜が細片化し、又H2ガスが多量
に発生する失点となる。又電流密度がO’、 3A/c
im 2未満ではハク熱が起こらず/、 SA/dm2
より高いとハク熱する膜が細片化する。
On the other hand, in order to heat these porous layers from the aluminum matrix, it is sufficient to simply immerse the same porous body in an acidic solution, but it is easy to immerse the same porous body in the process used to create the porous membrane. This can be achieved by preparing a separate anode made of lead, graphite, iron, etc., and performing electrolysis between the two electrodes. That is, by performing cathodic reduction treatment, it is possible to heat the porous thin film from the aluminum matrix. In this case, the PH1'liA degree and current density of the immersion liquid are important, each being 6.0 ≧PH, bath temperature tS~30°C1 current density 0
.. ! ;-/JA/dm 2 is desirable. Here PH
> t, 0, there is a risk that the film obtained with alkali will dissolve, and a bath temperature of less than /S °C will hardly cause the film to heat up, and it will take a long time for the film to heat up, and if the temperature is higher than 30"C. At the bath temperature, the heated film becomes fragmented and a large amount of H2 gas is generated, which is a disadvantage.Also, the current density is O', 3A/c.
Haku fever does not occur below im 2/, SA/dm2
If the temperature is higher, the hot film will break into pieces.

このようにして得られた多孔質酸化アルミニウム薄膜は
孔径100〜IIoo7yの孔を無数に有しており、同
薄膜をメソシュ状の担体ではさみ込むことにより、超微
細な濃過能力を有するフィルターを得ることができ、こ
のようなフィルターは塩類溶液の逆浸透膜、ガス分離膜
などに極めて有用である。
The porous aluminum oxide thin film obtained in this way has countless pores with a pore diameter of 100 to IIoo7y, and by sandwiching the same thin film between mesoche-like carriers, a filter with ultrafine concentration ability can be created. Such a filter is extremely useful for reverse osmosis membranes for saline solutions, gas separation membranes, etc.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

e 実施例 寸法!;CmX!;Cm i厚味2m/mのアルミニウ
ム板を濃度10%のNaOH水溶液中へ1分浸漬し、次
いで水洗い後濃度/3%のH,NO3水溶液中へ7分浸
漬し、更にその後水洗い後乾燥した。
e Example dimensions! ;CmX! ; Cm i An aluminum plate with a thickness of 2 m/m was immersed in a 10% concentration NaOH aqueous solution for 1 minute, then washed with water, then immersed in a 3% concentration H, NO3 aqueous solution for 7 minutes, and then washed with water and dried. .

このような前処理を施したアルミニウム板を濃度/S%
の硫酸水溶液中へll54i1として浸漬し、これと向
い合って浸漬している黒鉛板(陰極)との間Km電流密
度、 j、A/dm2 、電圧20(■)の直流電圧を
20分間印加した。この間硫酸水溶液の温度は22°C
に保持した。その後、同じ浴中で今度はアルミニウム板
を陰極、黒鉛板を陽極として直流電圧20vを印加した
。この時の電流密度は7.0A/dm2 であり、浴温
は先と同様、22℃であった。
Concentration/S% of aluminum plate subjected to such pretreatment
A DC voltage of Km current density, j, A/dm2, and voltage of 20 (■) was applied for 20 minutes between this and the graphite plate (cathode) immersed in the sulfuric acid solution for 20 minutes. . During this time, the temperature of the sulfuric acid aqueous solution was 22°C.
was held at Thereafter, in the same bath, a DC voltage of 20 V was applied, using the aluminum plate as a cathode and the graphite plate as an anode. The current density at this time was 7.0 A/dm2, and the bath temperature was 22°C as before.

このような操作を70分間続けたところ、硫酸水溶液中
に半透明な薄片が浮遊しているのが認められた。この薄
片の中から大きさが約j’cmX/Cmのものを硫酸水
溶液から取出し、蒸留水中へ入れゆるく攪拌の後、再度
取出し10メツシーのフルイ上で自然乾燥した。
When this operation was continued for 70 minutes, translucent flakes were observed floating in the sulfuric acid aqueous solution. Among these flakes, those having a size of about j'cmX/Cm were taken out from the sulfuric acid aqueous solution, put into distilled water, and stirred gently, then taken out again and air-dried on a 10 mesh sieve.

この後同薄片を2つに折半し、7つはX線マイクロアナ
ライザーによる定性分析に供した。その結果、薄片が殆
んどAA!203から成っていることが判明した。一方
もう一つの薄片は電子顕微鏡による薄片の表面構造・断
面構造の観察に供した。その結果、表面・断面いずれの
構造も多孔質のスポンジ状構造から成り、孔径はt’o
o−sooX 、N片の厚味は約にμであることが判明
した。
Thereafter, the same thin section was divided into two halves, and seven were subjected to qualitative analysis using an X-ray microanalyzer. As a result, most of the flakes were AA! It turns out that it consists of 203. On the other hand, the other thin section was used for observation of the surface structure and cross-sectional structure of the thin section using an electron microscope. As a result, both the surface and cross-sectional structure consist of a porous sponge-like structure, and the pore size is t'o
The thickness of the o-sooX and N pieces was found to be approximately μ.

発明の効果 本発明によれば、薄膜状の多孔質体をIMf単な方法で
得ることができる。又上記実施例によりあきらかな通り
、本発明により作成した薄膜状多孔質、膜はAI!20
3からなり、多孔質体として使用出来る特性を有する物
である。
Effects of the Invention According to the present invention, a thin film-like porous body can be obtained by a simple IMf method. Furthermore, as is clear from the above examples, the thin film-like porous membrane prepared according to the present invention is AI! 20
3, and has characteristics that allow it to be used as a porous body.

Claims (1)

【特許請求の範囲】[Claims] ・薄板酸化処理によりアルミニウム物体の表面に多孔質
葛酸□ア71.−ウ4層ttJI、ワ、い、5カ、る稜
線多孔質層被覆アルミニウム物体を陰極還元処理して該
多孔質層を母体アルミニウム物体から盆離させることを
特徴とする薄膜状AI!203多孔質体の多孔方体。
・Porous katric acid□A71. - Thin film-like AI characterized by cathodic reduction treatment of an aluminum object coated with a 4-layer ttJI, 5-layer ridgeline porous layer to separate the porous layer from the base aluminum object! 203 Porous parallelepiped of porous body.
JP3214784A 1984-02-22 1984-02-22 Production of thin film-like porous body of al2o3 Pending JPS60177198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3214784A JPS60177198A (en) 1984-02-22 1984-02-22 Production of thin film-like porous body of al2o3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3214784A JPS60177198A (en) 1984-02-22 1984-02-22 Production of thin film-like porous body of al2o3

Publications (1)

Publication Number Publication Date
JPS60177198A true JPS60177198A (en) 1985-09-11

Family

ID=12350788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3214784A Pending JPS60177198A (en) 1984-02-22 1984-02-22 Production of thin film-like porous body of al2o3

Country Status (1)

Country Link
JP (1) JPS60177198A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187320A (en) * 1984-03-07 1985-09-24 Toyo Soda Mfg Co Ltd Gas separation using anodized aluminum film
JPS62185898A (en) * 1986-02-03 1987-08-14 アルカン・インタ−ナシヨナル・リミテツド Porous anodic oxidation aluminum film and its production
US4973435A (en) * 1987-11-03 1990-11-27 Alcan International Limited Method of producing porous membranes of sinterable refractory metal oxides
US5112449A (en) * 1989-03-22 1992-05-12 Alcan International Limited Two phase metal/oxide films
US5218472A (en) * 1989-03-22 1993-06-08 Alcan International Limited Optical interference structures incorporating porous films
JPH0967173A (en) * 1995-08-31 1997-03-11 Univ Tohoku Production of porous alumina tube
US6139713A (en) * 1996-08-26 2000-10-31 Nippon Telegraph And Telephone Corporation Method of manufacturing porous anodized alumina film
KR100502554B1 (en) * 1998-09-03 2005-10-19 한국타이어 주식회사 Manufacturing method of cylindrical separator with improved durability
JP2007070126A (en) * 2005-09-02 2007-03-22 Japan Organo Co Ltd Method for producing filtering membrane for capturing particulate, filtering membrane for capturing particulate, and method for measuring particulate in ultrapure water
JP2011500969A (en) * 2007-10-26 2011-01-06 ユニヴェルシテ ポール サバティエ トゥールーズ トロワ Method for producing a regular porous structure from an aluminum substrate
US8147621B2 (en) * 2002-05-14 2012-04-03 Infineon Technologies Ag Method for producing a metal article intended for at least partially coating with a substance
JP2022530694A (en) * 2019-06-17 2022-06-30 ナノペック, インコーポレイテッド Nanoporous anodized aluminum membrane for healthcare and biotechnology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331883A (en) * 1976-09-06 1978-03-25 Honda Senriyouten Kk Rotary screen apparatus for flat screen printing machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331883A (en) * 1976-09-06 1978-03-25 Honda Senriyouten Kk Rotary screen apparatus for flat screen printing machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187320A (en) * 1984-03-07 1985-09-24 Toyo Soda Mfg Co Ltd Gas separation using anodized aluminum film
JPS62185898A (en) * 1986-02-03 1987-08-14 アルカン・インタ−ナシヨナル・リミテツド Porous anodic oxidation aluminum film and its production
US4973435A (en) * 1987-11-03 1990-11-27 Alcan International Limited Method of producing porous membranes of sinterable refractory metal oxides
US5112449A (en) * 1989-03-22 1992-05-12 Alcan International Limited Two phase metal/oxide films
US5218472A (en) * 1989-03-22 1993-06-08 Alcan International Limited Optical interference structures incorporating porous films
JPH0967173A (en) * 1995-08-31 1997-03-11 Univ Tohoku Production of porous alumina tube
US6139713A (en) * 1996-08-26 2000-10-31 Nippon Telegraph And Telephone Corporation Method of manufacturing porous anodized alumina film
KR100502554B1 (en) * 1998-09-03 2005-10-19 한국타이어 주식회사 Manufacturing method of cylindrical separator with improved durability
US8147621B2 (en) * 2002-05-14 2012-04-03 Infineon Technologies Ag Method for producing a metal article intended for at least partially coating with a substance
JP2007070126A (en) * 2005-09-02 2007-03-22 Japan Organo Co Ltd Method for producing filtering membrane for capturing particulate, filtering membrane for capturing particulate, and method for measuring particulate in ultrapure water
JP2011500969A (en) * 2007-10-26 2011-01-06 ユニヴェルシテ ポール サバティエ トゥールーズ トロワ Method for producing a regular porous structure from an aluminum substrate
JP2022530694A (en) * 2019-06-17 2022-06-30 ナノペック, インコーポレイテッド Nanoporous anodized aluminum membrane for healthcare and biotechnology

Similar Documents

Publication Publication Date Title
JPS60177198A (en) Production of thin film-like porous body of al2o3
US8556088B2 (en) Nanoporous oxide ceramic membranes of tubular and hollow fiber shape and method of making the same
WO2022032730A1 (en) Method for preparing solvent-resistant reverse osmosis composite membrane
CN103551050A (en) Inorganic composite ultra-filtration membrane and preparation method thereof
WO2021008135A1 (en) Conductive organic membrane coupling and filtration system, and method for degrading organic waste water
Luo et al. Fluorine-induced superhydrophilic Ti foam with surface nanocavities for effective oil-in-water emulsion separation
CN109925747B (en) Oil-water separation material capable of controlling super-hydrophobic-super-hydrophilic reversible conversion under ultraviolet illumination
CN103846015B (en) A kind of preparation method of organic and inorganic lamination milipore filter
Inoue et al. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum
CN107617342B (en) Bimetal hydroxide ceramic membrane for seawater desalination and preparation method thereof
CN113230888A (en) Polyethyleneimine modified nanofiltration membrane and preparation method thereof
Tang et al. Electrocoagulation coupled with conductive ceramic membrane filtration for wastewater treatment: Toward membrane modification, characterization, and application
CN110215851B (en) Graphene hollow fiber membrane with carbon nanotube protective layer and preparation method thereof
JPH0637291B2 (en) Double-sided microporous alumina porous membrane and method for producing the same
JPH02149698A (en) Improving method for chemical resistance of anodic oxide film
JPS62129111A (en) Production of film having partial permeability
JPS63248443A (en) Photooxidation catalyst and its production
CN110643999A (en) Preparation method of self-assembled hole sealing protective film
US4717455A (en) Process for manufacturing a microfilter
TWI627316B (en) A method for making a tubular anodic aluminum oxide with nanometer or sub-micron pores
CN112831817B (en) Anatase type biological titanium material and preparation method thereof
EP1357626B1 (en) Process for manufacturing a proton conducting membrane having an alumina matrix
JP2013180263A (en) Porous material
JPH0637290B2 (en) Central microporous alumina porous membrane and method for producing the same
CN109972183A (en) The preparation method of deposit cobalt on a kind of anodic oxidation aluminium formwork