JPS60169623A - Cooling device for water-cooled engine - Google Patents

Cooling device for water-cooled engine

Info

Publication number
JPS60169623A
JPS60169623A JP2678284A JP2678284A JPS60169623A JP S60169623 A JPS60169623 A JP S60169623A JP 2678284 A JP2678284 A JP 2678284A JP 2678284 A JP2678284 A JP 2678284A JP S60169623 A JPS60169623 A JP S60169623A
Authority
JP
Japan
Prior art keywords
cooling water
water temperature
temperature
engine
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2678284A
Other languages
Japanese (ja)
Other versions
JPH0581728B2 (en
Inventor
Nobuo Hiramoto
平本 信男
Takeshi Taguchi
田口 武史
Hideki Tominaga
秀樹 富永
Masahiro Nakano
正博 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2678284A priority Critical patent/JPS60169623A/en
Priority to US06/698,531 priority patent/US4616599A/en
Publication of JPS60169623A publication Critical patent/JPS60169623A/en
Publication of JPH0581728B2 publication Critical patent/JPH0581728B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To prevent hunting by reducing the control gain of cooling water circulation when the temperature of flow-in cooling water is low. CONSTITUTION:A closing valve 11 is provided at the outlet 3a of jacket 3 as a regulator for increasing/closing the cooling water flow to the radiator 4 side. A water temperature sensor 13 will detect the cooling water temperature at the engine outlet. Cooling water temperature signal is compared with the target level produced from a setting voltage generating circuit 15 to integrate the results in an integrator 18. Said valve 11 is controlled by said output to reduce the time constant of integrator 17 when the cooling water temperature is low. Consequently, hunting is prevented when the temperature of flow-in cooling water is low.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水冷式エンジンの冷IJJ装侃、特にニンジン
に流入する流入冷却水の温度に応じて適切に冷却制御覆
るようにした冷却装置に関Jる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cooling IJJ system for a water-cooled engine, and particularly to a cooling device that appropriately controls cooling according to the temperature of inflow cooling water flowing into a carrot. Seki Juru.

(従 来 技 術) エンジンの冷却方式としては、低温の冷却水をシリンダ
周囲のウォーターシャグツ1〜に供給すると共に、該シ
リンダを冷却でることによって高温となった冷却水をラ
ジェータに供給し、該ウジュータによって低温に冷却し
た土ぐ1qびウォータージャケットに供給するようにし
た冷却水循環式の方式が広く採用されている。
(Prior art) As an engine cooling method, low-temperature cooling water is supplied to the water shafts 1~ around the cylinder, and cooling water that has become high temperature by cooling the cylinder is supplied to the radiator. A cooling water circulation system in which the soil is cooled to a low temperature by the cooling water tank and is supplied to the water jacket is widely used.

この冷却方式においでは、冷却水の循環通路における1
゛モ の開閉弁を備え、冷却水温に応じて該開閉弁の開度を増
減さけることにより冷却水の循環Φを制御して、エンジ
ン出口部における冷却水温を所定値に保持り−るように
なっているが、このにうな冷却水温の制御においては所
謂応答遅れとハンチングの問題があり、次のような不具
合が生じる。つまリ、応答遅れを少なく覆るためには上
記開閉弁の動作速度を速くし、冷却水湿が所定値より高
い場合に冷却水の循II爵を速かに増加さけるようにす
ればよいが、このようにすると二しンジンに流入する冷
51水の温度が外気温等との関係で低い場合にエンジン
が急激に冷却されて冷7dl水温が所定値以下に大きく
アンターン:J−1−りることになり、これに伴って大
きな振幅のハンチングが生じることになる。また、この
ハンチングを軽減−りる/jめには1.記聞閉弁の動作
速度を遅くづ”ればよいが、そう覆ると制御の応答遅れ
が著しくなっC1冷却水温が高い場合に所定値まで低下
づるのに長時間を要づることになり、そのため例えば]
ニンジンが高負荷状態にあって発熱量が大きい時にエン
ジンがA−バーヒートリ−る危険性が生じる。
In this cooling method, one
The cooling water circulation Φ is controlled by increasing or decreasing the opening degree of the opening/closing valve according to the cooling water temperature, and the cooling water temperature at the engine outlet is maintained at a predetermined value. However, in this type of cooling water temperature control, there are problems of so-called response delay and hunting, resulting in the following problems. In other words, in order to minimize the response delay, the operating speed of the above-mentioned on-off valve should be increased, and when the humidity of the cooling water is higher than a predetermined value, the circulation of the cooling water should be rapidly increased. In this way, if the temperature of the cold 51 water flowing into the second engine is low due to the outside temperature, etc., the engine will be rapidly cooled and the cold 7 dl water temperature will be significantly lowered to below the predetermined value. As a result, large-amplitude hunting occurs. Also, to reduce this hunting, 1. It would be better to slow down the operation speed of the recording/closing valve, but if you do so, the response delay of the control will be significant, and if the C1 cooling water temperature is high, it will take a long time to drop to the predetermined value. ]
When the carrot is under high load and generates a large amount of heat, there is a risk that the engine will overheat.

ところで、水冷式エンジンの冷N1制御に関しては、例
えば特開昭57−168017号公報に開示された発明
がある。これは、冷却水温を一定に制御しでも、」−ン
ジンの発熱量が運転状態によって変化するため、発熱量
の少ない低負荷時等に1ンジンが過冷却の状態となる問
題に着目したもので、冷却系統の冷ムIJ能力を規制り
る流1tj制御弁等の冷却規制装置と、シリンダ壁温度
に相関J8信号を出力するセンタど、このセンタの出力
(5一応じて上記冷却規制装置を駆動する制御回路とを
設け、該制御回路により1−記冷却規制装置を運転状態
に応じて予め設定されたテーブルに基づいて制御し、或
いはシリンダ壁温度を直接検出しC該温度が所定値とな
るように冷却規制装置をノイードバック制御するように
し/j bのである。しかし、この弁明においても、上
記冷却規制装置が作動してから冷却水温ないしシリンダ
壁温が所定1ffi g: v変化りるのに応答遅れが
あって、これを少なくしようとづれば、特に流入冷7J
J水温が低い場合にハンチングが著しくなるという上記
の問題が生じる。
By the way, regarding cold N1 control of a water-cooled engine, there is an invention disclosed in, for example, Japanese Unexamined Patent Publication No. 168017/1983. This focuses on the problem that even if the cooling water temperature is controlled at a constant level, the engine's heat output changes depending on the operating conditions, resulting in one engine becoming overcooled during low load conditions when the heat output is low. , a cooling regulating device such as a flow 1tj control valve that regulates the cold IJ capacity of the cooling system, and a center that outputs a J8 signal correlated to the cylinder wall temperature. A driving control circuit is provided, and the control circuit controls the cooling regulating device described in 1-1 based on a table set in advance according to the operating state, or directly detects the cylinder wall temperature so that the temperature reaches a predetermined value. However, even in this defense, it is assumed that the cooling water temperature or cylinder wall temperature changes by a predetermined 1ffig:v after the cooling regulating device is activated. There is a response delay, and if you want to reduce this, it is especially important to
JThe above-mentioned problem of hunting becoming significant occurs when the water temperature is low.

(発 明 の 目 的) 本発明は、クジュータとつA−ラージ1フケツ1−との
間の冷却水の循環量を調整することにより冷却水温を制
御するようにした冷N1装置にお(プる上記のような問
題に対処するもので、冷却水の循環mを調整層る開閉弁
等の調整装置の動作速度ないし動作量をエンジンに流入
づる流入冷却水温に応じで変化さけることにより、制御
の応答性を阻害することなく、流入冷却水温が低い場合
のハンチングを効果的に抑制層ることを[二1的と゛り
る。
(Object of the Invention) The present invention is directed to a cold N1 device that controls the cooling water temperature by adjusting the amount of cooling water circulated between the cooler and the A-large 1 holder 1-. This method deals with the above-mentioned problems, and controls the circulation of cooling water by changing the operating speed or amount of operation of regulating devices such as on-off valves that regulate the circulation of cooling water, depending on the temperature of the inflowing cooling water flowing into the engine. The objective is to provide a layer that effectively suppresses hunting when the inflow cooling water temperature is low without impairing the responsiveness of the cooling water.

(発 明 の 構 成) 本発明に係る冷11装首は、」記目的のため次のように
構成される。
(Structure of the Invention) The cold-11 neck harness according to the present invention is configured as follows for the purpose of this invention.

即ち、ラジェータど、1ンジンのシリンダ周囲に設けら
れたウォータージャウラ1〜と、該クジュータとジVケ
ッ1−どの間で冷fA+水を循環さぼる冷却水通路とを
設(プた水冷式]−ンジンにおいて、冷却水温に関連ジ
る信弓を出力りる冷月1水温検知手段と、上記ラジェー
タとつA−ターンせケラl〜との間の冷却水の循環量を
調整層る開閉弁等の調整装置と、」二記冷却水温検知手
段の出力に応じて調整装置を作動さ仕て冷却水の循環量
を制all ?lる冷却水温制御手段とを備え、これら
により冷却水温を所定値以下に制allりるように構成
する。そして、これらの構成に加えU、エンジンに流入
する流入冷却水の温度を検知する流入冷却水温セン]ノ
と、該センタの出力を受()で流入冷ム(j水温が低い
ll+’+に上記冷却水温制御手段による調整装置に苅
りる制御利得を小さくするi制御利jqiIIIJ御手
段とを備える。
That is, a water cooler 1 is installed around a cylinder of an engine such as a radiator, and a cooling water passage is provided to circulate cold fA+ water between the engine and the cylinder. - In the engine, there is a water temperature detection means that outputs a signal related to the cooling water temperature, and an on-off valve that adjusts the amount of cooling water circulating between the radiator and the A-turn horn. and a cooling water temperature control means that operates the adjustment device according to the output of the cooling water temperature detecting means to control the circulation amount of cooling water, and these control the cooling water temperature to a predetermined value. In addition to these configurations, there is also an inflow cooling water temperature sensor that detects the temperature of the inflow cooling water flowing into the engine, and an inflow cooling water temperature sensor that receives the output of the center. An inflow cooling comb (i control gain jjqiIIIJ control means for reducing the control gain applied to the adjustment device by the cooling water temperature control means) is provided in the inflow cooling comb (j) where the water temperature is low.

このような構成によれば、流入冷却水温が11(い時に
冷11〕水の循環量を調整する調整装置の動作速度或い
は動作量が小さくなることにより、通常時における応答
遅れを生じることなく、流入冷7J1水温が低いことに
よるハンチングが抑制されることになる。
According to such a configuration, the operation speed or operation amount of the adjustment device that adjusts the circulating amount of water when the inflow cooling water temperature is 11 (when the temperature is 11) is reduced, so that there is no response delay during normal times. Hunting due to the low inflow cold 7J1 water temperature is suppressed.

尚、上記調整装置は電気的に開度を」ント1」−ルされ
るものの他、従来用いられている1ノ−−モスタット式
の開閉弁を用いることもできる。この場合、流入冷却水
温に応じて例えば通路面積を増減さぼることにより冷却
水の循環ni制U++の制御利得が変化される。
The above-mentioned adjusting device may be one in which the opening degree is controlled electrically, or a conventionally used no-mostat type on-off valve may be used. In this case, the control gain of the cooling water circulation control U++ is changed by, for example, increasing or decreasing the passage area in accordance with the inflow cooling water temperature.

(実 施 例) 以下、本発明の実施例を図面に基づい(説明りる。(Example) Hereinafter, embodiments of the present invention will be explained based on the drawings.

第1図に承りように、エンジン1にはシリンダ2・・・
2の周囲につA−ラージ1フケツ1〜3が設【プられて
いると共に、該ジせケラト3の出口3aがエンジン1の
近傍に備えられたウジ1−タ40八口4aに、該ジャケ
ラ1〜3の人口3bがラジェータ4の出口41)に夫々
パ、イブ5,6を介しC接続され、該ジャケット3とラ
ジ」−−94との間に冷却水の循環通路7が形成されて
いる。また、つA−タージャクツ1へ3における人口3
bの近傍には当該エンジン1のクランク軸8にJ:っで
ベル1−9を介して駆動される冷7i11水ポンプ10
が設けられているとノ(に、ジ11ケツ]へ3の11目
−138には該出口3aからバイブ5ないしラジェータ
4側への冷却水の流出量(循11 in、 )を増減さ
ける調整装置として開閉弁11が備えられCいる。ここ
で、つ71−ラージA1クツ1〜3の出D 3 aど入
目31)との間には、開閉弁11の閉鎖時に冷却水をラ
ジェータ4に供給りることなく循環さけるバイパス通路
12が設けられている。
As shown in Fig. 1, engine 1 has cylinder 2...
A-Large 1 hooks 1 to 3 are provided around the 2, and the outlet 3a of the A-large 1 hook 3 is connected to the 8-port 4a of the Uji 1-ta 40 provided near the engine 1. The jackets 3b of jackets 1 to 3 are connected to the outlet 41) of the radiator 4 via pipes 5 and 6, respectively, and a cooling water circulation passage 7 is formed between the jacket 3 and the jacket 3. ing. Also, population 3 in A-Tarjakutu 1 to 3
In the vicinity of b, there is a cold 7i11 water pump 10 that is driven by the crankshaft 8 of the engine 1 via a bell 1-9.
11-138 of 3 is provided with an adjustment to increase or decrease the amount of cooling water flowing from the outlet 3a to the vibrator 5 or radiator 4 side (circulation 11 inches). An on-off valve 11 is provided as a device.Here, between the large A1 shoes 1 to 3 and the outlet D3a (inlet 31), cooling water is supplied to the radiator 4 when the on-off valve 11 is closed. A bypass passage 12 is provided for circulating the water without supplying it to the water.

また、つA−タ〜ジ11グツ1−3にお()る上記間閉
弁11の直上流位置にはエンジン出口部における冷却水
温を検出づる水温センサ13が備えられ、該センサ13
から出力される水温信号△が制御回路14に入力される
ようになっている。この制御回路14は、上記水温信号
△が人力され、その電圧レベルと設定電圧発生回路15
から出力される目標冷却水温に対応づる電圧レベルどを
比較して、前者の電圧レベルが後者より高い時に1″の
信号Bを出ノJ′?lる比較回路16と、この比較回路
16″′の出ツノ信号Bを積分づる積分回路17ど、該
積分回路17の出力信号Cを増幅りる増幅回路18とを
有し、この増幅回路18の出力信号が制御信号りとして
上記「11開弁11に送給される。、そして、開閉弁1
1は制御信号1〕の値に応じでリフ1〜し、ウォーター
ジャケット3からバイブ5ないしラジェータ4に通じる
通路の開度を増減させるようになっている。
Further, a water temperature sensor 13 for detecting the cooling water temperature at the engine outlet is provided at a position immediately upstream of the above-mentioned closing valve 11 in the A-stage 11 (1-3).
A water temperature signal Δ outputted from the control circuit 14 is inputted to the control circuit 14. This control circuit 14 receives the water temperature signal △ manually and uses its voltage level and set voltage generation circuit 15.
A comparator circuit 16 that compares the voltage levels corresponding to the target cooling water temperature outputted from the circuit and outputs a signal B of 1" when the former voltage level is higher than the latter, and this comparator circuit 16" It has an integrating circuit 17 that integrates the output horn signal B of ', and an amplifier circuit 18 that amplifies the output signal C of the integrating circuit 17, and the output signal of this amplifier circuit 18 is used as a control signal to is supplied to the valve 11, and the on-off valve 1
1 is a control signal 1], which increases or decreases the degree of opening of the passage leading from the water jacket 3 to the vibrator 5 or the radiator 4.

然してこの実施例においでは、」−記の構成に加えて、
ウォータージャケット3の入口3bに通じる通路19に
ラジェータ4から該ジA・フット3に流入する流入冷却
水の温度を検知Jる流入冷W水渇t=ンサ20が備えら
れ−Cいると共に、該センサ20の出力信+4 [Eが
入力されζ′流流入冷却水含所定の関数関係に従って関
数値に変換する関数回路21と、該関数回路21の出力
信号Fに応じ゛(積分定数を設定Jる積分定数設定回路
22とが備えられ、これらにより第2図に示1ように流
入冷NJ水濡が低いほど小さくなる積分定数が設定され
るようになりCいる。モし−C1この積分定数が上記制
御回路14における積分回路17に信号Gとし−(入力
され、該積分回路17において比較回路16の出力信号
Bを積分処g4る際の積分定数としで用いられるように
なっている。
However, in this embodiment, in addition to the configuration described above,
A passage 19 leading to the inlet 3b of the water jacket 3 is provided with an inflow cold water sensor 20 for detecting the temperature of the inflow cooling water flowing into the foot 3 from the radiator 4. The output signal of the sensor 20 +4 [E is input and the ζ' flow inflow cooling water content is input to a function circuit 21 which converts it into a function value according to a predetermined functional relationship, and according to the output signal F of the function circuit 21 (the integral constant is set J As shown in FIG. 2, an integral constant setting circuit 22 is provided, and as shown in FIG. is input as a signal G to an integrating circuit 17 in the control circuit 14, and is used as an integration constant when integrating the output signal B of the comparator circuit 16 in the integrating circuit 17.

尚、1記積分回路17と積分定数設定回路22とは、例
えば第3図に承りように抵抗23ど=]ンデン(、+ 
2 /Iとで構成されると共に、このコンデン′v24
が関数回路21の出力信号「に応じで容昂が変化Jる可
変容量」ンデンリとされ、これにより積分定数が1−記
のように変化りるようになっている。
Note that the integration circuit 17 and the integration constant setting circuit 22 are, for example, resistors 23, etc., as shown in FIG.
2/I, and this condenser'v24
is a variable capacitor whose expansion changes depending on the output signal of the function circuit 21, so that the integral constant changes as shown in (1).

次に」記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

今、1ンジン1を始動さけたものとりるど、クランク軸
8によってベル1−9を介して冷7.(+水ポンプ10
が駆動されることにより、つA−タージl/ケッ1〜3
内の冷ムf1水が入口3b側から各シリンダ2・・・2
の周囲を通り−C出口3 a側に流さ4′するが、9f
3動直後におい(は冷1iIl水渦は低いのC1に記ジ
トケツ[〜3の出[13aの近傍に備えられた水温セン
サ13から水濡信号△が人ツノされる制御回路14にお
い(は比較回r816の出力が” o ”であり、従っ
て該制御回路14から開開弁11に送給される制御信@
Db”0”で、該開開弁11はl記出口3aを閉じIこ
状態にある。従っ(、この時点では冷却水はラジェータ
4に供給されることな(、バイパス通路12を通って循
環づることにイ【る。
Now, when engine 1 is started, crankshaft 8 passes through bells 1-9 to cold engine 7. (+water pump 10
By being driven, the
The cold water in the cylinder f1 flows from the inlet 3b side to each cylinder 2...2
It passes around the -C exit 3 and flows to the a side 4', but 9f
Immediately after the third movement, the cold water vortex is low. The output of the rotation r816 is "o", so the control signal sent from the control circuit 14 to the opening/opening valve 11 @
When Db is "0", the on-off valve 11 closes the outlet 3a and is in the state. Therefore, at this point, the cooling water is not supplied to the radiator 4 and is instead circulated through the bypass passage 12.

そして、この状態でエンジン始動時からの時間が経過す
るに従って、第4図(1)に実線aで小Jように冷却水
温が上昇し、該水温が設定値1”o(例えば85℃)に
達した時点で水温センサ−゛13がらの水温信号Aの電
圧レベルが制御回路1/Iにおける設定電圧発生回路1
5の出ノ、7電圧レベル以上となる。そのため、比較回
路16の出力信号Bが第4図(2)に符号すで示づよう
に゛1パに転じ、これに伴って積分回路17の出力信号
Cが同図(3)に符号Cで示でように成る一定の勾配で
立ち上る。そして、この積分回路17の出力信号Cが増
幅回路18を介して制all信月1)どして上記開閉弁
11に送給され、該開閉弁11の開度が制御信号D(積
分回路17の出力16号0)の出カ伯の上背に従って増
大する。これにより、つA−タージャケラ]へ3内の冷
却水は開閉弁11の開度に対応してラジT−夕4に供給
され、該ラジェータ4を通過する冷却水の循環量が次第
に増加する。
In this state, as time elapses from the time the engine is started, the cooling water temperature increases as indicated by the solid line a in Figure 4 (1), and the water temperature reaches the set value of 1"o (for example, 85°C). At the point when the voltage level of the water temperature signal A from the water temperature sensor 13 reaches the set voltage generation circuit 1 in the control circuit 1/I
The result of 5 is 7 voltage level or higher. Therefore, the output signal B of the comparator circuit 16 changes to 1p as already shown in FIG. 4 (2), and accordingly the output signal C of the integrating circuit 17 changes to C It rises at a constant slope as shown in . Then, the output signal C of the integrating circuit 17 is sent to the on-off valve 11 via the amplifier circuit 18 as a control signal D (integrating circuit 17). The output of No. 16 0) increases according to the upper back of the output. As a result, the cooling water in the radiator 3 is supplied to the radiator 4 in accordance with the opening degree of the on-off valve 11, and the amount of circulating cooling water passing through the radiator 4 gradually increases.

このようにしてラジェータ4を通過する冷却水の循環m
が増大Jると、冷却水温の上昇が停止し、次に該水温が
低下し始める。そして、上記設定値T、 oまで低下し
た時点で制御回路14における比較回路16の出力信号
Bが第4図(2)に符号b′で示1ように0″に転じる
と共に、この時点から積分回路17の出力信号Cないし
制御信号りの値が同図(3)に符号C′で示すように減
少1ノ始め、これに伴って上記開111弁11の開度、
即15シジI −タ4を通過する冷却水の循環量が減少
づる。その/jめ、冷1jl水渇は一定温度まで低下し
た接、1りび上昇し、その結果、第4図(1)に実線a
で示ずようにウォータージせケラト出口3aにおりる冷
却水温が設定値1− oを中心に上下に変動し、ハンチ
ングが生じることになる。
Circulation of cooling water passing through the radiator 4 in this way m
When J increases, the cooling water temperature stops increasing, and then the water temperature begins to decrease. Then, when the output signal B of the comparison circuit 16 in the control circuit 14 decreases to the set value T, o, it changes to 0'' as shown by the symbol b' in FIG. 4(2), and from this point on, the integral The value of the output signal C or the control signal of the circuit 17 begins to decrease by 1 as shown by the symbol C' in FIG.
In other words, the amount of circulating cooling water passing through the 15th cylinder I-ta 4 decreases. As a result, the solid line a in Figure 4 (1)
As shown in the figure, the temperature of the cooling water flowing into the water heater outlet 3a fluctuates up and down around the set value 1-o, causing hunting.

ところで、上記のような冷却水温の制御において、外気
温が低い等のためラジ土−夕4からウォータージャケッ
ト3に流入する流入冷却水の温度が低い時は、1Fil
 ffJ弁11の一定の開弁速度に対してエンジン1が
より速かに冷却されてウォータージャケット出口3aに
おける冷却水−の低下が急激となる。その1.:め、第
4図(1)に鎖線a′で示すように冷却水温は設定値T
 (1以下に大きくアンダーシュー1〜し、Cれに伴っ
Cハンチングが著しくなる。しかし、流入冷却水温が低
くなると、これを示す流入冷却水温センサ20の出力信
Q IEが関数回路21を介して入力される積分定数設
定回路22は第2図に示りJ:うに小さな値の積分定数
を設定し、この積分定数に塁づいて制御回路14の積分
回路17が比較回路1Gの出力信号Bを積分することに
なる。そのため、該積分回路17から出力される信号0
は第4図(3)に点線c IT (x承りように勾配が
緩かになる。このことは、制御回路14による開閉弁1
1に対する制御の制御利jqが小さくなり、冷却水温が
設定値Toを超えた場合にお番」る開閉弁11の開弁速
度ないしラジJ、−夕4を通過する冷却水循環量の増加
速度が緩かになることを意味覆る。その結果、流入冷却
水温が低いにも拘らず、ウォータージャクツ1〜出口3
8にお【プる冷却水温の低下が緩かになり、第4図(1
)に実wAaで示すようにアンダーツ1−ト或いはハン
チングが軽減されることになる。
By the way, in controlling the cooling water temperature as described above, when the temperature of the inflow cooling water flowing into the water jacket 3 from Saturday and Sunday 4 is low due to low outside temperature, etc., 1Fil.
The engine 1 is cooled more quickly with respect to a constant opening speed of the ffJ valve 11, and the cooling water at the water jacket outlet 3a rapidly decreases. Part 1. :Me, as shown by the chain line a' in Figure 4 (1), the cooling water temperature is at the set value T.
(There is a large undershoe below 1, and C hunting becomes significant as C falls. However, when the inflow cooling water temperature becomes low, the output signal QIE of the inflow cooling water temperature sensor 20 indicating this decreases via the function circuit 21. The input integral constant setting circuit 22 is shown in FIG. Therefore, the signal 0 output from the integrating circuit 17
As shown in FIG. 4 (3), the gradient becomes gentler as shown by the dotted line c IT (x). This means that the on-off valve 1 by the control circuit 14
The control profit jq of the control relative to 1 becomes smaller, and the opening speed of the on-off valve 11, which is turned on when the cooling water temperature exceeds the set value To, or the increasing speed of the circulating amount of cooling water passing through 4 is Cover means to become loose. As a result, despite the low inflow cooling water temperature, water jacks 1 to 3
8, the cooling water temperature decreases more slowly, and as shown in Figure 4 (1).
), undercutting or hunting is reduced as shown by the actual wAa.

尚、制御利得或いは積分定数を当初から小さな値に設定
しでおくと、流入冷却水温が低い場合におG−Jる上記
のようなハンチングは防止されるが、王の反面、流入冷
却水濡が狛に低くない通常の場合に応答遅れの問題が顕
著となり、そのため、例えばエンジン発熱量が大きい場
合に冷に1水温が設定値まで低下するのに長時間を要η
ることになって、エンジンがA−バーヒー1〜づる等の
弊害が生じる。これに対して、本案は流入冷J、11水
温が低い場合のみ制御利得を小さく4る構成Cあるから
、通常時にお(プる応答遅れの問題をIJじることなく
、流入冷却水温が低いことによるハンチングの問題が解
消されることになる。
Note that if the control gain or integral constant is set to a small value from the beginning, hunting like the one described above can be prevented when the inflow cooling water temperature is low. The problem of response delay becomes noticeable in normal situations where the water temperature is not extremely low. Therefore, for example, when the engine generates a large amount of heat, it takes a long time for the water temperature to drop to the set value.
As a result, problems such as the engine becoming overheated occur. On the other hand, this proposal has a configuration C that reduces the control gain only when the inflow cooling water temperature is low. The problem of hunting caused by this problem will be solved.

ここで、上記の実施例では、センサ20によって検知さ
れる流入冷却水温のみに基づいて制御利得を変化させる
構成としたが、該流入冷却水温センサ20の出力信号E
と、つA−ターン(・′lジット口3aにお【〕る水温
センサ13の出力信号Aとに基づい−(、ジVケット入
[’:I 311と出[−ビ)aの水温の差に応じて制
御利得を変化ざぜるようにしても同様の作用が得られる
Here, in the above embodiment, the control gain is changed based only on the inflow cooling water temperature detected by the sensor 20, but the output signal E of the inflow cooling water temperature sensor 20 is
Based on the output signal A of the water temperature sensor 13 located at the jet port 3a, the water temperature at A similar effect can be obtained by varying the control gain depending on the difference.

(発 明 の 効 果) 以上のように本発明によれば、ラジェータとつA−ター
ジVケッ1へとの間の冷に1水の循環量を調整すること
により冷Nノ水温を制御づる水冷j(Lンジンの冷却装
置において、流入冷N3水温レンサによって検知される
エンジンに流入する流入冷却水の温度が低い時に上記冷
却水循環量の調整を行う調整装置に対(る制御利得を小
さくするようにしたから、通常時にお(〕る冷却水温の
制御の応答遅れ、特にエンジン発熱量が大きい場合にお
けるオーバーヒート等を生じることなく、流入冷却水温
が低い場合にお【プる冷却水温のハンチングが抑制され
るようになる。このように1.7で、冷却水温が常に良
りfに制御されることになる。
(Effects of the Invention) As described above, according to the present invention, the temperature of the cold N water can be controlled by adjusting the amount of water circulated between the radiator and the A-Taj V box. Water cooling j (In the engine cooling system, when the temperature of the inflow cooling water flowing into the engine detected by the inflow cooling N3 water temperature sensor is low, the control gain of the adjustment device that adjusts the amount of cooling water circulation is reduced. As a result, there is no response delay in cooling water temperature control that normally occurs, and there is no overheating, especially when the engine heat output is large, and cooling water temperature hunting that occurs when the inflow cooling water temperature is low is eliminated. In this way, at 1.7, the cooling water temperature is always well controlled to f.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示Jもので、第1図は制御シス
テム図、第2図は制御特性を示すグラフ、第3図は第1
図における積分回路と積分定数設定回路の具体例を示ず
電気回路図、第4図は作用を示づタイムヂャート図であ
る。 1・・・エンジン、3・・・つA−タージャケット、1
・・・ラジェータ、7・・・冷却水通路(循環通路)、
11・・・調整装置(間開弁)、13・・・冷却水温検
知手段(水温センサ)、14・・・冷却水温制御手段(
制御回路)、20・・・流入冷却水温センサ、22・・
・制御利得制御手段(積分定数設定回路)。 出願人 東洋工業株式会社 第3図 第4図
The drawings show embodiments of the present invention; Fig. 1 is a control system diagram, Fig. 2 is a graph showing control characteristics, and Fig. 3 is a graph showing control characteristics.
FIG. 4 is an electrical circuit diagram without showing specific examples of the integrating circuit and integral constant setting circuit in the figure, and FIG. 4 is a time chart diagram showing the operation. 1...engine, 3...two A-tar jackets, 1
...Radiator, 7...Cooling water passage (circulation passage),
11... Adjustment device (open valve), 13... Cooling water temperature detection means (water temperature sensor), 14... Cooling water temperature control means (
control circuit), 20... inflow cooling water temperature sensor, 22...
- Control gain control means (integral constant setting circuit). Applicant: Toyo Kogyo Co., Ltd. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1) ウジュータと、エンジンのつA−ラージ1!ケ
ツ1−と、該ラジェータとジャケットとの間で冷却水を
循環させる冷却水通路と、冷却水温に関連する信号を出
力する冷却水温検知手段と、上記ラジェータとジャケッ
トとの間の冷却水の循環量を調整する調整装置と、ト記
冷却水温検知手段の出ツノに応じて調整装置を作動さV
て冷却水温が所定値以下になるように冷却水の循環量を
制御1−!lる冷却水温制御手段と、エンジンに流入す
る流入冷却水の温度を検知づる流入冷却水部センザと、
該レンザの出力を受tノで流入冷却水温が低い時に上記
冷却水温制御手段による冷却水循環量制御の制御利得を
小さくする制御利得制御手段とからなる水冷式エンジン
の冷却装置。
(1) Ujuta and engine A-Large 1! a cooling water passage for circulating cooling water between the radiator and the jacket, a cooling water temperature detection means for outputting a signal related to the cooling water temperature, and a cooling water circulation between the radiator and the jacket. An adjustment device that adjusts the amount, and an adjustment device that operates according to the output of the cooling water temperature detection means.
Control the circulation amount of cooling water so that the cooling water temperature is below a predetermined value 1-! an inflow cooling water section sensor that detects the temperature of inflow cooling water flowing into the engine;
A cooling device for a water-cooled engine, comprising control gain control means that receives the output of the laser and reduces a control gain of cooling water circulation amount control by the cooling water temperature control means when the inflow cooling water temperature is low.
JP2678284A 1984-02-09 1984-02-14 Cooling device for water-cooled engine Granted JPS60169623A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2678284A JPS60169623A (en) 1984-02-14 1984-02-14 Cooling device for water-cooled engine
US06/698,531 US4616599A (en) 1984-02-09 1985-02-05 Cooling arrangement for water-cooled internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2678284A JPS60169623A (en) 1984-02-14 1984-02-14 Cooling device for water-cooled engine

Publications (2)

Publication Number Publication Date
JPS60169623A true JPS60169623A (en) 1985-09-03
JPH0581728B2 JPH0581728B2 (en) 1993-11-16

Family

ID=12202878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2678284A Granted JPS60169623A (en) 1984-02-09 1984-02-14 Cooling device for water-cooled engine

Country Status (1)

Country Link
JP (1) JPS60169623A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268912A (en) * 1987-04-27 1988-11-07 Mitsubishi Heavy Ind Ltd Cooling device of internal combustion engine
JPH0443812A (en) * 1990-06-08 1992-02-13 Kubota Corp Cooling device for water-cooled engine
JPH0596433U (en) * 1991-02-25 1993-12-27 稲田 健 Water-cooled engine cooling system
WO2021038776A1 (en) * 2019-08-29 2021-03-04 株式会社ミクニ Engine cooling device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415366A (en) * 1990-05-09 1992-01-20 Kubota Corp Vehicle speed controller for working vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415366A (en) * 1990-05-09 1992-01-20 Kubota Corp Vehicle speed controller for working vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268912A (en) * 1987-04-27 1988-11-07 Mitsubishi Heavy Ind Ltd Cooling device of internal combustion engine
JPH0443812A (en) * 1990-06-08 1992-02-13 Kubota Corp Cooling device for water-cooled engine
JPH0596433U (en) * 1991-02-25 1993-12-27 稲田 健 Water-cooled engine cooling system
WO2021038776A1 (en) * 2019-08-29 2021-03-04 株式会社ミクニ Engine cooling device
JPWO2021038776A1 (en) * 2019-08-29 2021-03-04

Also Published As

Publication number Publication date
JPH0581728B2 (en) 1993-11-16

Similar Documents

Publication Publication Date Title
JPH0259289B2 (en)
KR101755489B1 (en) Control method of engine circulating coolant and the control system thereof
US7171927B2 (en) Control method for electronically controlled thermostat
US20170321597A1 (en) Cooling system for internal combustion engine
JP2009523948A (en) Method and apparatus for controlling the temperature of an internal combustion engine
JP2007170236A (en) Engine cooling device
JPS60169623A (en) Cooling device for water-cooled engine
JP2005036731A (en) Cooling system for internal combustion engine
KR102041920B1 (en) System and method for turbo charger cooling
JPS60166712A (en) Cooling device of water-cooled engine
JPS63183216A (en) Coolant temperature control device for internal combustion engine
JPH10131753A (en) Cooling device for water-cooled engine
JPH0415366B2 (en)
JPH05231149A (en) Cooling device for engine
JPS60166714A (en) Cooling device of water-cooled engine
JP2007522388A (en) Method and apparatus for controlling a cooling circuit of an internal combustion engine
JP2017166406A (en) Cooling pump control device
JPH1182018A (en) Cooling water control device for engine
JPH09145550A (en) Engine cooler on engine dynamo
KR100589164B1 (en) Thermostat for Vehicle
JP2000274244A (en) Cooling water controller for engine
JPS59119010A (en) Cooling water passage of internal-combustion engine
JP2554937B2 (en) Internal combustion engine cooling system
JP2962164B2 (en) Hot water mixing equipment
JP2664050B2 (en) Speed control method of underwater vehicle