JPS60170098A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS60170098A
JPS60170098A JP59024581A JP2458184A JPS60170098A JP S60170098 A JPS60170098 A JP S60170098A JP 59024581 A JP59024581 A JP 59024581A JP 2458184 A JP2458184 A JP 2458184A JP S60170098 A JPS60170098 A JP S60170098A
Authority
JP
Japan
Prior art keywords
transistor
voltage
output terminal
terminal
signal output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59024581A
Other languages
Japanese (ja)
Inventor
Masamichi Asano
正通 浅野
Hiroshi Iwahashi
岩橋 弘
Masaki Momotomi
正樹 百冨
Eishin Minagawa
皆川 英信
Kazuto Suzuki
和人 鈴木
Akira Narita
晃 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tosbac Computer System Co Ltd
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Tosbac Computer System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp, Tosbac Computer System Co Ltd filed Critical Toshiba Corp
Priority to JP59024581A priority Critical patent/JPS60170098A/en
Priority to DE8484109957T priority patent/DE3481668D1/en
Priority to EP19840109957 priority patent/EP0137245B1/en
Priority to US06/645,392 priority patent/US4697101A/en
Publication of JPS60170098A publication Critical patent/JPS60170098A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits

Landscapes

  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To output selectively a booster voltage without leakage of a current by providing the 1st switching circuit which is controlled by a signal output, switches from a booster voltage to a supply one, and vice versa, and output them, and the 2nd switching circuit which is controlled by the different booster voltage between a signal output terminal and an output terminal of the 1st switching circuit. CONSTITUTION:At the time of booster action such as writing and erasing, a booster voltage is outputted to voltage terminals Ha and Hb, a signal R/W becomes ''0'' level, and a booster voltage system at the power source VC side of a decoder circuit 10 and that at the C side of a signal output terminal can independently act in terms of potential. When an output of the decoder 10 is ''1'', for instance, 5V, ''1'' is outputted to the signal output terminal C. Since an output D of an invertor I becomes ''0'', a transistor 11 turns on as soon as a transistor 12 turns off, and a booster voltage of the terminal Ha is outputted to the signal output terminal C through transistors 11, 13 and 14. Under this condition, a gate of a transistor 7 is zero V, and a source (output of the decoder 10) is, for instance, 5V, and if the threshold level of the transistor 7 is over -5V, it is cut off.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はMOS )ランジスタで構成する場合に適した
半導体集積回路に関するもので、特に電気的に誉き込み
、消去可能な例えば不揮発性半導体メモリ(’E2FR
OM )のデコーダ回路等に使用するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit suitable for being configured with MOS (MOS) transistors, and particularly relates to a semiconductor integrated circuit that is electrically programmable and erasable, such as a non-volatile semiconductor memory (MOS) transistor. 'E2FR
It is used in decoder circuits, etc. of OM).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近、浮遊r−)構造をもち電気的に記憶データを消去
したシ書き込んだシする不揮発性半導体メモリが、従来
の浮遊ダート構造をもつ紫外線消去型の不揮発性半導体
メモリに代わって普及しだしてきた。このようなものは
、薄い酸化膜(例えば100〜200 X )を通して
ファウラー・ノルドハイムのトンネル効果で浮遊ダート
に゛電子を注入したシ、放出したシする。従ってこの時
、電流はほとんど消費されない。そのため内部に昇圧回
路を設け、この昇圧電圧によってデータを書いたシ消し
たシする。よって外部からは、例えば5Vの電源のみを
供給すれば済むので、使用者から見れば非常に使い易い
Recently, non-volatile semiconductor memory with a floating r-) structure in which stored data is electrically erased and written has become popular, replacing the conventional ultraviolet-erasable non-volatile semiconductor memory with a floating dart structure. Ta. In such a device, electrons are injected and released into floating darts through a thin oxide film (for example, 100 to 200×) by the Fowler-Nordheim tunneling effect. Therefore, at this time, almost no current is consumed. Therefore, a booster circuit is provided internally, and data is written and erased using this boosted voltage. Therefore, since it is only necessary to supply power of, for example, 5V from the outside, it is very easy to use from the user's perspective.

上記のようなメモリセルの一例を第1図(a)〜(d)
に示す。第1図(、)は平面図であり、同図(a)のb
−b、c−c、d−d線にそれぞれ沿う断面図を同図(
b) 、 (c) 、 (d)に示す。これは、コント
ロールゲート1に高電圧を印加し、浮遊ダート2との容
量結合によシ浮遊ゲート2の電位を上昇させ、第1図(
d)に示した薄い酸化膜3から電子を浮遊ff−ト2に
注入する。また電子を放出するときは、コントロールゲ
ート1を零■にし、ドレイン4に高電圧を印加し、薄い
酸化膜3を通して浮遊ゲート2からドレイン4に電子を
放出する。従って電子が注入されている時は、コントロ
ールダート1に例えば5vを印加しても、等測的にメモ
リセルのしきい値が胃くなっているためオンせず、電子
が放出されている時は導通状態になり、これによシメモ
リセルに°°0#。
An example of the above memory cell is shown in FIGS. 1(a) to (d).
Shown below. Figure 1 (,) is a plan view, and b in Figure 1 (a).
-b, c-c, and dd lines, respectively, are shown in the same figure (
Shown in b), (c), and (d). This is done by applying a high voltage to the control gate 1 and increasing the potential of the floating gate 2 through capacitive coupling with the floating dart 2, as shown in Figure 1 (
Electrons are injected into the floating ff-toad 2 from the thin oxide film 3 shown in d). Further, when emitting electrons, the control gate 1 is set to zero, a high voltage is applied to the drain 4, and electrons are emitted from the floating gate 2 to the drain 4 through the thin oxide film 3. Therefore, when electrons are being injected, even if you apply, for example, 5V to the control dart 1, it will not turn on because the threshold of the memory cell is isometrically low, and electrons will be emitted. becomes conductive, which causes the memory cell to become conductive.

′1″を記憶する。図中5&まソース、6は半導体基板
である。
'1'' is memorized. In the figure, 5 & ma sources and 6 are semiconductor substrates.

ところでメモリセルは、行及び列方向にマトリクス状に
配列されているため、選択されたメモリセルにデータを
書き込む必要から、選択的にコントロールダート或いは
ドレインに高電圧を印加する必要艇ある。しかるに内部
に昇圧回路を用いたものでは、電源電圧例えば5vから
昇圧電圧を得なければならない。このような昇圧回路の
一例を第2図に示す。この回路はクロックパルスφ1 
、φ2 、コンチン?C1#・・・。
By the way, since memory cells are arranged in a matrix in the row and column directions, it is necessary to selectively apply a high voltage to the control gate or drain in order to write data to a selected memory cell. However, in the case where a booster circuit is used internally, the boosted voltage must be obtained from the power supply voltage, for example, 5V. An example of such a booster circuit is shown in FIG. This circuit uses clock pulse φ1
, φ2, Contin? C1#...

トランジスタTI yTzt・・・の回路で電源電圧V
Cから昇圧するもので、このように電源電圧VC=5V
から昇圧すると、その出力Hでの昇圧電圧の電流供給能
力は非常に小さい。よって選択的に高電圧を供給すると
き非選択になるもの即ちコントロールダートがn O#
レベルのものに関しては昇圧回路からの電流流出をなく
し、また選択されたものに関しては昇圧電圧を出力する
必要があるため、このような回路には特別な工夫が必要
である。
The power supply voltage V in the circuit of transistor TI yTzt...
It boosts the voltage from C, and in this way the power supply voltage VC = 5V
When the voltage is boosted from 1, the current supply capability of the boosted voltage at the output H is very small. Therefore, when selectively supplying a high voltage, the one that becomes unselected, that is, the control dart, is n O#
Since it is necessary to eliminate the current outflow from the booster circuit in the case of a high voltage booster, and to output a boosted voltage in the case of a selected one, special measures are required for such a circuit.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、昇圧電圧か
らの電流供給を略零にして昇圧レベルも0”レベル(基
準レベル)も出力でき、かつ非昇圧動作時には電源から
の電流供給を零にできる十杵体集積回路を提供しようと
するものである。
The present invention has been made in view of the above circumstances, and can output both the boosted level and 0'' level (reference level) by reducing the current supply from the boosted voltage to almost zero, and also allows the current supply from the power supply to be zero during non-boosting operation. The purpose of this project is to provide a ten-dimensional integrated circuit that can be used to

〔発明の概要〕[Summary of the invention]

本発明は、イ、j月出力によって制御され昇圧電圧と電
源電圧を切シ換えて出力する第1のスイッチング回路と
、別の昇圧電圧によって制御される第2のスイッチング
回路とを設け、上記信号出力端と第1のスイッチング回
路の出力端との間に上記第2のスイッチング回路を接続
し、昇圧動作時には上記第2のスイッチング回路を開い
て上記信号出力端の@Ls、”ゞ0#に応じてこの信号
出力端に昇圧電圧または゛′0#レベルを出力し、非昇
圧動作時には上記第2のスイッチング回路を閉じて、上
記信号出力端と第1のスイッチング回路とを分離するよ
うにしたものである。
The present invention is provided with a first switching circuit that is controlled by the monthly outputs and outputs the boosted voltage and the power supply voltage by switching between them, and a second switching circuit that is controlled by another boosted voltage. The second switching circuit is connected between the output terminal and the output terminal of the first switching circuit, and during boost operation, the second switching circuit is opened and the signal output terminal @Ls, "ゞ0#" is connected. Accordingly, a boosted voltage or '0# level is output to this signal output terminal, and during non-boost operation, the second switching circuit is closed to isolate the signal output terminal from the first switching circuit. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の一実施例を説明する。第3
図に示される如くデプレッション型(以下り型と称す)
トランジスタ11及び12のソースは端子Aで共通接続
され、トランジスタ11のドレインは第1の昇圧電圧端
Haに接続され、トランジスタ12のドレインは電源電
圧端VCに接続される。デコーダ回路10がD型トラン
ジスタ7を介して信号出力端Cに接続され、エンハンス
メント型トランジスタ(以下E型と称す)14とD型負
荷トランジスタ13が1端子Aと端子Cとの間に直列接
続される。トランジスタ13のf−)はトランジスタ1
4との接続点Bに接続され、トランジスタ14のダート
は第2の昇圧電圧端Hbに接続される。E型Pチャネル
トランジスタ15とE型Nチャネルトランジスタ16と
で構成されるCMOSインバータ■の入力に信号入力端
Cが接続され、その出力りがトランジスタ12のr−)
K入力される。
An embodiment of the present invention will be described below with reference to the drawings. Third
As shown in the figure, depression type (hereinafter referred to as ``depression type'')
The sources of transistors 11 and 12 are commonly connected at terminal A, the drain of transistor 11 is connected to a first boosted voltage terminal Ha, and the drain of transistor 12 is connected to a power supply voltage terminal VC. A decoder circuit 10 is connected to a signal output terminal C via a D-type transistor 7, and an enhancement-type transistor (hereinafter referred to as E-type) 14 and a D-type load transistor 13 are connected in series between one terminal A and one terminal C. Ru. f-) of transistor 13 is transistor 1
4, and the dart of the transistor 14 is connected to the second boosted voltage terminal Hb. A signal input terminal C is connected to the input of a CMOS inverter (1) consisting of an E-type P-channel transistor 15 and an E-type N-channel transistor 16, and its output is connected to the r-) of the transistor 12.
K is input.

信号入力端Cはトランジスタ11のダートにも接続され
る。トランジスタ7のダートには、読み出し動作時“1
″レベル、書き込み、消去等昇圧動作時には“0″レベ
ルとなる信号R/Wが入力される。トランジスタ1ノ及
び12で第1のスイッチング回路20が構成され、トラ
ンジスタ14が第2のスイッチング回路30となる。
The signal input terminal C is also connected to the gate of the transistor 11. The dirt of transistor 7 has a “1” value during read operation.
A signal R/W that is at the "0" level is input during boosting operations such as writing, erasing, etc. The transistors 1 and 12 constitute the first switching circuit 20, and the transistor 14 constitutes the second switching circuit 30. becomes.

次に第3図の動作を説明する。まず書き込み、消去等の
昇圧動作時は、電圧端H@ r Hbに昇圧電圧(例え
ば25v)が出力され、信号R/Wが10”レベル(例
えば零ボルト)となシ、デコーダ回路10側の電源VC
側(例えば5V)と信号出力端C側の昇圧電圧系とが電
位的にそれぞれ独立に動作できるようになる。ここでデ
コーダ10の出力が1#例えば5■の場合、信号出力端
Cに′1”が出力される。インバータIの出力りが°′
0”となるため、トランジスタ12がオフすると共にト
ランジスタ11がオンし、端子H,Lの昇圧電圧はトラ
ンジスタ11゜13.14を通して信号出力端子Cに出
力される。この状態ではトランジスタ7はダートが零■
で、ソース(デコーダ1θの出力)が例えば5vであシ
、トランジスタ7のしきい値が一5V以上ならばカット
オフしているため、トランジスタ7を通して電流が洩れ
ることはない。
Next, the operation shown in FIG. 3 will be explained. First, during boosting operations such as writing and erasing, a boosted voltage (for example, 25V) is output to the voltage terminal H@rHb, and when the signal R/W is at a 10'' level (for example, 0 volts), the decoder circuit 10 side Power supply VC
The side (for example, 5V) and the boosted voltage system on the signal output terminal C side can operate independently in terms of potential. Here, if the output of the decoder 10 is 1#, for example, 5■, '1' is output to the signal output terminal C. The output of the inverter I is °'
0'', the transistor 12 turns off and the transistor 11 turns on, and the boosted voltage at terminals H and L is output to the signal output terminal C through the transistor 11°13.14.In this state, the transistor 7 is turned off. Zero■
If the source (output of the decoder 1θ) is, for example, 5V, and the threshold value of the transistor 7 is 15V or more, the current is not leaked through the transistor 7 because it is cut off.

デコーダ10の出力が′0#の場合、信号出力端Cが0
#になり、インバータIの出力りが“′l”となるため
、イランジスタ12がオンすると共にトランジスタ11
がオフし、端子Aには略電源電圧VC(例えば5V)が
出力される。
When the output of the decoder 10 is '0#, the signal output terminal C is 0
#, and the output of the inverter I becomes "'l", so the transistor 11 turns on and the transistor 12 turns on.
is turned off, and approximately power supply voltage VC (for example, 5V) is output to terminal A.

トランジスタ11は、ダートが零v1ソースが略5vで
あるのでカットオフするため、トランジスタ11を通し
て電流が洩れることはない。
The transistor 11 is cut off because the voltage V1 is zero and the voltage V1 is approximately 5V, so no current leaks through the transistor 11.

読み出し等の非昇圧動作時には、電圧端iiaが略vC
レベルに、電圧端Hbが′°0#レベルになシ、信号R
/Wは″1″レベルになる。電圧端Hbが零■であるた
め、トランジスタ14がオフし、電圧端Ha及び電源電
圧VCから信号出力端Cへの電流ノ4スは完全に断たれ
るため、デコーダ回路10の出力に応じて信号出力端C
に1”。
During non-boosting operations such as reading, the voltage terminal iia is approximately vC.
level, voltage terminal Hb is not at '°0# level, signal R
/W becomes the "1" level. Since the voltage terminal Hb is zero, the transistor 14 is turned off, and the current from the voltage terminal Ha and the power supply voltage VC to the signal output terminal C is completely cut off. Signal output terminal C
1”.

″0″レベルの出力が得られる。A "0" level output is obtained.

デコーダ回路10を例えば行デコーダとして用いる場合
には、信号出力端Cは行線に対応し、メモリ容量にもよ
るが、百数十個〜数百個のデコーダが必要となるが、読
み出し時には電源電圧VCからの洩れ電流は全くなく、
消費電流を極小に押えることができ、特に0M08回路
のように動作特電流を減らすことを主目的とする回路に
も容易に組み込むことができる。
When the decoder circuit 10 is used as a row decoder, for example, the signal output terminal C corresponds to the row line, and depending on the memory capacity, a hundred or more to several hundred decoders are required. There is no leakage current from voltage VC,
The current consumption can be kept to a minimum, and it can be easily incorporated especially into a circuit whose main purpose is to reduce the operating special current, such as the 0M08 circuit.

なお本発明なま実施例のみに限られず椋々の応用が可能
である。例えばここでは、例としてデコーダ回路を用い
たが、通常のバッファ回路でもかまわない。また昇圧電
圧1(bにデコーダ回路を設けて、例えばHbI −H
b4のように4種類のHbを発生し、その内どれか1つ
のみが選択されて昇圧電圧が出るようにしてやれば、昇
圧動作時でも、非選択なデコーダ回路でVC系のたれ流
れ電流は1/4に減少される。
Note that the present invention is not limited to the raw embodiments, and can be applied in many ways. For example, although a decoder circuit is used here as an example, a normal buffer circuit may also be used. In addition, a decoder circuit is provided at the boosted voltage 1 (b, for example, HbI - H
If four types of Hb are generated like b4, and only one of them is selected to output a boost voltage, even during boost operation, the non-selected decoder circuit will reduce the VC system dripping current. Reduced to 1/4.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、昇圧動作時には洩れ
電流がなく、選択的に昇圧電圧を出力でき、また非昇圧
動作時には電流消費のない半導体集積回路が提供できる
ものである。
As described above, according to the present invention, it is possible to provide a semiconductor integrated circuit which has no leakage current during boosting operation, can selectively output a boosted voltage, and has no current consumption during non-boosting operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来のメモリセルのノ母ターン平面図、
同(b)ないしくd)は同図(a)の断面図、第2図(
a)は従来の昇圧回路図、同図(b)は同図(a)で用
いる信号波形図、第3図は本発明の一実施例を示す回路
図である。 11.12.J4・・・MOS トランジスタ、20゜
30・・・スイッチング回路、HIL+ Hb・・・昇
圧電圧供給端。 出願人代理人 弁理士 鈴 江 武 彦第1図 (a) (b) 償1 図 (c) ロ:コ〜1 223−2 (d) 第2図 (a) (b) 第3図
FIG. 1(a) is a plan view of a main turn of a conventional memory cell;
(b) to d) are cross-sectional views of figure (a), and figure 2 (
3A is a conventional booster circuit diagram, FIG. 3B is a signal waveform diagram used in FIG. 3A, and FIG. 3 is a circuit diagram showing an embodiment of the present invention. 11.12. J4...MOS transistor, 20°30...switching circuit, HIL+Hb...boost voltage supply terminal. Applicant's representative Patent attorney Takehiko Suzue Figure 1 (a) (b) Compensation 1 Figure (c) 223-2 (d) Figure 2 (a) (b) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)電源電圧よシ高い第1の昇圧電圧供給端子及び第
2の昇圧電圧供給端子と、前記第1の昇圧電圧と電源電
圧とを切p換えて出力する第1のスイッチング手段と、
該第1のスイッチング手段の出力端と信号出力端との間
に接続され前記第2の昇圧電圧供給端子を介して制御さ
れる第2のスイッチング手段とを具備したことを特徴と
する半導体集積回路。
(1) a first boosted voltage supply terminal and a second boosted voltage supply terminal higher than the power supply voltage, and a first switching means that switches and outputs the first boosted voltage and the power supply voltage;
A semiconductor integrated circuit comprising: second switching means connected between the output terminal of the first switching means and the signal output terminal and controlled via the second boosted voltage supply terminal. .
(2)前記各スイッチング手段はMOS )ランジスタ
であることを特徴とする特許請求の範囲第1項に記載の
半導体集積回路。
(2) The semiconductor integrated circuit according to claim 1, wherein each of the switching means is a MOS transistor.
(3)前記信号出力端はデコーダ回路の行線であること
を特徴とする特許請求の範囲第1項または第2項記載の
半導体集積回路。
(3) The semiconductor integrated circuit according to claim 1 or 2, wherein the signal output terminal is a row line of a decoder circuit.
JP59024581A 1983-08-30 1984-02-13 Semiconductor integrated circuit Pending JPS60170098A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59024581A JPS60170098A (en) 1984-02-13 1984-02-13 Semiconductor integrated circuit
DE8484109957T DE3481668D1 (en) 1983-08-30 1984-08-21 INTEGRATED SEMICONDUCTOR CIRCUIT.
EP19840109957 EP0137245B1 (en) 1983-08-30 1984-08-21 Semiconductor integrated circuit
US06/645,392 US4697101A (en) 1983-08-30 1984-08-29 Read/write control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024581A JPS60170098A (en) 1984-02-13 1984-02-13 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS60170098A true JPS60170098A (en) 1985-09-03

Family

ID=12142126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024581A Pending JPS60170098A (en) 1983-08-30 1984-02-13 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS60170098A (en)

Similar Documents

Publication Publication Date Title
JP2708333B2 (en) Level shifter circuit
EP0374936B1 (en) Nonvolatile semiconductor memory system
JPH0770230B2 (en) Semiconductor memory
US5848013A (en) Row decoding circuit for semiconductor non-volatile electrically programmable memory and corresponding method
JPH06507039A (en) Non-volatile programmable/erasable interconnect cells
US5546044A (en) Voltage generator circuit providing potentials of opposite polarity
JP2000182387A (en) Non-volatile memory
JPS63188896A (en) Nonvolatile semiconductor memory
JPH0212695A (en) Memory cell and its reading method
KR100296005B1 (en) Semiconductor device
US6603700B2 (en) Non-volatile semiconductor memory device having reduced power requirements
JPH0869693A (en) Static semiconductor storage device
KR19990013295A (en) Semiconductor device with 3V / 5V permissible output driver circuit
JP4284614B2 (en) Ferroelectric memory device
JPS60170098A (en) Semiconductor integrated circuit
US5691944A (en) Non-volatile semiconductor memory device
JPH0527195B2 (en)
KR100355089B1 (en) Power supply circuit
US12014783B2 (en) Driving circuit for non-volatile memory
JP2553290B2 (en) Semiconductor integrated circuit
JPH04228192A (en) Word line driver circuit applying supply voltage and programming voltage to word line of non-volatile storage cell array
JPS6322393B2 (en)
JPS59162694A (en) Semiconductor memory
JPS59127858A (en) Integrated circuit
JPH0740438B2 (en) Semiconductor integrated circuit