JPS6016663A - Dehydration and reinforcement of horizontal plane slab in concrete building - Google Patents

Dehydration and reinforcement of horizontal plane slab in concrete building

Info

Publication number
JPS6016663A
JPS6016663A JP12414983A JP12414983A JPS6016663A JP S6016663 A JPS6016663 A JP S6016663A JP 12414983 A JP12414983 A JP 12414983A JP 12414983 A JP12414983 A JP 12414983A JP S6016663 A JPS6016663 A JP S6016663A
Authority
JP
Japan
Prior art keywords
concrete
dewatering
reinforcing material
concrete building
strengthening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12414983A
Other languages
Japanese (ja)
Other versions
JPH0125863B2 (en
Inventor
奥谷 謙三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12414983A priority Critical patent/JPS6016663A/en
Publication of JPS6016663A publication Critical patent/JPS6016663A/en
Publication of JPH0125863B2 publication Critical patent/JPH0125863B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 最近、RC造コンクリート建築におけるコンクリートの
質の低下が周知の如く大きな社会問題となっているが、
その内一番大きな要因をなすものに含水量の多い事が指
摘される。即ち昭和40年代より周知の如くポング圧送
による打設工法が広く普及し一般化しているが此の方法
ではコンクリートの流動性を高める必要があるところか
らその調合水が大巾に増えており、生コンクリートの調
合水量は昭和40年頃(現場練りの時代)はコンクリー
トlya”当り1501位であったが、ポンプ圧送によ
る現在の工法では200〜2201が普通となっている
。、此の水分の増大がコンクリートに及ぼす影響を挙げ
ると (1) 圧縮強度の減退。水分の増大による悪影響を比
較すると下表の如くになる。
[Detailed Description of the Invention] Recently, the decline in the quality of concrete in RC concrete buildings has become a major social problem as is well known.
It has been pointed out that the biggest factor in this is the high water content. In other words, since the 1960s, the pouring method using a pump has been widely used and has become common, but since this method requires increased fluidity of concrete, the amount of mixed water used has increased significantly. Around 1965 (the era of on-site mixing), the amount of mixed water for concrete was 1,501 per concrete lya, but with the current construction method using pump pressure, the amount of water mixed is 200 to 2,201. The effects on concrete are (1) Decrease in compressive strength.A comparison of the negative effects of increased moisture is shown in the table below.

表1 建築材料(共立出版社昭和47.4.1)栗山寛著(2
〕 収縮率の増大による構造クシツクの増加衣2 三菱鉱業セメント株式会社 技術資料 昭和51年3月発行 コンクリートに発生するひびわれ
Table 1 Building materials (Kyoritsu Shuppansha April 1, 1972) Written by Hiroshi Kuriyama (2)
] Increase in structural cracks due to increase in shrinkage rate 2 Mitsubishi Mining Cement Co., Ltd. Technical data published in March 1976 Cracks that occur in concrete.

(3) 使用鉄筋の錆の増加 友沢史記、樫野紀元、福士勲:海砂使用上の技術基準に
関する研究(その3) 鉄筋の防錆対策に関する実験的検討 (日本建築学会大会学術講演梗概集 昭和55年9月より抜粋) (4) 含有水による断熱、性能の相違と結露現象及び
その被害影響について。
(3) Increase in rust of reinforcing bars used Fumiki Tomozawa, Norimoto Kashino, Isao Fukushi: Research on technical standards for the use of sea sand (Part 3) Experimental study on rust prevention measures for reinforcing bars (Collection of Academic Lectures at the Architectural Institute of Japan Conference Showa (Excerpt from September 1955) (4) Regarding insulation due to water content, differences in performance, dew condensation phenomenon, and its damaging effects.

囚 一般に同じ密度の場合含水量が1チ増加するとその
コンクリートの熱伝導率は2〜4チ増加する(栗山寛、
建築材料、共立出版社S、 47.4.1 ) といわ
れているが、下の表はコンクリート内の相対湿度と熱伝
導率の関係をあられしたものである。
In general, if the water content increases by 1 inch for the same density, the thermal conductivity of concrete increases by 2 to 4 inches (Hiroshi Kuriyama,
Building Materials, Kyoritsu Shuppansha S, 47.4.1) The table below shows the relationship between relative humidity and thermal conductivity in concrete.

コンクリートにおける相対湿度と熱伝導率の関係 (但しコンクリ−1・乾燥過程における)表4 相対湿度(%) 名工大教授工博:宮野秋彦著 「建物の断熱と防湿」より。尚、点線部分は測定不能(
てつき推定線としました。
Relationship between relative humidity and thermal conductivity in concrete (concrete 1, during drying process) Table 4 Relative humidity (%) From "Thermal Insulation and Moisture Prevention of Buildings" by Akihiko Miyano, professor of engineering, Nagoya Institute of Technology. Note that the dotted line area cannot be measured (
I decided to use the Tetsuki estimated line.

(学芸出版社 S、 56.10.20.)CB) 含
有水の発散による防水シートのフクレ現象や断熱材の内
部結露、内装制の発カビによる被害の増加気乾状態のコ
ンクリートは固着水、毛管水を含めて専3当り約100
Lの水分を含有している。故に15OL使用の時代には
その乾燥過程で発散する水分は50.1.であったのに
対して220L使用した場合はその2.4倍の12OL
の水が発散するのでそれによる断熱材の内部結露や内装
材の発カビによる被害が目立って多くなってきた。特に
夏季においては最上階天井スラブは70〜80℃の高温
となるのでそれによる蒸気圧の発生は防水層のフクレ現
象をおこす最大の原因となっており、又、乾燥が大巾だ
遅れて床の表面処理料(Pタイル等)の剥離現象等が見
られるのも水分の多い弊害の一つである。従がって従来
一般に行なわれている型枠組み打設工法では周知の如く
、断熱(防音)材の下面側にコンクリートパネルを敷き
、その下側より通称バタ角鋼管と呼ばれる四角鋼管を介
して支柱パイプで下側より支え前記断熱材の上面如コン
クリートを打設するが、此の工法の欠点は支柱枠組みに
多大の労力と時間を要するとと\更に前記の如く断熱材
の下面側にコンクリートパネルを敷くために前述のコン
クリート余剰水の脱水が充分に出来ず特に石油化学断熱
材を使用した場合は殆ど此の効果は期待出来ず、又、型
枠を解体する際、断熱(防音)材が桟木やコンクリート
パネルに釘止めしているが此の釘が解体時の離脱ツバ衝
撃等により断熱材を損傷する問題点を有し、又、従来工
法の他の一つの工法でデツキプレート上にコンクリ−1
・を直接打設する工法は鋼管の枠組み、抜針の損傷等の
問題は無いが、反面、デツキプレートがコンクリートと
一体となって残置するため表面処理がしにく\又、断熱
材は使用することが出来ず、しかもコンクリートの余剰
水の脱水は不可能である問題点を各々している。
(Gakugei Shuppansha S, 56.10.20.) CB) Increased damage caused by blistering of waterproof sheets, internal condensation of insulation materials, and mold growth of interior systems due to dissipation of contained water. Approximately 100 per cent including capillary water
Contains L of water. Therefore, in the era when 15OL was used, the amount of water released during the drying process was 50.1. However, when using 220L, 12OL is 2.4 times that amount.
As water emanates from the interior of the building, damage caused by condensation inside insulation materials and mold growth on interior materials has become noticeably more common. Particularly in the summer, the ceiling slab on the top floor reaches a high temperature of 70 to 80 degrees Celsius, and the resulting vapor pressure is the biggest cause of blistering in the waterproof layer. One of the disadvantages of high water content is that surface treatment materials (such as P tiles) may peel off. Therefore, as is well known, in the conventional formwork casting method, a concrete panel is laid on the bottom side of the heat insulating (soundproof) material, and supports are placed from below through square steel pipes commonly known as Bata square steel pipes. The insulation is supported from below with pipes and concrete is placed on the top surface of the insulation material, but the disadvantage of this method is that it requires a lot of labor and time to construct the support framework. This effect cannot be expected especially if petrochemical insulation is used because the above-mentioned excess concrete water cannot be sufficiently dehydrated to lay the formwork, and when the formwork is dismantled, the insulation (soundproofing) material Although these nails are fastened to beams or concrete panels, there is a problem in that these nails can damage the insulation material due to the impact of the detached collar during demolition. -1
・The method of directly pouring does not cause problems such as damage to the steel pipe framework or needle removal, but on the other hand, it is difficult to treat the surface because the deck plate remains integrated with the concrete, and it is difficult to use insulation materials. Each method has the problem that it is impossible to remove excess water from concrete, and it is also impossible to dewater excess water from concrete.

本発明は斯かる問題点を解決し、コンクリート中の余剰
水をその打設時において多量に脱水し、しかも強度があ
るために支持枠組を必要とせず、従がって前記水分の多
いコンクリートの問題点を総て解決し、工期も著しく短
縮出来、しかも支持枠組が不用なだめに床の高さの低い
場所等にも利用出来、しかも断熱、吸音効果の犬なるコ
ンクリート建造物に於ける水平面スラブの脱水、強化工
法を発明したものである。
The present invention solves such problems, removes a large amount of excess water from concrete at the time of pouring, and does not require a supporting framework due to its strength, and therefore can be used to remove excess water from concrete with a large amount of water. Horizontal slabs for concrete buildings that solve all problems, significantly shorten the construction period, do not require a support framework, can be used in places with low floor heights, and have insulation and sound absorption effects. He invented a dewatering and strengthening method for

以下本発明を図面に就いて説明すると% ’%1は一定
間隔りを有して平行に設けた鉄骨梁である。2.2け鉄
骨梁1上に鉄骨梁1と直角方向に間隔1を有して固着し
た断面り字形の抱持鉄骨梁で一辺を互いに内側に向は対
向した位置に設ける。3は鉄骨梁1上に両端部を載置し
、且つ抱持鉄骨梁2.2内に左右両側面部を嵌め込み左
右より抱持せしめた木繊セメント板(セメント、マグネ
シアセメント及びその同好品の溶剤を外周面に付着せし
めた巾5〜50%、厚さ03〜1.5%の不定形の帯状
木片を加圧し多重空気層を形成して板状に硬化乾燥した
木質系セメント板)である。
The present invention will be explained below with reference to the drawings. %'%1 is a steel beam provided in parallel with a constant interval. 2. A supporting steel beam having a cross-section shaped like a truncated cross-section is fixed to the steel beam 1 at a distance of 1 in the perpendicular direction to the steel beam 1, and one side thereof is provided in a position facing each other inwardly. 3 is a wood fiber cement board (solvent of cement, magnesia cement and similar products) whose both ends are placed on the steel beam 1, and the left and right side parts are fitted into the holding steel beam 2.2 and held from the left and right sides. This is a wood-based cement board made by pressurizing an irregularly shaped piece of wood with a width of 5 to 50% and a thickness of 03 to 1.5% and hardening and drying it into a board shape to form multiple air layers. .

4.4−争・◆は木繊セメント板3内に適宜埋設した補
強椙 (例えば、竹節、鉄筋、本節、合成樹脂材、炭素
繊維拐、金網)である。Aは木繊セメント板3上に従来
通り打設したコンクリート層である。5.5は一定間隔
りを有して平行に設けたコンクリート地中梁である。6
.6はコンクリート地中梁5上にコンクリート地中梁5
と直角方向に間隔1を有して固着した断面り字形の抱持
鉄骨梁で一辺を互いに内側に向は対向した位置に設ける
。7はコンクリート地中梁5上に両端部を載置し、且つ
抱持鉄骨梁6、G内に左右両側面部を嵌め込み左右より
抱持せしめた木繊セメント板である。
4.4-Conflict ◆ is reinforcement material (for example, bamboo knots, reinforcing bars, main knots, synthetic resin material, carbon fiber strips, wire mesh) buried appropriately in the wood fiber cement board 3. A is a concrete layer cast on the wood fiber cement board 3 in the conventional manner. 5.5 are concrete underground beams installed in parallel at regular intervals. 6
.. 6 is a concrete underground beam 5 on top of a concrete underground beam 5
The supporting steel beams are fixed with an interval of 1 in the direction perpendicular to the frame, and are provided with one side facing each other inwardly. Reference numeral 7 designates a wood fiber cement board whose both ends are placed on the concrete underground beam 5, and whose left and right side surfaces are fitted into the holding steel beams 6, G to be held from the left and right sides.

本発明は斯かる構成なる故に、木繊セメント板3の上面
に敷設したコンクリ−1−Aの水分は木繊セメント板3
が有する下記の如く顕著な脱水効果により充分な脱水を
行ない、前記コンクリート余剰水による弊害を除去する
効果が期待出来るものである。木繊セメント板3の脱水
効果を示すと次の如くである。
Since the present invention has such a configuration, moisture in the concrete 1-A laid on the top surface of the wood fiber cement board 3 is absorbed by the wood fiber cement board 3.
It can be expected to perform sufficient dewatering due to the remarkable dewatering effect as described below, and to eliminate the adverse effects caused by the concrete surplus water. The dehydration effect of the wood fiber cement board 3 is as follows.

コンクリートの調合量 (コンクリート1痛3当り) 水 セメント 砂(乾) 砂利(乾)W/C比2001
− 330に92901 33Qz 約り0%上記調合
量のコンクリートを各々厚さ30%の木繊セメント板、
フオームポリスチレン、フオームポリスチレン防水シー
ト、厚さ12%のベニヤ合板の各々の上面に、100%
の厚さに敷設した場合IQR2(1mリ の打設時にお
ける脱水量を比較すると下表の如くである。
Mixed amount of concrete (per 1 hour concrete) Water Cement Sand (dry) Gravel (dry) W/C ratio 2001
- 330 to 92901 33Qz Approximately 0% Concrete with the above mixing amount was added to a wood fiber cement board with a thickness of 30%,
100% foam polystyrene, foam polystyrene tarpaulin, 12% thick veneer plywood on top of each.
The table below compares the amount of water removed when laying IQR2 (1 m thick).

表5 前記表は脱水後の重量測定比較によるものである。Table 5 The above table is based on a comparison of weight measurements after dehydration.

表5に示す如く木繊セメント板上に敷設した余剰水を含
むコンクリートの脱水効果は木繊セメント板の透水性に
よるフィルター効果と、吸放湿性能によってコンクリー
ト中の遊離水の脱水を助長するものであることが各種研
究の結果判明した。又、次に支柱及びコンクリートパネ
ルを必要としない本願発明の破壊強度の比較を次に示す
As shown in Table 5, the dehydration effect of concrete containing surplus water laid on wood fiber cement boards is due to the filter effect due to the water permeability of the wood fiber cement board and the moisture absorption and desorption performance that promotes the dehydration of free water in concrete. As a result of various studies, it was found that Next, a comparison of the breaking strength of the present invention, which does not require supports or concrete panels, will be shown below.

表6 上記表6の曲げ強度試験はJISA1408 (建築用
ボード類の曲げ試験方法)による。
Table 6 The bending strength test in Table 6 above is based on JISA1408 (bending test method for architectural boards).

試験体は3号の気乾状態とする。猶竹筋入木繊セメント
板は猛宗竹を略小指の径に引き割ったものを平行に約1
0α間隔で板の中心部に入れ板の厚さ50%に形成した
ものである。
The test specimen shall be air-dried in a No. 3 condition. The wood fiber cement board with bamboo strips is made by cutting a piece of bamboo to the diameter of about the diameter of a little finger and cutting it in parallel.
They are placed in the center of the plate at intervals of 0α and are formed to a thickness of 50% of the plate.

本発明の工法は上記の如く強靭性に富み従がって本発明
を実施した場合第1図における竹節入木繊セメント板3
の厚さ50%であれば鉄骨梁間隔りは1. a 20%
、ヱは910%の長さが最適の推奨長さであり周囲を下
端面より支持するのみで充分に荷重に耐えられ、従がっ
て、支持パネルは勿論のこと中間の支持枠組を一切必要
とせずに支持することが可能である。猶、竹節以外の前
記補強材を採用するときは前記竹節と同一荷重に耐え得
る寸法に形成したものを用いると同一効果が期待出来る
ものである。故に本発明を実施した場合の効果を列記す
ると、 (イ) コンクリート打設時における余剰水の脱水効果
により堅牢でり2ツクの少ないコンクリートスラブが得
られ、木繊セメント板の吸水性から生じる濡れムシロ的
効果と熱伝導率の低い(熱伝導率O,OS)保温効果に
よりコンクリートの養生が充分に行なえる。
The construction method of the present invention has high toughness as described above, and therefore, when the present invention is implemented, the wood fiber cement board 3 with bamboo knots in FIG.
If the thickness of is 50%, the steel beam spacing is 1. a 20%
The optimum recommended length for , E is 910% length, and it can withstand the load sufficiently just by supporting the periphery from the lower end surface, so there is no need for any intermediate support framework as well as a support panel. It is possible to support without However, when employing the reinforcing material other than the bamboo knots, the same effect can be expected if it is formed to a size that can withstand the same load as the bamboo knots. Therefore, the effects of carrying out the present invention are as follows: (a) Due to the dehydration effect of excess water during concrete pouring, a concrete slab that is strong and has a small amount of cracks can be obtained, and the wetting caused by the water absorption of the wood fiber cement board can be reduced. Concrete can be cured sufficiently due to its heat retention effect and low thermal conductivity (thermal conductivity O, OS).

(ロ) コンクリートスラブの上側面を防水処理或は床
表面処理を(Pタイル等〕 した後も下側の木繊セメン
ト板を通じて除々に乾燥してゆくので(イ)の効果と相
俟って防水層のフクレ現象や表面拐の剥離或は内部結露
を防止する。
(b) Even after the upper surface of the concrete slab is waterproofed or the floor surface is treated (P tile, etc.), it gradually dries through the wood fiber cement board underneath, so this is combined with the effect of (b). Prevents blistering of the waterproof layer, surface peeling, and internal condensation.

(ハ) コンクリート余剰水は下面側に廻り込まないで
下に落下してしまうので断熱材の下面で固まるような事
がない。
(c) Surplus concrete water does not go around to the bottom side and falls down, so it does not harden on the bottom side of the insulation material.

(ニ)型枠解体の作業が無いのでそれによる断熱(防音
)材の破損はおこらない。
(d) Since there is no work to dismantle the formwork, the insulation (soundproofing) material will not be damaged as a result.

(ホ)最下階床に使用した場合には型枠解体作業をする
必要性から床下高さを最低80〜90crnにしなけれ
ば施工が出来なかったが本発明を実施すると型枠解体作
業を必要としないために床高を自由に低く出来、その分
建築費が節約出来、床の低い事が出入の危険防止上等で
有利外老人施設、身障者施設、保育所、病院、学校等で
は特にその効果は大きい。
(E) When used on the lowest floor, it was necessary to dismantle the formwork, so construction could not be carried out unless the height under the floor was at least 80 to 90 crn, but if the present invention is implemented, the formwork will be dismantled. The floor height can be lowered freely to prevent the building from becoming too crowded, which saves construction costs.Low floors are especially advantageous in preventing dangers when entering and exiting, especially in facilities for the elderly, facilities for the disabled, daycare centers, hospitals, schools, etc. The effect is great.

(へ)型枠組を必要としないだめに最上階天井(屋根)
スラブを各階床を作る前に造る事が可能となるので天候
による作業の遅延が無くなり工期が正確迅速に進行出来
る。
(to) Top floor ceiling (roof) that does not require formwork
Since the slab can be constructed before each floor is constructed, there are no delays in work due to weather, and the construction period can proceed accurately and quickly.

((J コンクリートパネル、バク角鋼管、支え支柱等
が不用となるので工事は簡易迅速化して従来の工事現場
の様な混雑が無くなり工費も大巾に削減出来る。
(J) Since concrete panels, rectangular steel pipes, support columns, etc. are no longer required, the construction work becomes simpler and faster, eliminates the congestion that occurs at conventional construction sites, and significantly reduces construction costs.

等の効果が期待出来、猶、その上に木繊セメント板の特
質である吸音性能の良好性とも相俟ってその効果誠に大
なるものが期待出来る発明である。
This invention can be expected to have the following effects, and when combined with the good sound absorption performance that is a characteristic of wood fiber cement boards, it is an invention that can be expected to have truly great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施の一例を示す正面図である。 第2図は側面図である。 第3図はコンクリート地中梁に本発明を実施する場合の
正面図である。 第4図は側面図である。 1・・・・鉄 骨 梁 2・・・・抱持鉄骨梁 3・・・・木繊セメント板 4・・・・補強材 5e・・・コンクリート地中梁 6・・・・抱持鉄骨梁 7・・・・木繊セメント板 特許出願人 奥 谷 謙 三
FIG. 1 is a front view showing an example of implementation of the present invention. FIG. 2 is a side view. FIG. 3 is a front view when the present invention is applied to a concrete underground beam. FIG. 4 is a side view. 1...Steel frame beam 2...Holding steel beam 3...Wood fiber cement board 4...Reinforcement material 5e...Concrete underground beam 6...Holding steel beam 7... Wood fiber cement board patent applicant Kenzo Okutani

Claims (1)

【特許請求の範囲】 (1) 補強材で補強した木繊セメント板の外周に沿っ
て底面を下側より支持し、補強材で補強した木繊セメン
ト板の上側表面にコンクリートを敷設することを特徴と
するコンクリート建造物に於ける水平面スラブの脱水、
強化工法。 (2)補強材が竹節である特許請求の範囲第1項記載の
コンクリート建造物における水平面スラブの脱水、強化
工法。 (8)補強材が鉄筋である特許請求の範囲第1項記載の
コンクリート建造物における水平面スラブの脱水、強化
工法。 (4) 補強材が本節である特許請求の範囲第1項記載
のコンクリート建造物における水°平面スラブの脱水、
強化工法。 (5) 補強材が合成樹脂材である特許請求の範囲第1
項記載のコンク・リート建造物における水平面スラブの
脱水、強化工法。 (6) 補強材が炭素繊維材である特許請求の範囲第1
項記載のコンクリート建造物における水平面スラブの脱
水、強化工法。 (η 補強でか金網材である特許請求の範囲第1項記載
のコンクリート建造物における水平面スラブの脱水、強
化工法。
[Scope of Claims] (1) The bottom surface is supported from below along the outer periphery of a wood fiber cement board reinforced with a reinforcing material, and concrete is laid on the upper surface of the wood fiber cement board reinforced with a reinforcing material. Features include dewatering of horizontal slabs in concrete buildings,
Reinforcement method. (2) A method for dewatering and strengthening a horizontal slab in a concrete building according to claim 1, wherein the reinforcing material is bamboo knots. (8) A method for dewatering and strengthening a horizontal slab in a concrete building according to claim 1, wherein the reinforcing material is a reinforcing bar. (4) Dewatering of a horizontal slab in a concrete building according to claim 1, where the reinforcing material is this section;
Reinforcement method. (5) Claim 1 in which the reinforcing material is a synthetic resin material
Dewatering and strengthening method for horizontal slabs in concrete buildings as described in Section 2. (6) Claim 1 in which the reinforcing material is carbon fiber material
Method for dewatering and strengthening horizontal slabs in concrete buildings as described in Section 1. (η A method for dewatering and strengthening a horizontal slab in a concrete building according to claim 1, which is a reinforced wire mesh material.
JP12414983A 1983-07-07 1983-07-07 Dehydration and reinforcement of horizontal plane slab in concrete building Granted JPS6016663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12414983A JPS6016663A (en) 1983-07-07 1983-07-07 Dehydration and reinforcement of horizontal plane slab in concrete building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12414983A JPS6016663A (en) 1983-07-07 1983-07-07 Dehydration and reinforcement of horizontal plane slab in concrete building

Publications (2)

Publication Number Publication Date
JPS6016663A true JPS6016663A (en) 1985-01-28
JPH0125863B2 JPH0125863B2 (en) 1989-05-19

Family

ID=14878144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12414983A Granted JPS6016663A (en) 1983-07-07 1983-07-07 Dehydration and reinforcement of horizontal plane slab in concrete building

Country Status (1)

Country Link
JP (1) JPS6016663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718610U (en) * 1990-12-28 1995-04-04 有限会社日成サービス Women's buttocks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516921U (en) * 1974-07-02 1976-01-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516921U (en) * 1974-07-02 1976-01-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718610U (en) * 1990-12-28 1995-04-04 有限会社日成サービス Women's buttocks

Also Published As

Publication number Publication date
JPH0125863B2 (en) 1989-05-19

Similar Documents

Publication Publication Date Title
US3295278A (en) Laminated, load-bearing, heat-insulating structural element
US8539721B2 (en) Lightweight building structure produced by using a mortar and a method for the production
JPH05508203A (en) How to build a plaza deck
JP2009511775A (en) Prefabricated composite flooring
CN114109030A (en) Construction method of special-shaped structure of bare concrete diaphragm wall
CN103615110A (en) Irregular oblique-crossing web-shaped grillage beam hyperbolic roof structure construction method
US2220349A (en) Building construction
CN113898104A (en) Concrete construction system for large-gradient special-shaped inclined roof and construction method thereof
US3578732A (en) Method of forming building walls
JPS6016663A (en) Dehydration and reinforcement of horizontal plane slab in concrete building
US1786751A (en) Roof construction
DE1869140U (en) BUILDING PLATE WITH INSULATING LAYER.
US1726031A (en) Precast roof slab
CN105297950A (en) Infilled wall and horizontal load-bearing structure gap wall surface crack-controlling construction method
CN216196267U (en) Heat preservation floor structure
CN112302045A (en) Construction method of foundation beam side vertical face waterproof structure
DE2628457A1 (en) Thin concrete panels for covering walls or ceilings - where panel has one layer of concrete reinforced by glass fibres
DE9400637U1 (en) Ceiling shut-off block with integrated thermal insulation
RU2060332C1 (en) Wall block
US1978012A (en) Art of building construction
US811491A (en) Floor structure.
JPS60181462A (en) Construction method of concrete dehydration frame
JPS5820031Y2 (en) floating floor
SU69491A1 (en) Fencing of buildings
JPS5854146A (en) Execution of deck plate