JPS60173361A - Air-fuel ratio controller for internal-combustion engine - Google Patents

Air-fuel ratio controller for internal-combustion engine

Info

Publication number
JPS60173361A
JPS60173361A JP59027992A JP2799284A JPS60173361A JP S60173361 A JPS60173361 A JP S60173361A JP 59027992 A JP59027992 A JP 59027992A JP 2799284 A JP2799284 A JP 2799284A JP S60173361 A JPS60173361 A JP S60173361A
Authority
JP
Japan
Prior art keywords
egr
sensor
fuel ratio
air
lean sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59027992A
Other languages
Japanese (ja)
Inventor
Kenji Kato
健治 加藤
Soichi Matsushita
宗一 松下
Kiyoshi Nakanishi
清 中西
Tokuta Inoue
井上 悳太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59027992A priority Critical patent/JPS60173361A/en
Publication of JPS60173361A publication Critical patent/JPS60173361A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make a required EGR value compensable if a base A/F ratio varies due to change in atmospheric conditions and endurance deterioration whereby it is preventable from misfiring as entered into the misfire range, thus drivability is improved, by controlling the EGR value according to output of a lean sensor. CONSTITUTION:A pressure sensor 3 generating analog voltage commensurate to internal pressure of a suction pipe is installed in a suction passage 2, while a limiting current type lean sensor 8 generating such an electric current as being almost proportioned to oxygen content in exhaust gas is installed as well in an exhaust passage 7. An EGR valve 9 to be driven by an actuator 12 exists in the point midway in an EGR passage 11 which connects the exhaust passage 8 to the suction passage 2. A control circuit 10 processes each output signal out of the pressure sensor 3, the lean sensor 8 and each of turning angle sensors 5 and 6, and simultaneously controls motion in the actuator 12 of the EGR valve 9. That is to say, making full use of a relationship between an output current of the lean sensor 8 and a required valve lift value EGRR, EGR control is carried out with an output current value of the lean sensor 8.

Description

【発明の詳細な説明】 技術分野 本発明は酸素濃度検出器(リーンセンサ)を用いた内燃
機関の空燃比制御装置、特に、排気ガス再循環(EGR
)制御に関する。
Detailed Description of the Invention Technical Field The present invention relates to an air-fuel ratio control device for an internal combustion engine using an oxygen concentration detector (lean sensor), and in particular to an air-fuel ratio control device for an internal combustion engine using an oxygen concentration detector (lean sensor).
) concerning control.

従来技術 EGR制御は、NOx エミッションの低減、燃費の改
善等に大きな効果を有する手段として広く用いられてい
る。従来、EGR量は吸気管負圧、機関の回転速度等を
検出して制御されていた。
Conventional EGR control is widely used as a means that is highly effective in reducing NOx emissions, improving fuel efficiency, and the like. Conventionally, the amount of EGR has been controlled by detecting intake pipe negative pressure, engine rotation speed, etc.

しかしながら、上述の従来形においては、大気条件の変
化、耐久劣化等によってペース空燃比(A/F)が変動
した場合には、EGR制御限界全超えて失火してドライ
バビリティが悪化し、あるいはHCエミッション、燃費
等が悪化するという問題点があった。
However, in the above-mentioned conventional type, if the pace air-fuel ratio (A/F) fluctuates due to changes in atmospheric conditions, durability deterioration, etc., the EGR control limit may be completely exceeded and misfire may occur, resulting in poor drivability or HC. There was a problem that emissions, fuel efficiency, etc. deteriorated.

発明の目的 本発明の目的は、上述の従来形における問題点に鑑み、
リーンセンサの出力にょシ要求EGR量を演算してEG
R制御を行い大気条件の変化、耐久劣化によってベース
A/F’が変化しまた場合にはリーンセンサ出力によ、
!1)EGR:it’に補正することによ、D、EGR
制御限界を超えて失火するの全防止してドライバビリテ
ィを向上せしめ、また、HCエミノシコン、燃費等を向
上せしめることにある。
Purpose of the Invention The purpose of the present invention is to solve the problems of the conventional type described above.
EG by calculating the lean sensor output and required EGR amount.
If the base A/F' changes due to changes in atmospheric conditions, durability deterioration, or lean sensor output,
! 1) EGR: By correcting it', D, EGR
The objective is to improve drivability by completely preventing misfires that exceed the control limit, and to improve HC emission control and fuel efficiency.

発明の構成 上述の目的全達成するための本発明の構#、は第1図に
示される。第1図において、EGR実行判別手段は内燃
機関の所定運転状態・ぐラメータに応じて排気ガス再循
環(EGR)実行条件か否か全判別し、リーンセンサは
機関の排気通路中に設けられ機関の空燃比を検出して空
燃比信号を発生する。この結果、EGR実行条件のとき
に空燃比信号に応じて要求EGR蛍演算演算手段求EG
R量”を演算し、そして、EGR弁′#811 ?m手
段は演算された要求EGRiに応じてEGR制御弁を制
御する。
Structure of the Invention The structure of the present invention for achieving all of the above objects is shown in FIG. In FIG. 1, the EGR execution determination means determines whether or not the exhaust gas recirculation (EGR) execution condition is reached according to the predetermined operating state and parameters of the internal combustion engine, and the lean sensor is installed in the exhaust passage of the engine. detects the air-fuel ratio of the air-fuel ratio and generates an air-fuel ratio signal. As a result, when the EGR execution condition is met, the request EGR calculation calculation means request EG according to the air-fuel ratio signal.
Then, the EGR valve '#811?m means controls the EGR control valve according to the calculated request EGRi.

実施例 第2図以降の図面全参照して本発明の詳細な説明する。Example The present invention will be described in detail with reference to all the drawings from FIG. 2 onwards.

第2図は本発明に係る内燃機関の空燃比制御装置の一実
施例を示す全体概要図である。第2図において、機関本
体lの吸気通路2には吸気管内圧P全計測するための圧
力センサ3が設けられている。圧力センサ3はたとえば
PZT (圧電凛子により構成され、吸気管内圧Pに応
じたアナログ電圧を発生する。
FIG. 2 is an overall schematic diagram showing an embodiment of an air-fuel ratio control device for an internal combustion engine according to the present invention. In FIG. 2, a pressure sensor 3 for measuring the total intake pipe internal pressure P is provided in an intake passage 2 of an engine body l. The pressure sensor 3 is composed of, for example, a PZT (piezoelectric sensor), and generates an analog voltage according to the intake pipe internal pressure P.

ディストIJピユータ4には、その軸がたとえばクラン
ク角に換算して3600.30°回転する毎に角度位置
信号を発生する2つの回転角センサ5,6が設けられて
いる。回転角センサ5,6の角度位置イム号は、燃料噴
射時間演算ルーチンの割込み要求信号、点火時期の基準
タイミング信号、点火時期演算ルーチンの割込み要求信
号等として作用する。
The Dist IJ computer 4 is provided with two rotation angle sensors 5 and 6 that generate an angular position signal every time its shaft rotates, for example, by 3600.30 degrees in terms of crank angle. The angular position im of the rotation angle sensors 5 and 6 acts as an interrupt request signal for the fuel injection time calculation routine, a reference timing signal for ignition timing, an interrupt request signal for the ignition timing calculation routine, and the like.

機関の排気通路7には空燃比検出用のリーンセンサ8が
設けられている。リーンセンサ8はたとえば限界電流式
の酸素濃度センサであって、排気ガス中の酸素濃度にほ
ぼ比例した電流を発生する。
A lean sensor 8 for detecting an air-fuel ratio is provided in the exhaust passage 7 of the engine. The lean sensor 8 is, for example, a limiting current type oxygen concentration sensor, and generates a current approximately proportional to the oxygen concentration in the exhaust gas.

9は排気通路7.!:吸気通路2とを接続するEGR通
路11の途中に設けられたEGR弁であって、アクチュ
エータ12によって駆動され、アクチュエータ12は制
御回路10たとえばマイクロコンビーータによって制御
される。
9 is an exhaust passage 7. ! : An EGR valve provided in the middle of the EGR passage 11 that connects with the intake passage 2, and is driven by an actuator 12, which is controlled by a control circuit 10, for example, a microconbeater.

ffflJ 排口ti?5 ] 0は圧力センサ3.1
ノーンセンザ8、回転角センサ5,6等の各出力信号を
ティノタル的に処理してEGRGeO2クチュエータ1
2の動作等を制御するものである。
ffflJ outlet ti? 5 ] 0 is pressure sensor 3.1
The output signals of the non-sensor 8, rotation angle sensors 5, 6, etc. are processed in a Tinotal manner to generate the EGRGeO2 actuator 1.
This controls the operations of 2.

第3図は第2図の制御回路10の詳細なブロック回路図
である。第3図において、圧力センサ3の出力信号はマ
ルチプレクサl0IK供給され、リーンセンサ8の出力
信号は電流/電圧変換回路102によって電圧に変換さ
れた後にマルチプレクサ101に供給される。従って、
A/D変換器103HCPU107によって選択制御さ
れたマルチプレクサ1.01を介して送込まれた圧力セ
ンザ3、リーンセンサ8のアナログ出方信号をクロック
発生回路108のクロック信もCLK’を用いてA/D
変換し、A/D変換終了後に割込み信号をCPUI 0
7に送出する。この結果、割込みルーチンにおいて、圧
力センサ3、リーンセンサ8の最新データは取込才れて
RAM109の所定領域に格納されることになる。
FIG. 3 is a detailed block circuit diagram of the control circuit 10 of FIG. In FIG. 3, the output signal of the pressure sensor 3 is supplied to a multiplexer 10IK, and the output signal of the lean sensor 8 is supplied to a multiplexer 101 after being converted into a voltage by a current/voltage conversion circuit 102. Therefore,
The analog output signals of the pressure sensor 3 and the lean sensor 8 sent through the multiplexer 1.01 selectively controlled by the A/D converter 103 and the HCPU 107 are converted into A/D converter 103 using CLK' as the clock signal of the clock generation circuit 108. D
After converting the A/D conversion, send the interrupt signal to CPUI 0.
Send on 7. As a result, in the interrupt routine, the latest data of the pressure sensor 3 and the lean sensor 8 are taken in and stored in a predetermined area of the RAM 109.

回転角センサ5,6の各パルス信号は割込み要求信号お
よび基準タイミング信号全発生するためのタイミング発
生回路104に供給されている。
Each pulse signal from the rotation angle sensors 5 and 6 is supplied to a timing generation circuit 104 for generating both an interrupt request signal and a reference timing signal.

タイミング発生回路104i、l−タイミングカウンタ
を有し、このタイミングカウンタは回転角センサ6の3
0°CA毎のパルス信号によって歩進され、回転角セン
サ5の3600CA毎のパルス信号によってリセットさ
れる。さらに、回転角センサ5のパルス信号は回転速度
形成回路105を介して入力インターフェイス106の
所定位鮫に供給される。回転速度形成回路105は、3
0″′CA毎に開閉制御されるゲート、およびこのゲー
トを通過するクロック発生回路108のクロック信号C
LKの・ぐルス数を計数するカウンタがら構成され、従
って、機関の回転速度に正比例した2進信号が形成され
ることになる。
The timing generation circuit 104i has an l-timing counter, and this timing counter is connected to the third rotation angle sensor 6.
It is stepped by a pulse signal every 0° CA and reset by a pulse signal every 3600 CA from the rotation angle sensor 5. Further, the pulse signal of the rotation angle sensor 5 is supplied to a predetermined position of the input interface 106 via the rotation speed forming circuit 105. The rotation speed forming circuit 105 has 3
A gate that is controlled to open and close every 0'''CA, and a clock signal C of the clock generation circuit 108 that passes through this gate.
It consists of a counter that counts the number of pulses of LK, thus forming a binary signal that is directly proportional to the rotational speed of the engine.

ROM11.0には、メインルーチン、EG)尤制御用
割込みルーチン等のプログラム、これらの処理に必要な
種々の固定データ、定数等が予め格納されている。
The ROM 11.0 stores in advance programs such as a main routine, an interrupt routine for control (EG), and various fixed data and constants necessary for these processes.

CPUI 07は、後述の第6図に示すE G R?l
i制御用割込みルーチンにおいて、E(、R制XI弁9
が演算された要求リフhfikを得るようVζ出方イン
ク−7エイス111を介して駆動回路]12を動作させ
、アクチーエータ12を駆動させる。
The CPU 07 performs EGR? shown in FIG. 6 below. l
In the i control interrupt routine, E(, R control XI valve 9
The drive circuit 12 is operated via the Vζ output ink-7 ace 111 to obtain the calculated request ref hfik, and the actuator 12 is driven.

第2図の匍J御回路10の回路動作を812明する。The circuit operation of the 匍J control circuit 10 shown in FIG. 2 will be explained at 812.

始めに、第・1図(A)〜aを用いて要求弁リフト量に
ついて説明する。第4図(イ)に示すように、要求EG
Rfi)は、NOx エミッション低減、燃費の同士の
ためにできるだけ多い方がよいが、E Q RJJが多
送き゛ると失火するので、斜−線で示す失火域の限界よ
りや5少な目に設定しである。ところで、E G R量
はE G I(制御弁9の弁リフト量と第4図(B+ 
K示す関(¥にあり、また、ベースA/F’はり一ンセ
ンサ8の出力電流IRと第4図(C)に示す関係、にあ
るので、第4図(至)、 CB) 、 C)から、リー
ンセンサ8の出力電流IRと要求EGR童に相当する要
求弁リフト量EGRRとは第4図υンに示す関係にある
3、従って、第4図(4)におけるベースA/Fと要求
E G R量との関係は、第4図■)におけるIJ−ン
センサ8の出力電流IRと要求弁リフト量EGRRとの
関係に置換できる。っ1す、本発明は、このような1ト
ツセンサ8の出力電流IRと要求弁リフト量EGRR(
要求EGR量)との関係を利用して、リーンセンサ8の
出力電流11t(直によりEGR制御全行うものである
First, the required valve lift amount will be explained using FIGS. 1(A) to 1(a). As shown in Figure 4 (a), the request EG
Rfi) should be as large as possible in order to reduce NOx emissions and improve fuel efficiency, but if EQ RJJ is fed too much, misfire will occur, so it should be set 5 times less than the limit of the misfire range shown by the diagonal line. . By the way, the EGR amount is EGI (valve lift amount of control valve 9 and Fig. 4 (B+
Since the relationship shown in Fig. 4 (C) with the output current IR of the base A/F' beam sensor 8 is as shown in Fig. 4 (to), CB), C) Therefore, the output current IR of the lean sensor 8 and the required valve lift amount EGRR corresponding to the required EGR value have the relationship shown in FIG. The relationship with the EGR amount can be replaced with the relationship between the output current IR of the IJ-sensor 8 and the required valve lift amount EGRR in FIG. 1st, the present invention is based on the output current IR of such a one-totsu sensor 8 and the required valve lift amount EGRR(
All EGR control is performed directly using the output current 11t of the lean sensor 8 (required EGR amount).

第5図のフローチャー ト(−メインルーチンの一部で
ある。ステツ7”501では、PIT′iil逢転状1
組パラメータにより E G R実行条件か否かを判別
する。
The flowchart in Fig. 5 (- This is a part of the main routine.
Based on the set of parameters, it is determined whether the EGR execution condition is met.

たとえば、加速運転時、部分負荷運転特待のNOx発生
の多い状態を吸気圧テークP、回転速度テ〜りNa等に
よシ判別する。E G R実行条件であれば、ステップ
;502に進み、す〜ンセンザ8の出力電流値IR全取
込み、ステラ:7”503にで、予めR(lux□に格
納さ八て1次元マノフ’EGIζR=f(IR)を用い
て補間計算して要求弁リフト量E G RRをめる。な
お、EGRR−=f (IR)!は第4図0)に相当す
る。他方、ステップ501にてE G R実行条件でな
ければ、ステップ504にて、E G RR丘・0とす
る。つ壕シ、E G R制御を行わないようK E G
 RRをリセットする。
For example, during acceleration operation, a state in which a large amount of NOx is generated during partial load operation is determined based on intake pressure take P, rotational speed take Na, etc. If it is the EGR execution condition, proceed to step 502, capture the entire output current value IR of the sensor 8, enter the Stellar 7" in 503, store it in R (lux =f(IR) is used for interpolation calculation to determine the required valve lift amount E If it is not the G R execution condition, the E G R hill is set to 0 in step 504.
Reset RR.

第5図のフローチャートにて演舞された俊禾弁υフト量
EGR,は第6図のフローチャートによって用いられる
。すなわち、ステツf601が所定クランク角もしく1
lSl:所定時間毎にスタートし、ステ/プロ02にて
、要求弁リフト量EGRRになるようにCPUI 07
は駆動回路112を動作させてアクチュエータ12全駆
動きせる。そして、ステラf603により第6図のルー
チンは終了する。
The valve shift EGR performed in the flowchart of FIG. 5 is used in the flowchart of FIG. That is, the step f601 is set to a predetermined crank angle or 1
lSl: Starts at predetermined time intervals, and at Step/Pro 02, CPUI 07 is set so that the required valve lift amount EGRR is reached.
The drive circuit 112 is operated to fully drive the actuator 12. Then, the routine of FIG. 6 ends with Stella f603.

発明の詳細 な説明しまたように本発明によれば、リーンセンサの出
力に応じて要求弁リフト量要求EGR量全制御している
ので、大気条件の変化、耐久劣化によってベースA/F
が変化したときには要求EGR量を補正でき、従って、
失火域に入って失火することを防止でき、ドライバビI
ノテイ全向上できる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, the required valve lift amount and the required EGR amount are fully controlled according to the output of the lean sensor, so that the base A/F may change due to changes in atmospheric conditions or durability deterioration.
The required EGR amount can be corrected when the
It can prevent misfires from entering the misfire area, and
You can completely improve your notes.

また、同時に、1−JCエミッション、燃費等をも向上
できる。
At the same time, 1-JC emissions, fuel efficiency, etc. can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための全体ブロック図
、第2図は本発明に係る内燃機関の空燃比制御装置の一
実施例を示す全体概要図、第3図は第2図の制御回路1
0の詳細なブロック回路図、第4図(イ)〜■)は本発
明の詳細な説明するものであって、第4図(3)は要求
EGR童特性を示すグラフ、第4図03)は弁リフト量
対E G R量特性を示すグラフ 、 第4 図C)V
i ヘースA/F対リーンセンサ出力特性を示すグラフ
、第4図■)はリーンセンサ出力対要求弁リフト量特性
を示すグラフ、第5図、第6図は第2図の制御回路10
の動作を説明するためのフローチャートである。 1・・・機関本体、3・・・圧力センサ、5,6・・・
回転角センサ、8・・・リーンセンサ、9・・・E G
 R%it制御弁、12・・・アクチュエータ。 特許出願人 トヨタ自動足株式会社 @許出願代理人 弁理士 青 木 朗 弁理士 西 舘 和 之 弁理士 松 下 操 弁理士 山 口 昭 之 弁理士 西 山 雅 也 第4図(A) 第4図(B) 弁リフト量 第4図(C) 第4図(D) リーンセンサ出力1日
FIG. 1 is an overall block diagram for explaining the present invention in detail, FIG. 2 is an overall schematic diagram showing an embodiment of the air-fuel ratio control device for an internal combustion engine according to the present invention, and FIG. 3 is the same as that shown in FIG. Control circuit 1
The detailed block circuit diagram of FIG. 4 (a) to (■) of FIG. 0 is a detailed explanation of the present invention, and FIG. is a graph showing the valve lift amount vs. EGR amount characteristics, Fig. 4 C) V
i HAS A graph showing A/F vs. lean sensor output characteristics, Figure 4 ■) is a graph showing lean sensor output vs. requested valve lift amount characteristics, Figures 5 and 6 are the control circuit 10 of Figure 2.
3 is a flowchart for explaining the operation of FIG. 1... Engine body, 3... Pressure sensor, 5, 6...
Rotation angle sensor, 8... Lean sensor, 9... E G
R%it control valve, 12...actuator. Patent Applicant: Toyota Automobiles Co., Ltd. Patent Attorney: Akira Aoki, Patent Attorney, Kazuyuki Nishidate, Patent Attorney, Masao Matsushita, Patent Attorney, Akira Yamaguchi, Patent Attorney, Masaya Nishiyama Figure 4 (A) Figure 4 (B) Valve lift amount Fig. 4 (C) Fig. 4 (D) Lean sensor output 1 day

Claims (1)

【特許請求の範囲】[Claims] 1、 内燃機関の所定運転状態ノ9ラメータに応じて排
気ガス再循環(EGR)実行条件か否かを判別するEG
R実行判別手段、前記機関の排気通路中に設けられ該機
関の空燃比を検出して空燃比信号を発生するリーンセン
サ、前記EGR実行条件のときに前記空燃比信号に応じ
て要求EGR量を演算する要求EGR量演算演算手段よ
び、該演算された要求EGR量に応じてEGR制御弁を
制御するEGR弁制御手段を具備する内燃機関の空燃比
制御装置。
1. EG that determines whether or not exhaust gas recirculation (EGR) execution conditions are met in accordance with nine parameters of the predetermined operating state of the internal combustion engine.
R execution determination means; a lean sensor provided in the exhaust passage of the engine to detect the air-fuel ratio of the engine and generate an air-fuel ratio signal; and a lean sensor that detects the air-fuel ratio of the engine and generates an air-fuel ratio signal; An air-fuel ratio control device for an internal combustion engine, comprising a required EGR amount calculating means for calculating a required EGR amount, and an EGR valve control means for controlling an EGR control valve according to the calculated required EGR amount.
JP59027992A 1984-02-18 1984-02-18 Air-fuel ratio controller for internal-combustion engine Pending JPS60173361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027992A JPS60173361A (en) 1984-02-18 1984-02-18 Air-fuel ratio controller for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027992A JPS60173361A (en) 1984-02-18 1984-02-18 Air-fuel ratio controller for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60173361A true JPS60173361A (en) 1985-09-06

Family

ID=12236314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027992A Pending JPS60173361A (en) 1984-02-18 1984-02-18 Air-fuel ratio controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60173361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361745A (en) * 1992-07-21 1994-11-08 Nissan Motor Co., Ltd. Combustion state control apparatus for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361745A (en) * 1992-07-21 1994-11-08 Nissan Motor Co., Ltd. Combustion state control apparatus for internal combustion engine

Similar Documents

Publication Publication Date Title
KR920004491B1 (en) Engine controller
JP2825710B2 (en) Engine control device
JP2826601B2 (en) Fuel blend rate detection method
JPH0745840B2 (en) Air-fuel ratio atmospheric pressure correction method for internal combustion engine
JPS6319696B2 (en)
JPS58172433A (en) Electronic controlled fuel injection valve
JPS60173361A (en) Air-fuel ratio controller for internal-combustion engine
JPH0118253B2 (en)
JPH0119057B2 (en)
JP2570417B2 (en) EGR rate detecting device for internal combustion engine
JPS593136A (en) Learning control of air-fuel ratio of internal-combustion engine
JP2916804B2 (en) Air-fuel ratio control device for internal combustion engine
JPH05118246A (en) Control device for internal combustion engine
JP2571214B2 (en) Air-fuel ratio control method for multi-fuel internal combustion engine
JP2001003775A (en) Egr control device for engine
JPH0615832B2 (en) Air-fuel ratio controller
JP2518250B2 (en) Electronically controlled fuel injection device
JPS6410659B2 (en)
JPS5941013B2 (en) Mixture concentration correction method for internal combustion engines
JP2500946Y2 (en) Electronically controlled fuel supply system for internal combustion engine
JP2611272B2 (en) Fuel injection amount control device for internal combustion engine
JP4293939B2 (en) Control method for internal combustion engine
JPS6059415B2 (en) Air-fuel ratio control method for internal combustion engine
JPS61123734A (en) Air-fuel ratio controller
JPS61101639A (en) Air-fuel ratio controlling method for internal combustion engine