JPS60173871A - Mis type semiconductor memory device and manufacture thereof - Google Patents

Mis type semiconductor memory device and manufacture thereof

Info

Publication number
JPS60173871A
JPS60173871A JP59029711A JP2971184A JPS60173871A JP S60173871 A JPS60173871 A JP S60173871A JP 59029711 A JP59029711 A JP 59029711A JP 2971184 A JP2971184 A JP 2971184A JP S60173871 A JPS60173871 A JP S60173871A
Authority
JP
Japan
Prior art keywords
groove
memory device
oxide film
etching
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59029711A
Other languages
Japanese (ja)
Inventor
Kunio Nakamura
中村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59029711A priority Critical patent/JPS60173871A/en
Publication of JPS60173871A publication Critical patent/JPS60173871A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS
    • H01L29/945Trench capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase the capacitance without increase in element area by a method wherein a groove is formed inward from the surface of an Si substrate at the capacitor section, provided with branches in the side surface and in the vertical direction, and covered with an insulation film over the inner surface; then, a conductive substance made to fill the groove is made as the electrode of the capacitor section. CONSTITUTION:A field insulation film 2 is formed on the P type Si substrate 1; an Si oxide film 3 is formed over the entire surface; and a groove is formed in the substrate by etching after the oxide film 3 is opened. Next, an oxide film 4 is grown in the groove by oxidation, and the oxide film only at the groove bottom is removed; then, a recess 10 is formed in the direction of the groove side surface by isotropic etching. Oxidation is carried out again, and the groove 11 having projections 10 in the side surface by alternate repetition of anisotropic etching and isotropic etching. The whole surface is coated with polycrystalline doped with an impurity. At this time, the polycrystalline Si is made to penetrate into the recesses of the groove side surface by reducing the pressure during vapor phase growth.

Description

【発明の詳細な説明】 本発明はM I S型半導体記憶装置およびその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an MIS type semiconductor memory device and a manufacturing method thereof.

絶縁ゲート型電界効果トランジスタを用いた記憶装置と
して今日最も広く用いられているものは、−個のトラン
ジスタ及びそれに隣接して設けられた容量とによって構
成されたいわゆるパ1トランジスタ型パ記憶装置である
。本記憶装置に於てはトランジスタのゲートはワード線
に連結され、客足ゲート下に蓄積された電荷の有無が反
転情報に対応する。1トランジスタ記憶装置に於ては電
荷蓄積部の容量C8はC3=εS/lで与えられる。
The most widely used storage device today that uses insulated gate field effect transistors is the so-called 1-transistor type 1-transistor storage device, which is composed of - transistors and a capacitor provided adjacent to them. . In this memory device, the gate of the transistor is connected to a word line, and the presence or absence of charge accumulated under the gate corresponds to inversion information. In a one-transistor memory device, the capacitance C8 of the charge storage section is given by C3=εS/l.

ここでεは絶縁膜の訪電率、Sは電極面積、tは絶縁膜
の厚さである。
Here, ε is the current visiting rate of the insulating film, S is the electrode area, and t is the thickness of the insulating film.

近年、半導体装置の集積化の進展に伴い素子の微細化が
要請されている。lトランジスタ型記憶装置の微細化に
於ては情報判定の容易さ、放射線への耐性を維持するた
めに、C6の値の減少は極力避けなければならない。こ
のため、従来技術に於ては絶縁膜の膜厚を薄くすること
によってC8の低下を抑えていたが、この方法も薄膜化
に伴うピンホール密度の増加、或いは制圧の低下等のた
めに必ずしも充分な方法とは言えなかった。
In recent years, as the integration of semiconductor devices has progressed, there has been a demand for miniaturization of elements. When miniaturizing an l-transistor type memory device, a decrease in the value of C6 must be avoided as much as possible in order to maintain ease of information determination and resistance to radiation. For this reason, in the conventional technology, the decrease in C8 was suppressed by reducing the thickness of the insulating film, but this method also does not always work because of the increase in pinhole density or the decrease in pressure suppression due to the thinning of the film. It was not a sufficient method.

本発明は、半導体基板内に溝を形成し、政情に多数の突
起を形成することによって表面積の増大をはかり、素子
面積の増加を伴わずにC5を増加させる方法を提供する
ものである。本発明に於ては等方性エツチングと異方性
エツチングを組合わせることにより、基板内に多数の突
起を持りた清を形成することができる。
The present invention provides a method of increasing C5 without increasing the device area by increasing the surface area by forming grooves in a semiconductor substrate and forming a large number of protrusions. In the present invention, by combining isotropic etching and anisotropic etching, it is possible to form a substrate having a large number of protrusions within the substrate.

次に、図面を用いて本発明の一実施例について説明する
。本実施例ではnチャネルMへ108トランジスタを用
いた例について説明する。
Next, one embodiment of the present invention will be described using the drawings. In this embodiment, an example in which 108 transistors are used for n-channel M will be explained.

第1図に於てp型シリコン基板1上には既に通常の選択
酸化工程により厚いフィールド絶縁11a2が形成きれ
ている。次に全面にシリコン酸化膜3を気相成長法で被
着し、フォトエツチング工程により開口を形成する。次
に、第2図に示す様に異方性エツチングにより基板内に
溝全形成する1、異方性エツチングとしては例えばCC
l4カスを用いた反応性イオンエツチングが良い。次に
、酸化により溝内に酸化膜4を成長する。
In FIG. 1, a thick field insulator 11a2 has already been formed on a p-type silicon substrate 1 by a normal selective oxidation process. Next, a silicon oxide film 3 is deposited on the entire surface by vapor phase growth, and an opening is formed by a photoetching process. Next, as shown in FIG. 2, the entire groove is formed in the substrate by anisotropic etching.
Reactive ion etching using l4 residue is good. Next, an oxide film 4 is grown in the trench by oxidation.

次に、第3図に示す様に、異方性エツチングにより、溝
底面部のみの酸化膜を除去した後、等方性エツチングを
行い、溝側面方向に窪み1oを形成する。前記異方性エ
ツチングとしては例えばCP’ 4 + Hzガスを用
いた反応性イオンエツチングが、また等方性エツチング
としてはCF4+02ガスを用いたプラズマエツチング
が適当である。次に、再び酸化を行い、異方性エツチン
グと等方性エツチングを交互に繰り返すことにより第4
図に示す様な側面に突起10を持った溝11を形成する
ことができる。
Next, as shown in FIG. 3, after removing the oxide film only on the bottom surface of the trench by anisotropic etching, isotropic etching is performed to form a depression 1o in the direction of the side surface of the trench. For example, reactive ion etching using CP' 4 + Hz gas is suitable as the anisotropic etching, and plasma etching using CF4+02 gas is suitable as the isotropic etching. Next, oxidation is performed again, and anisotropic etching and isotropic etching are repeated alternately to obtain a fourth
A groove 11 having a protrusion 10 on the side surface as shown in the figure can be formed.

次に第5図に示す様に、不純物をドーグした多結晶シリ
コンを全面に被着する。この際、気相成長時の圧力を低
下することにより、多結晶シリコンを溝側面の窪み内ま
で侵入させることができる。
Next, as shown in FIG. 5, polycrystalline silicon doped with impurities is deposited over the entire surface. At this time, by lowering the pressure during vapor phase growth, the polycrystalline silicon can penetrate into the depression on the side surface of the groove.

次にフォトエツチングにより前記多結晶シリコンからな
る容量電極6を容量誘電体膜4,5′上に形体し、同様
に前記多結晶シリコンからなるゲート電極7ゲート絶縁
膜5上に形成し、n型不純物をイオン注入して、ソース
、ドレイン層8(一方はビット線となる)を形成し、全
面を酸化膜で被榎した後コンタクト開口を形成しワード
線電極9を形成して記憶装置を完成できる。
Next, a capacitor electrode 6 made of the polycrystalline silicon is formed on the capacitor dielectric films 4 and 5' by photoetching, and a gate electrode 7 made of the polycrystalline silicon is similarly formed on the gate insulating film 5. Impurity ions are implanted to form source and drain layers 8 (one of which will become a bit line), the entire surface is covered with an oxide film, contact openings are formed, and word line electrodes 9 are formed to complete the memory device. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明の一実施例の製造工程順に説
明するための断面図である。 尚、図に於て、1・°“・・・p型シリコン基板、2・
・・・・・フィールド酸化膜、3・・・・・・シリコン
酸化膜、4・・・パ°シリコン酸化膜(誘電体膜)、5
・・・・・・シリコン酸化膜(ゲート絶縁膜)、5′・
・・・・・シリコン酸化膜(誘電体膜)、6・・・・・
・容童側凱 7・・・・・・ゲート電極、8−=−゛ソ
ース、ドレイン領域、9パ゛°°ワード線電極である。 第1 図 一? 牛2171 第 3 区 // 第4 図 ′。10
FIGS. 1 to 5 are cross-sectional views for explaining the manufacturing process order of an embodiment of the present invention. In the figure, 1.°"...p-type silicon substrate, 2.
...field oxide film, 3... silicon oxide film, 4... silicon oxide film (dielectric film), 5
・・・・・・Silicon oxide film (gate insulating film), 5'・
...Silicon oxide film (dielectric film), 6...
・Yodo side Gai 7...Gate electrode, 8-=-' source, drain region, 9' word line electrode. 1st figure 1? Cow 2171 District 3 // Figure 4'. 10

Claims (2)

【特許請求の範囲】[Claims] (1) シリコン基板上の1個の絶縁ゲート型電界効果
トランジスタおよびそれに隣接して設けられた容量を情
報単位とする記憶装置に於て、容量部のシリコン基板表
面から内部に向って溝を形成し、政情は更に溝側面と垂
直方向に一個或いは複数個の分枝を有し、前記溝内面は
絶縁膜で被接され、前記溝内部は導電性物質で充満され
、前記導電性物質をもって容量部の電極となすことを特
徴としたMIS型半専体記憶装置。
(1) In a memory device whose information unit is one insulated gate field effect transistor on a silicon substrate and a capacitor provided adjacent to it, a groove is formed inward from the surface of the silicon substrate in the capacitive part. However, the groove further has one or more branches in a direction perpendicular to the side surface of the groove, the inner surface of the groove is covered with an insulating film, the inside of the groove is filled with a conductive material, and the conductive material increases the capacitance. An MIS type semi-dedicated storage device characterized by having a central electrode.
(2)−導電型半導体基板上の絶縁ゲート型電界効来ト
ランジスタおよびそれに隣接して設けられた容量を情報
単位とするMIS型半導体記憶装置の製造方法に於て、
前記半導体基板上をマスク材で被覆する工程と、前記マ
スク材の所定部に計j口を設ける工程と、異方性エツチ
ングにより前記開口部周縁から半導体基板表面に垂直方
向に側壁を有する溝を形成する工程と、溝内部をマスク
利で被覆する工程と、異方性エツチングにより溝底部の
前記マスク材のみを除去する工程と、等方性エツチング
により前記溝(1111面に捕みを形成する工程と、再
びマスク材を溝内部に被覆する工程と、異方性エツチン
グにより溝底部のマスク材のみを除去する工程と、等方
性エツチングにより溝側面に江みを設ける工程とを続け
−r <り返すことにより、側面に単−或いは複数個の
窪みを有する溝を形成する工程と、該構内面に絶縁膜を
被着する工程と、該溝内部を導電性物質で充満させる工
程を有することを特徴としたMIS型半導体記憶装置の
製造方法、1
(2) - In a method for manufacturing an MIS semiconductor memory device in which an insulated gate field effect transistor on a conductive semiconductor substrate and a capacitor provided adjacent thereto are used as information units,
A step of covering the semiconductor substrate with a mask material, a step of providing a hole in a predetermined portion of the mask material, and a step of forming a groove having a side wall in a direction perpendicular to the surface of the semiconductor substrate from the periphery of the opening by anisotropic etching. a step of covering the inside of the groove with a masking material; a step of removing only the mask material at the bottom of the groove by anisotropic etching; and a step of forming a trap in the groove (1111 plane) by isotropic etching. This step is followed by the step of again covering the inside of the groove with the mask material, the step of removing only the mask material at the bottom of the groove by anisotropic etching, and the step of providing a recess on the side surface of the groove by isotropic etching. <By repeating the method, the method includes a step of forming a groove having one or more depressions on the side surface, a step of depositing an insulating film on the surface of the structure, and a step of filling the inside of the groove with a conductive material. A method for manufacturing an MIS type semiconductor memory device characterized by the following: 1
JP59029711A 1984-02-20 1984-02-20 Mis type semiconductor memory device and manufacture thereof Pending JPS60173871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59029711A JPS60173871A (en) 1984-02-20 1984-02-20 Mis type semiconductor memory device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59029711A JPS60173871A (en) 1984-02-20 1984-02-20 Mis type semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60173871A true JPS60173871A (en) 1985-09-07

Family

ID=12283690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59029711A Pending JPS60173871A (en) 1984-02-20 1984-02-20 Mis type semiconductor memory device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60173871A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906590A (en) * 1988-05-09 1990-03-06 Mitsubishi Denki Kabushiki Kaisha Method of forming a trench capacitor on a semiconductor substrate
JPH0433377A (en) * 1990-05-30 1992-02-04 Shiyoudenriyoku Kosoku Tsushin Kenkyusho:Kk Manufacture of semiconductor device
US5153813A (en) * 1991-10-31 1992-10-06 International Business Machines Corporation High area capacitor formation using dry etching
US5155657A (en) * 1991-10-31 1992-10-13 International Business Machines Corporation High area capacitor formation using material dependent etching
US9927182B2 (en) 2012-05-22 2018-03-27 Valeo Systemes Thermiques Heat exchanger tube, heat exchanger tube bundle, heat exchanger comprising such a bundle and method for producing a plate of a heat exchanger tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906590A (en) * 1988-05-09 1990-03-06 Mitsubishi Denki Kabushiki Kaisha Method of forming a trench capacitor on a semiconductor substrate
JPH0433377A (en) * 1990-05-30 1992-02-04 Shiyoudenriyoku Kosoku Tsushin Kenkyusho:Kk Manufacture of semiconductor device
US5153813A (en) * 1991-10-31 1992-10-06 International Business Machines Corporation High area capacitor formation using dry etching
US5155657A (en) * 1991-10-31 1992-10-13 International Business Machines Corporation High area capacitor formation using material dependent etching
US9927182B2 (en) 2012-05-22 2018-03-27 Valeo Systemes Thermiques Heat exchanger tube, heat exchanger tube bundle, heat exchanger comprising such a bundle and method for producing a plate of a heat exchanger tube

Similar Documents

Publication Publication Date Title
US5436186A (en) Process for fabricating a stacked capacitor
US4951175A (en) Semiconductor memory device with stacked capacitor structure and the manufacturing method thereof
US5302540A (en) Method of making capacitor
KR900000207B1 (en) Semiconductor memory device with trench surrounding each memory cell
JP2673615B2 (en) Integrated circuit manufacturing method and memory cell
US5449630A (en) Method for fabricating a trench capacitor structure for dynamic random access memory integrated circuit
JP2825245B2 (en) Stacked capacitor DRAM cell and method of manufacturing the same
US5460999A (en) Method for making fin-shaped stack capacitors on DRAM chips
US5429980A (en) Method of forming a stacked capacitor using sidewall spacers and local oxidation
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
JPS6187358A (en) Semiconductor memory and manufacture thereof
KR920010695B1 (en) D-ram cell and its manufacturing method
KR0140044B1 (en) Semiconductor memory device having improved isolation structure among memory cells
JPS61229349A (en) Manufacture of mos capacitor
US5491104A (en) Method for fabricating DRAM cells having fin-type stacked storage capacitors
US5166090A (en) Method for manufacturing a semiconductor random access memory cell
JPH0673368B2 (en) Semiconductor memory device and manufacturing method thereof
JPS60173871A (en) Mis type semiconductor memory device and manufacture thereof
US5449636A (en) Method for the fabrication of DRAM cell having a trench in the field oxide
US5701264A (en) Dynamic random access memory cell having increased capacitance
JPS61274355A (en) Mis type semiconductor memory device
JPH07114262B2 (en) Trench capacitor for integrated circuit memory and method of forming memory cell using the same
JPH0223657A (en) Semiconductor memory device
JPS6249649A (en) Semiconductor device
JPS60113461A (en) Manufacture of semiconductor device