JPS60166890A - Inhibiting device for reactivity of reactor - Google Patents

Inhibiting device for reactivity of reactor

Info

Publication number
JPS60166890A
JPS60166890A JP59021556A JP2155684A JPS60166890A JP S60166890 A JPS60166890 A JP S60166890A JP 59021556 A JP59021556 A JP 59021556A JP 2155684 A JP2155684 A JP 2155684A JP S60166890 A JPS60166890 A JP S60166890A
Authority
JP
Japan
Prior art keywords
reactor
reactivity
signal
scram
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59021556A
Other languages
Japanese (ja)
Inventor
長江 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59021556A priority Critical patent/JPS60166890A/en
Publication of JPS60166890A publication Critical patent/JPS60166890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Jib Cranes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子炉の反応度抑制装置、特に原子炉の異常な
過渡変化及び事故の後にスクラム系の機能が損なわれた
場合に、高濃度のほう酸水を炉心内に自動注入すること
によって原子炉の反応度を抑制するようにした原子炉の
反応度抑制装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a reactivity suppression system for a nuclear reactor, particularly for the purpose of controlling high concentration The present invention relates to a nuclear reactor reactivity suppression device that suppresses the reactivity of a nuclear reactor by automatically injecting boric acid water into the reactor core.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に沸騰水型原子炉のスクラム系は、原子炉の異常を
検出し原子炉緊急停止信号を発生するスクラムロジック
回路等の電気系と、この電気系からの信号を受けて制御
棒を挿入する制御棒駆動系等の機械系とから構成されて
いる。
In general, the scram system of a boiling water reactor consists of an electrical system such as a scram logic circuit that detects abnormalities in the reactor and generates an emergency reactor stop signal, and a control system that inserts control rods in response to signals from this electrical system. It consists of a mechanical system such as a rod drive system.

電気系については、スクラム信号を検知する検出器、ス
クラムロジック回路を構成するリレー、接触機等は、多
重性、多用性を持たせた設計となっており、また、機械
系についても各制御棒水圧駆動系、スクラムパイロット
弁等は、独立、分離した構成となっている。このように
、スクラム系はその機能上、高い信頼性が要求されるた
め設計面で十分な対応がとられており、高い信頼度を維
持するように構成されている。
Regarding the electrical system, the detectors that detect scram signals, the relays and contactors that make up the scram logic circuit, etc. are designed for redundancy and versatility, and the mechanical system is designed so that each control rod The hydraulic drive system, scram pilot valve, etc. are independent and separated. In this way, the Scrum system requires high reliability due to its functionality, so sufficient measures have been taken in terms of design, and the system is configured to maintain high reliability.

しかしながら、比較的発生頻度の高い異常な過渡変化の
後に何らかの原因でスクラム系の機能が喪失した場合に
は、原子炉の出力が高い状態で維持されることになる。
However, if the scram system loses its function for some reason after an abnormal transient change occurs, which occurs relatively frequently, the output of the reactor will be maintained at a high level.

このため原子炉の水位は低下していき、一方原子炉の圧
力が上昇するので、逃し安全弁が働き、この逃し安全弁
から多聞の発生蒸気がサプレッションプールに流れ込む
ようになる。この結果、原子炉の設計圧力、サプレッシ
ョンプールの設計温度を越える可能性が想定される。
As a result, the water level in the reactor decreases, while the pressure in the reactor increases, causing the safety relief valve to operate, allowing a large amount of generated steam to flow into the suppression pool. As a result, it is assumed that the design pressure of the reactor and the design temperature of the suppression pool may be exceeded.

従来の原子炉設計では、このような場合には、運転員が
ほう耐水注入系を手動起動することによって異常事態を
収拾するという考え方に基づいているが、短期間のうち
に運転員がスクラム系の機能喪失を検出し、はう耐水注
入系を手動起動することは非常に困難であり、かつ誤判
断、誤操作を起し易いという不具合が想定される。
Conventional reactor design is based on the concept that in such cases, operators manually start the water-resistant injection system to correct the abnormal situation, but within a short period of time, operators It is extremely difficult to detect loss of function and manually start the crawling water-resistant injection system, and it is assumed that there are problems in that it is easy to make erroneous judgments and erroneous operations.

(発明の目的) 本発明は、上記事情に鑑みてなされたもので、その目的
は原子炉圧力、原子炉水(Q、中性子束、サプレッショ
ンプール水温等の信号を監視し、原子炉の異常な過渡変
化及び事故の後でもし、スクラム系の機能喪失を検知す
ると、直ちに高濃度のほう酸水を短時間に自動注入する
ことによって、原子炉の反応度を抑制し、原子炉の健全
性を確保するようにした原子炉の反応度抑制装置を提供
するにある。
(Object of the Invention) The present invention has been made in view of the above circumstances, and its purpose is to monitor signals such as reactor pressure, reactor water (Q, neutron flux, and suppression pool water temperature) to detect abnormalities in the reactor. If loss of functionality in the scram system is detected after a transient change or accident, high-concentration boric acid water is automatically injected in a short period of time to suppress reactor reactivity and ensure reactor integrity. An object of the present invention is to provide a reactivity suppression device for a nuclear reactor.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、原子炉の異常な
過渡変化及び事故の後で原子炉スクラム系が機能喪失す
ると、高濃度のほう酸水を自動注入して原子炉反応度を
制御するようにした原子炉の反応度抑制装置に関するも
のである。
In order to achieve the above object, the present invention controls the reactor reactivity by automatically injecting high concentration boric acid water when the reactor scram system loses its function after an abnormal transient change in the reactor or an accident. The present invention relates to a reactivity suppression device for a nuclear reactor.

先ず原子炉の異常な過渡変化の後にスクラム系が機能喪
失していることが検知される理由を第1図の論理回路を
備えた制御装置について説明する。
First, the reason why it is detected that the scram system has lost its function after an abnormal transient change in the reactor will be explained with reference to the control device having the logic circuit shown in FIG.

一般に原子炉の異常な過渡変化は大別して、原子炉圧力
高となる過渡変化と原子炉水位低下を引き起こす過渡変
化に二分される。したがって原子炉圧力高信号または原
子炉水位低信号によって異常な過渡変化が起っているこ
とがわかる。また、その後のスクラム系の機能喪失につ
いては、中性子束高信号によって確認が行われる。さら
に、この様な状態下では逃し安全弁が開放し、また原子
炉水位低低信号で主蒸気隔離弁が閉鎖するため同じく逃
し安全弁が開放する。このように、いずれの過渡変化の
場合にも、スクラム機能喪失の場合には逃し安全弁が開
放して、逃し安全弁からサプレッションプールに蒸気が
放出されるため、サプレッションプールの水温が上昇す
ることになる。
In general, abnormal transient changes in a nuclear reactor can be roughly divided into two types: transient changes that increase reactor pressure and transient changes that cause a drop in reactor water level. Therefore, it can be seen that an abnormal transient change is occurring due to a high reactor pressure signal or a low reactor water level signal. Further, subsequent loss of functionality in the scram system will be confirmed by high neutron flux signals. Furthermore, under such conditions, the safety relief valve opens, and since the main steam isolation valve closes due to the reactor water level low signal, the safety relief valve also opens. In this way, in the case of any transient change, if the scram function is lost, the safety relief valve opens and steam is released from the safety relief valve into the suppression pool, causing the water temperature in the suppression pool to rise. .

以上に述べた知見に基づいて論理回路を構成したものが
第1図の自動起動論理回路である。すなわち、第1図の
自動起動論理回路によると、原子炉圧力高信号または原
子炉水位低信号と中性子束高信号およびサプレッション
プール温度高信号の論理積が成立したときに高濃度はう
耐水注入系が起動するので、原子炉の異常な過渡変化の
後のスクラム機能喪失は速やかに検出される。
The automatic startup logic circuit shown in FIG. 1 is a logic circuit constructed based on the knowledge described above. That is, according to the automatic startup logic circuit shown in Fig. 1, when the logical product of the reactor pressure high signal or reactor water level low signal, the neutron flux high signal, and the suppression pool temperature high signal is established, the high concentration water injection system is activated. is activated, so loss of scram function following abnormal reactor transients is quickly detected.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described with reference to the drawings.

第2図は本発明の原子炉反応抑制装置の系統図を示づも
ので、第一図と同一個所には同一符号を附して説明する
。同図において、図示しない原子炉を収納した原子炉圧
力容器1は原子炉格納容器2内に配置され、この原子炉
格納容器2の下部には4ノプレツシヨンブール5が設け
られている。また、再循環ライン3が原子炉圧力容器1
に配設されている。4は再循環ポンプである。さらに、
スクラム機能喪失を検知するのに必要な検出器である原
子炉圧力検出器6、原子炉水位検出器7および中性子束
検出器8は原子炉圧力容器1内に設置きれ、同様にサプ
レッションプール5のプール水内にはサプレッションプ
ール水温度検出器9が配置されている。そして、これら
検出器からの検出信号によってスクラム系の機能喪失が
確認されると原子炉格納容器2の外部に設置され1〔注
入弁10が自動的に開放し、加圧ボンベ12によって加
圧された通常の2倍程度以上の高濃度のほう耐水がタン
ク11から注入弁10逆止弁13を経て図示しない炉心
に注入される。 次に、本実施例の作用について説明す
る。
FIG. 2 shows a system diagram of the nuclear reactor reaction suppression device of the present invention, and the same parts as in FIG. 1 are given the same reference numerals for explanation. In the figure, a reactor pressure vessel 1 housing a nuclear reactor (not shown) is placed in a reactor containment vessel 2, and a four-pressure boule 5 is provided at the bottom of the reactor containment vessel 2. In addition, the recirculation line 3 is connected to the reactor pressure vessel 1.
It is located in 4 is a recirculation pump. moreover,
The reactor pressure detector 6, reactor water level detector 7, and neutron flux detector 8, which are the detectors necessary to detect the loss of scram function, can be installed inside the reactor pressure vessel 1, and the suppression pool 5 can also be installed inside the reactor pressure vessel 1. A suppression pool water temperature detector 9 is arranged within the pool water. When the loss of function of the scram system is confirmed by the detection signals from these detectors, the injection valve 10 is installed outside the reactor containment vessel 2 and is pressurized by the pressure cylinder 12. Water resistant water with a high concentration of about twice the normal concentration is injected from the tank 11 through the injection valve 10 and the check valve 13 into the reactor core (not shown). Next, the operation of this embodiment will be explained.

比較的発生頻度の高い異常な過渡変化の後に、何らかの
原因で原子炉スクラム系の機能が喪失した揚台には、原
子炉が高出力状態で維持されるため、原子炉水位が低下
するとともに原子炉圧力は上昇り−るから逃し安全弁か
ら多量の発生蒸気がサプレッションプール5内に流れ込
むようになる。
If the reactor scram system loses its function for some reason after an abnormal transient change occurs, which occurs relatively frequently, the reactor is maintained at a high output state, so the reactor water level decreases and the nuclear As the furnace pressure increases, a large amount of generated steam flows into the suppression pool 5 from the relief safety valve.

ところで原子炉水位低下については、高圧系の非常用炉
心冷却系によって補給可能であるが、サプレッションプ
ールに流入した蒸気による温度上昇を抑制するためには
、スクラム系機能喪失の検知復通常の2倍程度以上の高
濃度のほう耐水を注入するようにする。
By the way, the drop in reactor water level can be compensated for by the high-pressure emergency core cooling system, but in order to suppress the temperature rise due to steam flowing into the suppression pool, it is necessary to detect and recover the loss of scram system function by twice as much as normal. Make sure to inject a high concentration of water resistance.

そうすると、第3図に示すように、本発明の原子炉反応
度制ta装置を用いた場合は、スクラム系の機能喪失を
検知した後はa線で示すように、直ちに高濃度のほう耐
水を短時間に自動注入できるため、設計湿度Cを越える
ことはない。一方、従来の設泪例ではb線に示されるよ
うにほう耐水が注入されるまでにかなりの時間を要する
のでサプレッションプール最高温度が設計温度Cを越え
ることがある。このように本発明によれば原子炉出力を
抑制し、原子炉の健全性を確保することができる。
Then, as shown in Figure 3, when using the reactor reactivity control TA device of the present invention, after detecting the loss of function of the scram system, the water resistance of the higher concentration is immediately activated as shown by the a-line. Since it can be automatically injected in a short period of time, the design humidity C will not be exceeded. On the other hand, in the conventional installation example, as shown in line b, it takes a considerable amount of time until the water resistance is injected, so the maximum temperature of the suppression pool may exceed the design temperature C. As described above, according to the present invention, it is possible to suppress the reactor output and ensure the soundness of the reactor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の原子炉の反応度制御装置
によれば、原子炉の異常な過渡変化および事故の後でス
クラム系の機能喪失を検知すると、直ちに高濃度のほう
耐水を短時間に自動注入することかできるので、原子炉
の反応度を抑制し、原子炉の健全性を確保することがで
きるというすぐれた効果を奏する。
As explained above, according to the reactor reactivity control device of the present invention, when abnormal transient changes in the reactor or loss of function of the scram system after an accident are detected, the high concentration water resistance is immediately activated for a short period of time. Since it can be automatically injected into the reactor, it has the excellent effect of suppressing the reactivity of the reactor and ensuring the integrity of the reactor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる自動起動信号を発生するための
論理回路を備えた制御装置のブロック図、第2図は本発
明の一実施例の系統図、第3図はスクラム系不作動時に
、従来の制御装置を使用したときのサプレッションプー
ル最高温度と本発明の制御装置を使用した場合のサプレ
ッションプール@高温度の比較を示した図である。 1・・・原子炉圧力容器 、2・・・格納容器3・・・
再循環ライン 、4・・・再循環ポンプ5・・・サプレ
ッションプール。 6・・・原子炉圧力検出器、。 7・・・原子炉水位検出器 、8・・・中性子束検出器
9・・・サプレッションプール水温度検出器。 10・・・注入弁。 11・・・濃縮はう耐水タンク。 12・・・加圧ガスボンベ 、13・・・逆止弁代理人
弁理士 則 近 憲 佑(ほか1名)第 1 図 第 2 図 第3図
Fig. 1 is a block diagram of a control device equipped with a logic circuit for generating an automatic start signal according to the present invention, Fig. 2 is a system diagram of an embodiment of the present invention, and Fig. 3 is a block diagram of a control device equipped with a logic circuit for generating an automatic start signal according to the present invention. , is a diagram showing a comparison between the maximum suppression pool temperature when a conventional control device is used and the suppression pool @ high temperature when a control device of the present invention is used. 1... Reactor pressure vessel, 2... Containment vessel 3...
Recirculation line, 4... Recirculation pump 5... Suppression pool. 6...Reactor pressure detector. 7... Reactor water level detector, 8... Neutron flux detector 9... Suppression pool water temperature detector. 10... Injection valve. 11... Concentrated water resistant tank. 12... Pressurized gas cylinder, 13... Check valve agent Kensuke Chika (and one other person) Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)原子炉の異常な過渡変化または事故を検出づる第
1の検出器と、原子炉スクラム系の機能喪失を検出する
第2の検出器と、前記第1および第2の検出器からそれ
ぞれ出力される第1の検出信号および第2の検出信号の
論理積が成立したことを条件に高濃度のほう酸水を原子
炉へ自動注入して原子炉反応度を抑制するようにした制
御装置を備えていることを特徴とする原子炉の反応度抑
制装置。
(1) a first detector for detecting abnormal transient changes or accidents in the reactor; a second detector for detecting loss of functionality of the reactor scram system; A control device is provided that automatically injects highly concentrated boric acid water into the reactor to suppress reactor reactivity on the condition that the logical product of the output first detection signal and the second detection signal is established. A reactivity suppression device for a nuclear reactor, characterized by comprising:
(2)第1の検出信号は原子炉圧力高信号と原子炉水位
低信号との論理和である特許請求の範囲第1項記載の原
子炉の反応度抑制装置。
(2) The reactivity suppression device for a nuclear reactor according to claim 1, wherein the first detection signal is a logical sum of a high reactor pressure signal and a low reactor water level signal.
(3)第2の検出信号は中性子束へ信号とサプレッショ
ンブール温度高信号との論理積である特許請求の範囲第
1項記載の原子炉の反応度抑制装置、。
(3) The reactivity suppression device for a nuclear reactor according to claim 1, wherein the second detection signal is a logical product of the neutron flux signal and the suppression boule temperature high signal.
JP59021556A 1984-02-10 1984-02-10 Inhibiting device for reactivity of reactor Pending JPS60166890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021556A JPS60166890A (en) 1984-02-10 1984-02-10 Inhibiting device for reactivity of reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021556A JPS60166890A (en) 1984-02-10 1984-02-10 Inhibiting device for reactivity of reactor

Publications (1)

Publication Number Publication Date
JPS60166890A true JPS60166890A (en) 1985-08-30

Family

ID=12058279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021556A Pending JPS60166890A (en) 1984-02-10 1984-02-10 Inhibiting device for reactivity of reactor

Country Status (1)

Country Link
JP (1) JPS60166890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225766A (en) * 2011-04-20 2012-11-15 Haruko Amiya Reactor cooling system
JP2015175775A (en) * 2014-03-17 2015-10-05 日立Geニュークリア・エナジー株式会社 Ph adjusting system for reactor containment vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225766A (en) * 2011-04-20 2012-11-15 Haruko Amiya Reactor cooling system
JP2015175775A (en) * 2014-03-17 2015-10-05 日立Geニュークリア・エナジー株式会社 Ph adjusting system for reactor containment vessel

Similar Documents

Publication Publication Date Title
US5085825A (en) Standby safety injection system for nuclear reactor plants
US5349616A (en) Reactor cooling system for boiling water reactors
JP5642091B2 (en) Reactor transient mitigation system
JPS60166890A (en) Inhibiting device for reactivity of reactor
US3702281A (en) Removal of heat from a nuclear reactor under emergency conditions
JP6348855B2 (en) Emergency core cooling system for nuclear power plants
JPS61139797A (en) Closing device for isolating valve of main steam
JPH02272394A (en) Boric acid water charging device
JPH02264886A (en) Apparatus for output control of reactor
JPH0740073B2 (en) Automatic decompression system
JPS62217192A (en) Emergency core cooling device
JPH04104090A (en) Pressure releasing apparatus for nuclear reactor
JPS60165589A (en) Controller for emergency core cooling system
Bento SAFETY ASSESSMENT AND OPTIMIZATION Reliability of a BWR-auxiliary feedwater pump
JPS6128893A (en) Nuclear power plant
JPS62237397A (en) Safety protective device for boiling water type reactor
JPH01217297A (en) Protecting device of nuclear reactor plant
JPS62251698A (en) Nuclear-reactor water-level lowering reducer
JPS63101794A (en) Emergency core cooling device
JPS61105496A (en) Automatic decompression device for nuclear reactor
JPS63195592A (en) Output controller for natural circulation reactor
JPS60171495A (en) Controller for automatic decompression system of boiling-water type nuclear power plant
JPS61262687A (en) Starting logic of automatic decompression system
JPH043837B2 (en)
JPS60151593A (en) Automatic decompression device for boiling water reactor