JPS60176998A - Preparation of high-quality crystal of zinc telluride - Google Patents

Preparation of high-quality crystal of zinc telluride

Info

Publication number
JPS60176998A
JPS60176998A JP59029046A JP2904684A JPS60176998A JP S60176998 A JPS60176998 A JP S60176998A JP 59029046 A JP59029046 A JP 59029046A JP 2904684 A JP2904684 A JP 2904684A JP S60176998 A JPS60176998 A JP S60176998A
Authority
JP
Japan
Prior art keywords
zinc telluride
gas
zinc
substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59029046A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
博司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59029046A priority Critical patent/JPS60176998A/en
Publication of JPS60176998A publication Critical patent/JPS60176998A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain high-quality crystal of zinc telluride, by using crystal of zinc telluride or zinc and tellurium as a raw material, blending a carrier gas of gaseous phase growth method with a hydrogen chloride gas, carring out a reaction. CONSTITUTION:Polycrystal of zinc telluride (ZnTe) of a raw material is heated at about 923 deg.C, a mixed gas obtained by blending a hydrogen chloride gas as a reaction gas with hydrogen as a carrier gas is brought into contact with the raw material, and a reaction shown by the equation I occurs on the surface of the raw material. Formed zinc chloride and tellurium are vaporized and evaporated, and the vapor is transported to the surface of a substrate heated at about 750-870 deg.C by the carrier gas. A reaction shown by the equation II occurs on the surface of the substrate, so that crystal of zinc telluride is precipitated and grown on the surface of the substrate.

Description

【発明の詳細な説明】 この発明(J、高品位テルル化亜鉛結晶の製造法に関丈
るものである。
DETAILED DESCRIPTION OF THE INVENTION This invention (J) relates to a method for producing high-grade zinc telluride crystals.

trY−来、テルル化亜鉛結晶の装]仏法は、水素ある
いはアルゴン等の:1−1−リアガス中で、和製テルル
鉛弾1()を加熱薫介させ、同蒸気を低温の基板上に再
結晶させる、いわゆる気(目成長法によるか、あるいは
同キャリアガス中に少足の沃素を反応ガスとして加える
ことによって、テルル化亜鉛の結晶を得ているが、いず
れの場合も、高品位の結晶を得ることができなかった。
trY- Since Zinc Telluride Crystal Mounting] The Buddhist method involves heating and inhaling a Japanese-made tellurium lead bullet 1 () in a 1-1 rear gas such as hydrogen or argon, and reproducing the vapor onto a low-temperature substrate. Zinc telluride crystals are obtained by crystallization using the so-called air growth method or by adding a small amount of iodine as a reaction gas to the same carrier gas, but in either case, high-grade crystals are obtained. I couldn't get it.

同結晶は、半導体素子基板として用いられるものであり
、同結晶の品位を決定するものは、同結晶の物性定数中
の、比抵抗、キトリア密度、電子及び正孔の移動度であ
るが、従来方法では、比抵/l 。
The crystal is used as a semiconductor element substrate, and the quality of the crystal is determined by its physical property constants such as resistivity, chytria density, and mobility of electrons and holes. In the method, specific resistance/l.

抗数ΩCm、キャリア密度10〜iQ、/cm、移動度
100cm2/VS程疫が限度であり充分な品位ではな
かった。
The antiresistance ΩCm, the carrier density 10 to iQ,/cm, and the mobility 100 cm2/VS were the limits, and the quality was not sufficient.

この発明では、テルル化亜鉛結晶又は亜鉛及びテルルを
原料とし、気相成長法の1−ヤリアガスに反応ガスどし
ての塩化水素ガスを混入し、間引化水系ガスによる化学
反応を積極的に利用することにより、高品位テルル化亜
鉛結晶の′JA造法を提供せんとするものである。
In this invention, zinc telluride crystals or zinc and tellurium are used as raw materials, and hydrogen chloride gas as a reaction gas is mixed into the 1-Yaria gas of the vapor phase growth method to actively stimulate the chemical reaction by the thinned water-based gas. By utilizing this method, we aim to provide a 'JA manufacturing method for high-grade zinc telluride crystals.

この発明の実廁例を詳細に説明すれば、原料のテルル化
亜鉛(ZIITe)多結晶体を、約923°Cに加熱す
ると共に、反応ガスとしての塩化水素[ICI’)カス
を、キャリアガスとしての水素(1(−に適宜混入した
混合ガスを、同原料に接触せしめて同厚A’i1人面に
おいで、 ZnT(!+2l−IC1→Z n Clx
 + 1/ 2 T Cx 十Flz の反応を生起1
i l、 メ、カッど」−成した塩鉛弾j’i)(Z 
n Cl、 )及び、デルル(T ej )を気化蒸発
せしめ、同蒸気をキャリアガスにJ−り約7 E50=
 870℃に1采持した基板表面にLll2送し、同表
面において、 ZnCl2+1 、′2 T’e、 −
+ H,−)Zn Te + 24−I CI の反応
により、同基板表面にテルル化亜鉛<7n Te )の
結晶を析出、成長ゼしめるものである。
To explain in detail a practical example of this invention, polycrystalline zinc telluride (ZIITe) as a raw material is heated to about 923°C, and hydrogen chloride [ICI'] scum as a reaction gas is mixed with a carrier gas. A mixed gas mixed with hydrogen (1(-) as
+ 1/2 T Cx + Flz reaction occurs 1
i l, me, kado” - formed salt lead bullet j'i) (Z
n Cl, ) and Deru (T ej ) are vaporized, and the same vapor is used as a carrier gas, about 7 E50=
Lll2 was transferred to the surface of the substrate kept at 870°C, and on the same surface, ZnCl2+1,'2T'e, -
+ H, -) Zn Te + 24-I CI crystals are precipitated and grown on the surface of the substrate.

第1図(J、間管法による製造装置(A)の獄要を示し
ており、左側方が高温、右側方が低温の温度分布を有づ
る炉(1)の内部に、左右両<;):開放状の反[6仏
(2)を、同炉(1)内の高温部から低温部にかりて水
平状態に収納してJ3す、同包(2)7i端内部の高i
品部(3)には、原利く71)のテルル化亜鉛(Zn 
Te )の多結晶体を充填し1= 、UA l’i 1
111 < 5 >を収納し、間管(2)右端の低湿部
(6)には、再結晶の基板となるぺぎテルル化亜鉛(Z
n Te )の結晶を所定の面ブj位でカッ1〜して形
成した基板(7)を収納しており、同基板(7)は、低
温部(6)に収納した石英台く8)上に支持されている
Figure 1 (J) shows the main structure of the manufacturing apparatus (A) using the tube method. Inside the furnace (1), which has a temperature distribution of high temperature on the left side and low temperature on the right side, both the left and right sides are placed. ): The open-shaped container (2) is stored horizontally from the high-temperature part to the low-temperature part in the same furnace (1).
Part (3) contains zinc telluride (Zn
Filled with polycrystals of Te ) 1= , UA l'i 1
Zinc pegytelluride (Z
It houses a substrate (7) formed by cutting a crystal of n Te ) at a predetermined plane angle, and the substrate (7) is placed in a quartz stand (8) housed in a low temperature section (6). supported above.

また、同0(2)左端に毅シブたカス人口〈9)からは
、反応ガスどじでのJn化水素ガス(+」cI)を適宜
混入したキャリアガスどしての水素ガス(H2)を原料
(4)より基板(7)方向に向って吹ぎ込み、原料(/
I)を923°Cに、基板(7)を750〜870℃に
それぞれ保持することにより、原オ・1(/I)のテル
ル化亜鉛を、前記の反応。
In addition, from the dregs population <9) on the left end of the same 0 (2), hydrogen gas (H2) as a carrier gas mixed with Jn hydrogen hydride gas (+'cI) in the reaction gas doji. The raw material (4) is blown toward the substrate (7), and the raw material (/
By maintaining I) at 923°C and substrate (7) at 750 to 870°C, zinc telluride of 1/I was subjected to the above reaction.

気化、析出を経て基板(7)表面に析出、成長させるも
のである。
It is deposited and grown on the surface of the substrate (7) through vaporization and precipitation.

41お、均′j I Iyl及び第2図中<1>は、反
応管(2)の内部温py分布を示しており、原料冊(5
)位置においては、923℃を保持し、同位置1)冒ら
ヰ仮(7)に向って所定の湿度低下率で次第に間管(2
)内部湿度を低下させ、幕板(7)位置において750
〜870℃を保持するように構成している。
41, the average 'j I Iyl and <1> in Figure 2 indicate the internal temperature py distribution of the reaction tube (2).
) position, the temperature was maintained at 923°C, and the temperature was gradually increased at a predetermined humidity reduction rate toward the same position (1) and (7).
) Reduce the internal humidity to 750 at the curtain plate (7) position.
It is configured to maintain a temperature of ~870°C.

イエお、図中(10)は、石英台(8)を介してiユ(
fj、 < 7 >の)品度を・調整づべく Z2 +
すた温度調整装置を示す。
No, (10) in the figure is iyu (
To adjust the quality of fj, <7> Z2 +
The temperature adjustment device is shown.

’t’E il、5、原:(lにLll、金属亜1i)
、及び全屈テルル、を用いることらでき、キトリア密度
には、アルゴン(△r)、ヘリウム040)又は窒素(
N、)等のキi・リアカスを用いることもでき、更に基
板(11、テルル化亜鉛を用いた場合、面方位として、
間管法では(110)面と(111)へ面が、閉ττ法
の場合でIJI (100)面がでれぞれ)白描である
't'E il, 5, original: (Lll in l, metal sub 1i)
, and total diagonal tellurium can be used, and for the chytria density, argon (△r), helium 040) or nitrogen (
It is also possible to use a substrate such as N, ), and furthermore, when using a substrate (11, zinc telluride, the plane orientation is
The (110) plane and (111) plane are white in the case of the inter-tube method, and the IJI (100) plane is white in the case of the closed ττ method.

又、基板には消化ガリウム(GaP)、砒化ガリウ!x
(GFIΔS)、硅素(Si )等ノ結晶体を用いろこ
とができる。
In addition, the substrate is made of digestible gallium (GaP) and gallium arsenide! x
(GFIΔS), silicon (Si 2 ), etc. can be used.

第21;2+ 1j、開’P2法による装3告装置(B
)を示し、原料(11)のアルル鉛弾5イ1(ZnTe
)は、反[トカスの塩化水素<IIC+)カス及び雰囲
気カスの水素(l−12)カス等と其に適宜減圧されて
、富・開状態の反応り、”; (12>内に封入されて
J3す、+L!!’ l:J第1図に示1聞11・法と
同様にして、原(・1(11)のテルル化1TliL;
i (Zn Te )をB!+Jlx(13)とした表
面で析出成長させるものである。
21st; 2+ 1j, 3 notification device (B
), and the raw material (11) Arulu lead bullet 5i1 (ZnTe
) is suitably depressurized with the hydrogen chloride<IIC+) scum of the anti-[tokas] and the hydrogen (l-12) scum of the atmosphere scum, and reacts in a rich/open state. +L!!' l:J In the same way as shown in Figure 1, tellurization of 1 (11) is carried out.
i (Zn Te ) to B! +Jlx(13) is used for precipitation growth on the surface.

なお、同着〈12)内ガス流動(1、層流・拡11シ)
′IIL一対流による。
In addition, same arrival <12) Internal gas flow (1, laminar flow/expanded flow 11)
'IIL-by convection.

また、実施例では反応管を横型どしたが、iff型反応
管を使用してのjFj jj5も可能である。
Further, in the embodiment, the reaction tube was of a horizontal type, but jFj jj5 using an IF type reaction tube is also possible.

本製造方法(二J、るデルル鉛弾S:()結晶の電気面
持1牛ij、 、 t 1−リアカスに混入する」7八
化水素カスのモ、ル分串に依ひしてd3す、同分率が増
入りるほと高品位の結晶が得られるものであり、同化;
朝を10%に設定したときの生長結晶は、比抵抗的15
ΩCnl、 AA・リア密度2 X 10.”/ cm
j、4’3動麿約102 cm2/vs の電気面持1
!1を1!?てa3す、従来方)ノ、に、」;すM I
古されたテルル化亜鉛結晶に比べて優れでa3す、Rに
キトリア密度にa−3いて1ト越してj3す、21’脅
体発光素子祠11として用いるに充分な値である。
This manufacturing method (2J, Deru lead bullet S: () Mixing the electric surface of the crystal into the rear cassette.) Assimilation;
When the morning setting is 10%, the growing crystal has a resistivity of 15
ΩCnl, AA・Rear density 2×10. ”/cm
j, 4'3 motion of approximately 102 cm2/vs electric surface 1
! 1 to 1! ? tea3su, conventional method)ノ,ni,'';suM I
It is superior to old zinc telluride crystals, and has R and chitria density of a-3 and j3, which is sufficient for use as a 21' threatening body light emitting element shrine 11.

<j′Jン、キャリア密度]:J1ドーピングにより増
大可能であるが、(多動(yを下げることなく減少させ
ることはできない・1牛貿のものである。
<j′Jn, carrier density]: It can be increased by J1 doping, but it cannot be decreased without lowering (hyperactivity (y).

この発明によれば、気相成長法の:t: v?リアガス
に、反応ガスとしての泡化水素カスを混入し、泡化4り
永カスの化・う!・反応を債恒的に利用することにJ:
 −J ”l:高量イ1°lのう゛ルル化亜鉛結晶を製
造することがCさ′るという効果がある。
According to this invention, the vapor phase growth method: t: v? By mixing foamed hydrogen scum as a reaction gas into the rear gas, it becomes foamed hydrogen scum for a long time!・J: Regarding the permanent use of reactions:
-J"l: This has the effect of reducing the production of a large amount of 1°l zinc walled crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、不発明にJ、る商品1、°Iデルル化鉛弾1
)結晶の県):5装置セ)“の説明図(聞i′ニイム)
第2図は、し同(閉り1臥〉 (3)゛高湿部 (4)、膣λ゛1 (6):低湿1i1i (7ン:基1,5J 1:’i n’f 出願人 小 川 傅 司イ(、埋入
 松 尾 憲 −()6 第1図 手続宇m正書(方式) 1、事件の表示 昭和59年 特許願 第29046号 2、発明の名称 高品位テルル化亜鉛結晶の製造人法 3、補正をする者 事件との関係 特許出願人 住所 氏名 小川 博司 4、代理人 住 所 〒810福岡市中央区今泉2丁目4番26号6
、補正の対象 明細書中、図面の簡単な説明の欄
Figure 1 shows non-inventive product 1, derulized lead bullet 1.
)Crystal Prefecture):Explanatory Diagram of 5 Devices)
Figure 2 shows the same (closed 1〉〉 (3)゛high humidity part (4), vagina λ゛1 (6): low humidity 1i1i (7n: group 1,5J 1:'i n'f application Person Fuji Ogawa (Embedded Ken Matsuo - () 6 Figure 1 Procedure Um formal text (method) 1. Indication of the case 1982 Patent Application No. 29046 2. Name of the invention High-grade tellurium Zinc Crystal Manufacturers Act 3, Relationship with the Amendment Person Case Patent Applicant Address Name: Hiroshi Ogawa 4, Agent Address: 2-4-26-6 Imaizumi, Chuo-ku, Fukuoka-shi, 810
, a column for a brief explanation of the drawings in the specification subject to amendment

Claims (1)

【特許請求の範囲】[Claims] 1) 雰囲気を高温に保持した高温部(3)に、原料(
/I)たるテルル化亜鉛結晶(ZnTe )又は亜1)
(Zn)及びテルル(Te >を収納するどバに、雰囲
気を低温に保持した低一部(6)に、結晶の核どなるべ
き基板(7)を収納し、塩化水スてカス(+−ICI)
をン昆大したキャリアガスを一高温部(3)から低)品
部(6)に流通せしめること特徴とする高品位テルル化
亜鉛結晶の製)仏法。
1) Raw materials (
/I) Barrel zinc telluride crystal (ZnTe) or zinc oxide 1)
(Zn) and tellurium (Te>), the substrate (7) which is to become the crystal nucleus is stored in the lower part (6) where the atmosphere is kept at a low temperature, and the chloride water scum (+- ICI)
A process for manufacturing high-grade zinc telluride crystals characterized by passing a carrier gas containing a large amount of water from a high temperature part (3) to a low temperature part (6).
JP59029046A 1984-02-17 1984-02-17 Preparation of high-quality crystal of zinc telluride Pending JPS60176998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59029046A JPS60176998A (en) 1984-02-17 1984-02-17 Preparation of high-quality crystal of zinc telluride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59029046A JPS60176998A (en) 1984-02-17 1984-02-17 Preparation of high-quality crystal of zinc telluride

Publications (1)

Publication Number Publication Date
JPS60176998A true JPS60176998A (en) 1985-09-11

Family

ID=12265444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59029046A Pending JPS60176998A (en) 1984-02-17 1984-02-17 Preparation of high-quality crystal of zinc telluride

Country Status (1)

Country Link
JP (1) JPS60176998A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660628A (en) * 1993-08-18 1997-08-26 Mitsubishi Kasei Corp. Method of manufacturing semiconductor epitaxial wafer
CN103950904A (en) * 2014-05-12 2014-07-30 广东先导稀材股份有限公司 Preparation method of zinc telluride
CN105036577A (en) * 2015-07-06 2015-11-11 四川理工学院 Method for improving strength of circulating fluidized bed power station fly ash in cement
CN113307237A (en) * 2021-06-23 2021-08-27 石久光学科技发展(北京)有限公司 Polycrystalline single-phase zinc telluride and preparation method thereof
US11434583B1 (en) * 2018-06-06 2022-09-06 United States Of America As Represented By The Secretary Of The Air Force Optimized Heteropitaxial growth of semiconductors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660628A (en) * 1993-08-18 1997-08-26 Mitsubishi Kasei Corp. Method of manufacturing semiconductor epitaxial wafer
CN103950904A (en) * 2014-05-12 2014-07-30 广东先导稀材股份有限公司 Preparation method of zinc telluride
CN105036577A (en) * 2015-07-06 2015-11-11 四川理工学院 Method for improving strength of circulating fluidized bed power station fly ash in cement
US11434583B1 (en) * 2018-06-06 2022-09-06 United States Of America As Represented By The Secretary Of The Air Force Optimized Heteropitaxial growth of semiconductors
CN113307237A (en) * 2021-06-23 2021-08-27 石久光学科技发展(北京)有限公司 Polycrystalline single-phase zinc telluride and preparation method thereof

Similar Documents

Publication Publication Date Title
Dang et al. Recent progress in the synthesis of hybrid halide perovskite single crystals
Wentorf Jr Diamond growth rates
KR970008332B1 (en) Sublimation growth of silicon carbide single crystals
Lv et al. Microstructure, growth mechanism and anisotropic resistivity of quasi-one-dimensional ZrTe5 crystal
Korenstein et al. Preparation and characterization of the skutterudite-related phases CoGe1. 5S1. 5 and CoGe1. 5Se1. 5
DE1521465B2 (en) METHOD OF MANUFACTURING TEXTURESS POLYCRYSTALLINE SILICON
JPS60176998A (en) Preparation of high-quality crystal of zinc telluride
CN108330543A (en) A kind of N-type SnSe monocrystalline and preparation method thereof
US20160351286A1 (en) Composition and method for making picocrystalline artificial carbon atoms
Palosz et al. Physical vapor transport of cadmium telluride in closed ampoules
Nakayama et al. Kinetics of Thermal Growth of Silicon Dioxide Films in Water Vapor‐Oxygen‐Argon Mixtures
Buck et al. Sublimation growth and x-ray topographic characterization of CdTe single crystals
Tamari et al. Non-seeded growth of large single Pb1− xSnxTe crystals on a quartz surface
Chen et al. Kinetics‐Controlled Interfacial Synthesis of Janus and Patchy Heterostructures Based on Perovskite Nanocrystals
JPH0412096A (en) Method for growing 6h-type and 4h-type silicon carbide single crystal
JPS58161999A (en) Production of gallium arsenide single crystal having semi-insulation characteristic
CN110093591A (en) The preparation method of two-dimentional Transition-metal dichalcogenide material
US3932292A (en) Process for the manufacture of doped silver halides
TW200817542A (en) Single crystal silicon on carbide and method of producing same
JP3520333B2 (en) Growth method of bulk single crystal beta iron silicide crystal from liquid phase
JPS63185898A (en) Highly resistant cdte crystal and preparation thereof
JPH0515677B2 (en)
JPH0411514B2 (en)
Nakazawa et al. Preparation of thin films of greigite, Fe3S4, and its preferred orientation on a sodium chloride crystal
Bowen et al. Growth of wustite (FeO) single crystals by chemical vapor deposition