JPS60165470A - Method of controlling operation of refrigerator - Google Patents

Method of controlling operation of refrigerator

Info

Publication number
JPS60165470A
JPS60165470A JP2141484A JP2141484A JPS60165470A JP S60165470 A JPS60165470 A JP S60165470A JP 2141484 A JP2141484 A JP 2141484A JP 2141484 A JP2141484 A JP 2141484A JP S60165470 A JPS60165470 A JP S60165470A
Authority
JP
Japan
Prior art keywords
cooler
defrosting
cooling
time
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2141484A
Other languages
Japanese (ja)
Inventor
酒井 克広
国分 和衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2141484A priority Critical patent/JPS60165470A/en
Publication of JPS60165470A publication Critical patent/JPS60165470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【発明の屈する技iR分野] ごの発明はペアフリーザと呼ばれる冷凍冷蔵シ!!−ゲ
ースの二つの冷却室に振り分けてそれぞれ配備された複
数基の冷却器を1台の冷凍機コンデンシングユニットで
並列運転する冷凍装置の運転制7311方法に関する。 【従来技術とその問題点】 まず第1図により、この発明の実施対象となる即記ベア
フリーツの概要構成を述べる。図においrx−1,x−
mは−に下に債み重ねて組立構成された全面扉付きの冷
却室および上面開放の平形冷却室であり、各冷却室1−
1.1−11はそれぞれ冷気循環jfrl Jli目?
8が仕切られて、ココニ冷却m2−1 、2− II、
4ンよび庫内冷気循環用の送風ファン3−1.3−11
が11V、設され°(いる。また前記冷却器2−1と2
−I[は基台に内蔵設備された冷凍機のコンデンシング
ユニット4に接続配管し゛C並列運転され、各冷却室l
−1,1−11に収容された商品を保冷する。 ところで、上記冷凍装置の従来における冷凍回路は第2
図のごとくであり、図においてコンデンシングユニット
4は電動圧縮tfl141. #縮器42.受波器43
.気液分離器44.凝縮器の冷却ファン45等テ4N 
成され、このコンデンシングユニット4に対し°C冷却
器2−1.2−nが並列に接続配管されている。なお5
−115−11は冷却器2−1 、2−、 IIへ通じ
る分岐冷媒回路に介挿された膨張ブiである。一方、冷
却器に対しては周知のように所定時間置きに除霜を行う
必要があり、この除霜1段とし一ζ各冷却器には除霜ヒ
ータ(+−1,f3.11が付属しており、電磁接F1
1!器を介して電源に接続されている。またがかる冷凍
装置の従来における運転制御回路は第3図のごとくであ
り、図中ICは電動圧1?i機、l111はバそtii
I器の冷却ファン、IQl l 、 Fil 2は庫内
側のファン、T+目よ除霜1け令を与える24時間ブ1
1グラマクィマ、51Cは除霜ヒータの電磁接触器、5
2cは電動圧縮機の電ff1接触器である。該運転:1
.す宿j回路による運転タイムチ十−トはffl 4 
[Flのこ゛とく゛であり、4〜6時間置きにり・イマ
THより#、霜指令が与えられると、タイマ内蔵の接点
が切換わって圧1iii 161 MGが停止して冷却
器2−1’ 、 2− IIの運転を中晰し、同時に除
霜ヒータ13−1.6−11に通電が開始されて冷却器
21.2−11の除霜を行う。また所定の除霜時間が経
過すると、タイマTHの指令により除霜から冷却運転に
切1詐わり、除霜ヒータが非通電となって圧わ?1機M
eが再び始動する。 ところで上記従来の運転制御方法では欠配のよ・)な問
題がある。すなわち、除霜時にはヒータ加熱により冷却
室の室温が上昇し、しかも二つの室1−1と1−■を同
じタイミングで除霜を行うので除霜後の冷却運転i1T
開時の冷凍負荷が定常負荷に比べ°ζ大となる。このた
めに除霜終了後に室温を所)jコの温度まで低下させる
までのプルダウンに要する14間が長くかかり、この結
果第4図の品温特性夏、11のJ: 、+、に冷却室1
−1.1−11の各室に収容されCいる商品の品温上昇
幅が大となり、かつ除霜結j″後から所Xiτの保冷温
度Toに達するまでの時間りが1.iいために商品の品
質維持に悪影響を与えるよ・)になる。 1発明の「1的】 この発明は1.、記の点にかんがみなされたものであり
、その
[Techniques of invention in iR field] Your invention is a freezing/refrigerating system called Pair Freezer! ! -Relates to a refrigeration system operation control method 7311 in which a single refrigerator condensing unit operates a plurality of coolers arranged in two cooling chambers in parallel. [Prior Art and its Problems] First, with reference to FIG. 1, a general configuration of a ready-to-read Bare Fleet, which is an object of the present invention, will be described. In the figure rx-1, x-
m is a cooling room with a full-face door and a flat cooling room with an open top, which are assembled by stacking them on top of each other, and each cooling room 1-
1.1-11 are cold air circulation jfrl Jli respectively?
8 is partitioned, Kokoni cooling m2-1, 2-II,
3-1.3-11 Blower fan for circulating cold air inside the refrigerator
is set at 11V.Also, the coolers 2-1 and 2
-I is connected to the condensing unit 4 of the refrigerator built into the base, and is operated in parallel, with each cooling room l
-1, 1-11 to keep the products stored cold. By the way, the conventional refrigeration circuit of the above-mentioned refrigeration system has a second
As shown in the figure, the condensing unit 4 is electrically compressed tfl141. #Compressor42. Receiver 43
.. Gas-liquid separator 44. Condenser cooling fan 45 etc. 4N
A °C cooler 2-1.2-n is connected to the condensing unit 4 in parallel. Note 5
-115-11 is an expansion tube i inserted in a branch refrigerant circuit leading to coolers 2-1, 2-, and II. On the other hand, as is well known, it is necessary to defrost the cooler at predetermined intervals, and each cooler is equipped with a defrost heater (+-1, f3.11). and electromagnetic contact F1
1! connected to the power supply via the The conventional operation control circuit of such a refrigeration system is as shown in Figure 3, and the IC in the figure indicates an electric voltage of 1? i machine, l111 is bass tii
The cooling fan of the I unit, IQl l, Fil 2 is the fan inside the refrigerator, and the 24-hour fan 1 that provides 1 step of defrosting.
1 Gramaquima, 51C is a defrost heater electromagnetic contactor, 5
2c is an electric ff1 contactor of the electric compressor. Applicable operation: 1
.. The driving time chart for the accommodation j circuit is ffl 4
[Fl is very small, so every 4 to 6 hours. When a frost command is given from TH, the contacts in the timer switch, the pressure 1iii 161 MG stops, and the cooler 2-1' , 2-II is moderately operated, and at the same time, electricity is started to be supplied to the defrosting heater 13-1.6-11 to defrost the cooler 21.2-11. When the predetermined defrosting time has elapsed, the command from timer TH switches from defrosting to cooling operation, and the defrosting heater is de-energized and the pressure is reduced. 1 machine M
e starts again. However, the conventional operation control method described above has several problems. That is, during defrosting, the room temperature of the cooling chamber rises due to heating by the heater, and since the two chambers 1-1 and 1-■ are defrosted at the same timing, the cooling operation i1T after defrosting is
The refrigeration load when open is larger than the steady load. For this reason, it takes a long time to pull down the room temperature to the temperature of (J) after defrosting, and as a result, the product temperature characteristics shown in Figure 4 are as follows: 1
-1.1-11 The temperature rise of the products C stored in each room is large, and the time from defrosting j'' to reaching the cold storage temperature To of Xiτ is 1.i. It will have a negative impact on maintaining the quality of the product.) ``Object 1'' of the invention 1. This invention was made in consideration of the points 1. and 1.

【1的暑よ除霜終了後の冷却運転再開時におりる
プルダウン時間の短縮を図り、除霜に1°l!う収納商
品の品2!L−1=昇をできるだり低く抑え゛ζ品質劣
化を防止できるようにした頭記冷凍装置の運転制御方法
を提供Jるこ六にある。 【発明の要点】 」−2目的を達成するために、この発明は各冷却室に(
す屈する冷却器の除紺を同時に行わず相互に時間をずら
し°ζ行うとともに、各冷却器について除霜終r後の冷
却運転再開時には、当該運転再開側の冷却器を除く他方
側の冷却器の運転を所定時間だり強制的にf?止制御す
ることにより、コンデンシングユニットの能力をフルに
運転pT開側の冷却器に使っ°ζ最大の冷凍能力でプル
ダウンを行い、これによりプルダウン時間をtH縮して
除霜に1’l’う商品の品温上昇幅をできるだけgl(
<抑えることができるようにしたものである。 【発明の実施例] 第5図、第6図、第7図はそれぞれこの発明の運転制御
方法を実施するための冷凍装置の冷凍回路図、運転制御
回路図、およびその運転チ→・−1・を示すものである
。まず第5図において、第2図の従坐1iIIV8と比
べ°ζ冷却器2−1.2−11へ通じる各分岐量v8に
はそれぞれ電磁弁?−1,7−nが介挿され′Cおり、
かつ各除霜し−タ6−1.6−■はそれぞれ1す(立的
に電磁接触器を介して電源に接続されている。また第6
図のように運転制御回路は冷却器21.2−11のII
FJ々に対応する2系統の回路から構成され′ζいる。 ずなわち図中、TMl、7M2はそれぞれ冷却器2J、
2−11に対応したプログラムタイマ、SVI、SV2
は冷媒回路に介挿した第5図における符(J7 1 、
7− IIに対応する電磁弁、51C1,51C2は除
霜1=−タ(Ll、(J−11に付属する電磁接触器、
TXI。 1゛x2はオンデレーリレー、Xl、X2は補助リレー
、その伯は第3し1と同様である。ここでプログラムタ
・fマTi1l、7+12は相互、に時間をずらして冷
却器2−1.2−11へ除霜IFr令を与えるようにあ
らかじめプ11グラムの設定がなされている。 次に上記τI;l tac+回路による運転制御動作を
第7図のクイムチャ−1に照して述べる。今冷却器2−
1゜2−IIがともに運転されて、第1図に示した冷却
室1−1.1−Hの保冷運転を行っている状態から、ま
ずクイマ丁旧の動作により冷却器2−夏に除霜指令が与
えられると、電磁弁Svlがオフ、r11磁接触器51
 CIがオンに切換って冷却器2−1は除霜に入る。 なおこの場合にリレーTXIの接点TにIIはオフとな
るが補助リレーXIの接点X11.X12がオンとなる
ので電磁弁1−nに対応する冷却8!I2−■、および
庫内ファンI’M2は運転を継続する。次に所定の除r
rI時間が経過して除霜が終了し、可び夕・fマTMI
が除霜側から冷却運転側に切換ると、この時点ではタイ
マTM2は冷却運転の指示を与え°ζい一ζリレーTX
2の接点TX21が閉じているのでffi&(弁SVI
ば直ちにオンとなって冷却器2−1はプルダウンに入る
が、一方この時点では接点Xll、X12がオフし、か
つオンデレーリレーTXIの限時動作により接点Tχ1
1゜TXJ2は直ちにオンとならないために電磁弁SV
2およびファンFM2はオフとなり、冷却室り、II側
の冷却器2.IIおよび庫内ファン3−■は強制的に運
転が中断される。そしてオンデレーリレーTXIO1a
lltoが経過した時点で接点TX11.TX12がオ
ンとなりilfび運転状態に戻る。このような制御動作
の経通は冷却X12.Ifに対しても同様であり、冷却
室1−■が除霜に入り、除霜終了後に運転再開されると
、今度は他方の冷却室1−1側でオンデレーリレーTX
2の1v時動niにより、冷却m2−1.ファン3−1
が所定時間の間だり強制的に運転停止制御される。なお
第〔3図の制0;1回路は一例を示したものであり、オ
ンデレーリレーTにl、TX2を用いる代わりにプログ
ラムタイマTRI、TM2を活用して除霜終了後のプル
ダウン峙に所定時間だけ他方側の冷却器、庫内ファンの
運転1’;’ 、11:制御を行うよう回路を構成する
こともできる。 」二記の運転制御方法によれば、冷却室1−1.1−1
1の一方側で冷却器の除霜が行われ、除霜終了後に冷却
運転が1Irr3nされてプルダウンに入ると、他ろ側
の冷却室では今迄運転状態にあった冷却器。 ファンが強制的に一時的に運転が停止制御されることに
なる。これにより運転再開側の冷却器はコンデンシング
プ、ニットの能力をフルに活用して最大の冷凍能力でプ
ルダウンが行われることになり、したがってff17図
の品温特性曲線■あるいはUのように運転再開側の冷却
室の室温が所定の蓄冷温度まで低Fするに要するプルダ
ウン時間t゛が!7S4図と比べて大幅に短縮され、こ
の結果除霜に1′1!う商品の−L、 Jf’幅が小さ
く抑えられることになる。また他方側の冷却室におい一
ζは、一時的に冷却器が停止するが、この運転中断以前
の段階ではコンデンシングユニットの能力がフルに寄与
し°ζ」分に蓄冷されCいるので商品の品温−ヒ昇を極
僅かに川1えることができる。加え°(この冷却器(?
止期間にタイミングを合わ・Iて庫内ファンも同時停+
l二1−るようにしたこさにより、通風による商品から
の強制放熱を抑えて前記の蓄冷状態を良好に維持でき、
ご1Lにより図示の品温特性のように品温を所定の保冷
温緻To以F4こ保持し、品温−に胃防止効果を、Lリ
レIN 1Y1iめることができる。この点について発
明賽の行ったショーケースの実機運転テストにJ:れば
、全体の運、転す−イクルの中で商品の品温J: ’i
t幅をIL来方式と比べて約2deg下げる良好な結果
がHられることが確認され′ζいる。 [発明の効果] 以l:述べたようにこの発明によれば、各独立の冷却室
にそ1Lぞれ振り分けて配備された複数基の7り却器を
、j /lの冷凍機コンデンシングユニットに並列接続
し°ζ並列運転を行う冷凍装置において、各冷却器のV
t、霜を相互に時間をずらして行うとともに、各冷却室
の冷却器について除霜終了後の運転四開時に、!11該
運転再gi側の冷却器を除く他方側の冷却器を前記運転
再開側の冷却器のプルダウン開bliから所定時間だけ
その運転を強制的に停止制御するように運転制御するこ
とにより、除霜終J′I々のプルダウン時間の短縮を図
って除霜によるシ・r−ケース等の冷却室内収納商品の
品温上昇幅をJi↓小眼に押え、これによって商品の品
質劣化を防1にできる優れた効果が得られる。
[It's extremely hot! We aim to shorten the pull-down time when restarting cooling operation after defrosting, and defrost by 1°l! Storage product item 2! The present invention provides a method for controlling the operation of the above-mentioned refrigeration equipment by suppressing the increase in L-1 as low as possible and preventing quality deterioration. [Summary of the Invention] ”-2 In order to achieve the objectives, this invention provides (
In addition, when cooling operations are restarted after defrosting is completed for each cooler, the defrosting of the coolers is not carried out at the same time, but at different times. driving for a specified time or forcing f? By controlling the stop control, the full capacity of the condensing unit is used for the cooler on the open side of the operating pT to perform pulldown at the maximum refrigeration capacity, thereby reducing the pulldown time to 1'l' for defrosting. Reduce the temperature rise of the product as much as possible (
<This is something that can be suppressed. [Embodiments of the Invention] Figures 5, 6, and 7 are respectively a refrigeration circuit diagram, an operation control circuit diagram, and an operation diagram of a refrigeration system for carrying out the operation control method of the present invention.・It indicates. First, in FIG. 5, compared to the subordinate seat 1iIIIV8 in FIG. -1,7-n is inserted,
And each defroster 6-1.6-■ is connected vertically to the power supply via a magnetic contactor.
As shown in the figure, the operation control circuit is the II of cooler 21.2-11.
It is composed of two circuits corresponding to FJs. In the figure, TMl and 7M2 are coolers 2J and 7M2, respectively.
Program timer compatible with 2-11, SVI, SV2
is the mark (J7 1,
Solenoid valves corresponding to 7-II, 51C1 and 51C2 are defrosting 1 = -ta (Ll, (magnetic contactor attached to J-11,
TXI. 1 x 2 is an on-delay relay, Xl and X2 are auxiliary relays, and their numbers are the same as the 3rd and 1st. Here, the programmer Ti11, 7+12 is set in advance so that the defrost IFr command is given to the cooler 2-1.2-11 at different times. Next, the operation control operation by the τI;l tac+ circuit will be described with reference to Quimchar-1 in FIG. Now cooler 2-
1゜2-II are both operated and the cooling chamber 1-1.1-H shown in Fig. 1 is in a cold storage operation. When a frost command is given, the solenoid valve Svl is turned off, and the r11 magnetic contactor 51
CI is switched on and cooler 2-1 enters defrosting. In this case, contacts T and II of relay TXI are turned off, but contacts X11. of auxiliary relay XI are turned off. Since X12 is turned on, cooling 8 corresponding to solenoid valve 1-n! I2-■ and the internal fan I'M2 continue to operate. Then the prescribed exclusion r
After the rI time has passed and defrosting is completed, the TMI
When switching from the defrosting side to the cooling operation side, at this point timer TM2 gives an instruction for cooling operation and relay TX
2 contact TX21 is closed, ffi&(valve SVI
The cooler 2-1 is immediately turned on and enters the pull-down state, but at this point, contacts Xll and X12 are turned off, and contact Tχ1 is turned off due to the time-limited operation of the on-delay relay TXI.
1゜Because TXJ2 does not turn on immediately, solenoid valve SV
2 and fan FM2 are turned off, and the cooling chamber and the cooler 2.2 on the II side are turned off. The operation of II and the internal fan 3-■ is forcibly interrupted. And ondeley relay TXIO1a
When llto has elapsed, contact TX11. TX12 turns on and returns to ilf operation state. This kind of control operation is based on cooling X12. The same applies to If, when cooling chamber 1-■ enters defrosting and restarts operation after defrosting, on-delay relay TX is activated on the other cooling chamber 1-1 side.
2, cooling m2-1. fan 3-1
is forced to stop operating for a predetermined period of time. Note that the control circuits 0 and 1 in Figure 3 show an example, and instead of using the on-delay relay T and TX2, the program timers TRI and TM2 can be used to set the predetermined pull-down position after defrosting. It is also possible to configure the circuit to control the operation of the cooler on the other side and the fan in the refrigerator for the time 1';', 11:. According to the operation control method described in Section 2, cooling chamber 1-1.1-1
Defrosting of the cooler is performed on one side of the cooling chamber 1, and after the defrosting is completed, the cooling operation is reduced to 1Irr3n and enters pull-down, and the cooler that has been in operation in the cooling chamber on the other side. The fan will be forced to temporarily stop operating. As a result, the cooler on the restart side will perform pulldown at the maximum refrigeration capacity by fully utilizing the condensing pump and knitting capacities, and therefore will operate as shown in the product temperature characteristic curve ■ or U in figure ff17. The pull-down time t゛ required for the room temperature of the cooling room on the restart side to drop to the predetermined cold storage temperature! It is significantly shorter than the 7S4 diagram, resulting in a defrosting time of 1'1! -L and Jf' widths of the product can be kept small. In addition, in the cooling room on the other side, the cooler temporarily stops, but before this operation interruption, the condensing unit's capacity contributes to its full capacity, and the product cools by 1ζ. It is possible to increase the temperature of the product by a very small amount. Add ° (this cooler (?
At the same time as the shutdown period, the fans inside the refrigerator will also stop at the same time.
Due to its stiffness, it is possible to suppress forced heat radiation from the product due to ventilation and maintain the above-mentioned cool storage state,
As shown in the product temperature characteristics shown in the figure, the food temperature can be maintained at a predetermined cold storage temperature by F4, and the food temperature can have a stomach-preventing effect. In this regard, if the actual machine operation test of the showcase conducted by Inventor Sai is carried out, the overall luck will be changed - the temperature of the product in the cycle J: 'i
It has been confirmed that good results can be obtained by lowering the t width by about 2 degrees compared to the conventional IL method. [Effects of the Invention] As described above, according to the present invention, a plurality of 7 refrigeration units each having 1 liter capacity allocated to each independent cooling chamber can be used for condensing a refrigerator of j/l. In a refrigeration system that is connected in parallel to units and operated in parallel, the V of each cooler is
t. Defrosting is carried out at different times, and when the coolers in each cooling room are turned on after defrosting is completed, 11 The operation of the coolers on the other side, excluding the cooler on the side where the operation is restarted, is controlled to be forcibly stopped for a predetermined period of time from the pull-down opening bli of the cooler on the side where the operation is resumed. By shortening the pull-down time at the end of frost, the rise in temperature of products stored in the cooling room, such as cases, due to defrosting, is suppressed to a small extent, thereby preventing product quality deterioration. Excellent effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施対象であるベアフリーリ゛の概
要措成図、第2図、第3図、第4図はそれぞれ従来方式
による冷凍■略図、運転制御回路図。 品温特性とともに示した運転タイムチャート、第5図な
いし第7図はこの発明の実施例に閏するもので、第5図
は冷凍回路図、ff16図は運転制御回路図、第713
1!Iは運転制御動作および品温特性を表ず運転タイム
チャートである。 1−、 I 、 1.− I+−冷却室、 2−1 、
2−’II −冷却器、3−1 、3− n−m−庫内
通風フアン、4−コンデンシングユニット、6−1,6
11−除霜ヒータ、7−1.7−11−電磁弁。 \ 乙。 才1図 41 42 才2図 才3(2] 7を図
FIG. 1 is a schematic diagram of a bare free system to which the present invention is applied, and FIGS. 2, 3, and 4 are a schematic diagram of a conventional refrigeration system and an operation control circuit diagram, respectively. The operation time charts shown with the product temperature characteristics, FIGS. 5 to 7, are related to the embodiment of this invention. FIG. 5 is a refrigeration circuit diagram, FIG. ff16 is an operation control circuit diagram, and FIG.
1! I is an operation time chart that does not represent operation control operations and product temperature characteristics. 1-, I, 1. - I+-cooling room, 2-1,
2-'II - Cooler, 3-1, 3- nm-Interior ventilation fan, 4- Condensing unit, 6-1, 6
11-Defrost heater, 7-1.7-11-Solenoid valve. \ Otsu. Figure 1 41 42 Figure 2 Figure 3 (2) Figure 7

Claims (1)

【特許請求の範囲】 l)各独立の冷却室にそれぞれ振り分番ノで配備された
複数基の冷fJI器を、1台の冷ρ1(機ごlンデンシ
ングユニットに並列接続して並列運転を行う冷凍装置の
運転制御方法であって、各冷却器の除霜を相互に時間を
すらし0行うとともに、各冷却室の冷却器につい”ζ除
霜終了後の運転打開時に、当該運転停止側の冷却器を除
く(1方側の冷却器を前記運転再開側の冷却器のプルダ
ウン開始から所定時間だ番Jその運転を強制的に停止;
1.す御することを特徴とする冷凍装置の運転制御方法
。 2、特許請求の範囲第1項記載の運転制御方法においζ
、冷却器の強制運転停止期間にタイミングを合わ−Uて
当該運転停止側の冷却室の庫内冷気循環用の送風ファン
を強制的に停止fl;!I (nIIすることを特徴と
する冷凍装置の運転制御方法。
[Scope of Claims] l) A plurality of cold fJI machines installed in each independent cooling room in a divided number are connected in parallel to one cold fJI machine (machine cooling unit). A method for controlling the operation of a refrigeration system, in which the defrosting of each cooler is performed at intervals of time, and when the cooler in each cooling room is cleared from operation after the completion of defrosting, the operation is Remove the cooler on the stopped side (forcibly stop the operation of the cooler on one side for a predetermined period of time from the start of pull-down of the cooler on the restarting side);
1. 1. A method for controlling the operation of a refrigeration system. 2. In the operation control method according to claim 1, ζ
, At the same time as the forced operation stop period of the cooler, the fan for circulating cold air in the cooling room on the side where the operation is stopped is forcibly stopped fl;! I (nII) A method for controlling the operation of a refrigeration system.
JP2141484A 1984-02-08 1984-02-08 Method of controlling operation of refrigerator Pending JPS60165470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2141484A JPS60165470A (en) 1984-02-08 1984-02-08 Method of controlling operation of refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2141484A JPS60165470A (en) 1984-02-08 1984-02-08 Method of controlling operation of refrigerator

Publications (1)

Publication Number Publication Date
JPS60165470A true JPS60165470A (en) 1985-08-28

Family

ID=12054355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2141484A Pending JPS60165470A (en) 1984-02-08 1984-02-08 Method of controlling operation of refrigerator

Country Status (1)

Country Link
JP (1) JPS60165470A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163301A (en) * 2011-02-09 2012-08-30 Nakano Refrigerators Co Ltd Refrigerator control device and method of controlling refrigerator
JP2012163300A (en) * 2011-02-09 2012-08-30 Nakano Refrigerators Co Ltd Device and method of controlling refrigerating machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163301A (en) * 2011-02-09 2012-08-30 Nakano Refrigerators Co Ltd Refrigerator control device and method of controlling refrigerator
JP2012163300A (en) * 2011-02-09 2012-08-30 Nakano Refrigerators Co Ltd Device and method of controlling refrigerating machine

Similar Documents

Publication Publication Date Title
JP4068390B2 (en) Defrosting operation method of refrigerator equipped with two evaporators
JP5489517B2 (en) Refrigeration equipment for land transportation
CN111094880A (en) Refrigerating machine
JPS60165470A (en) Method of controlling operation of refrigerator
KR102617277B1 (en) Refrigerator and method for controlling the same
KR20100013590A (en) Stepping valve setting method in kimchi refrigerator of direct and indirect cooling type
KR101145223B1 (en) Operation control method of refrigerator
KR100846114B1 (en) Controlling process for refrigerator
JPH09318165A (en) Electric refrigerator
JP2771730B2 (en) Showcase
KR100898052B1 (en) Method for controlling an operation of refrigerators
JP2014219149A (en) Refrigerator
KR100425114B1 (en) defrosting method in the refrigerator with 2 evaporators
JPH1083482A (en) Vending machine
EP4261483A1 (en) Refrigerator and controlling method thereof
JP7074915B2 (en) Heat pump device
US11879681B2 (en) Method for controlling refrigerator
JP6096859B1 (en) refrigerator
JP2567710B2 (en) Cooling device operation control device
JPS604058Y2 (en) Defrosting circuit device for refrigeration equipment
KR20180039832A (en) Refrigerator and Controlling method for the same
KR20180039831A (en) Refrigerator and Controlling method for the same
JP2023098320A (en) refrigerator
JPH04273974A (en) Freezing and refrigeration show case
KR20220080618A (en) Refrigerator and control method thereof