JPS6016382B2 - Heat-curing cement composition - Google Patents

Heat-curing cement composition

Info

Publication number
JPS6016382B2
JPS6016382B2 JP54141828A JP14182879A JPS6016382B2 JP S6016382 B2 JPS6016382 B2 JP S6016382B2 JP 54141828 A JP54141828 A JP 54141828A JP 14182879 A JP14182879 A JP 14182879A JP S6016382 B2 JPS6016382 B2 JP S6016382B2
Authority
JP
Japan
Prior art keywords
cement
weight
heat
parts
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54141828A
Other languages
Japanese (ja)
Other versions
JPS5669249A (en
Inventor
宣男 玉木
健 新貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP54141828A priority Critical patent/JPS6016382B2/en
Publication of JPS5669249A publication Critical patent/JPS5669249A/en
Publication of JPS6016382B2 publication Critical patent/JPS6016382B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明は加熱硬化型セメント組成物に関する。[Detailed description of the invention] The present invention relates to a heat-curable cement composition.

本発明における加熱硬化型セメント組成物とは、常温で
は水分が存在しても硬化速度が遅いが一定温度以上に加
熱されると水分の存在下に急速に硬化する性質を有する
ものであって、セメントを主成分とする組成物をいう。
従来から加熱硬化型セメント組成物として、ボルトラン
ドセメント、アルミナセメント、石膏類、石灰類からな
る組成物が提供されており、常温では水分が存在しても
硬化速度が遅く、6000以上に加熱されると水分の存
在下に急速に硬化する性質を有している。
The heat-curable cement composition in the present invention has a property of slow curing speed even in the presence of moisture at room temperature, but rapidly hardens in the presence of moisture when heated above a certain temperature, A composition whose main component is cement.
Conventionally, compositions consisting of Bortland cement, alumina cement, gypsum, and lime have been provided as heat-curing cement compositions, and they have a slow curing speed at room temperature even in the presence of moisture, and cannot be heated to temperatures above 6,000 ℃. It has the property of rapidly curing in the presence of moisture.

しかしながら従来の加熱硬化型セメント組成物では、組
成物中に占めるボルトランドセメント量が少なく、アル
ミナセメント量が多い組成物になされていたので水分の
存在下で60qo以上で−且熱硬化させて得られた成形
物を、再び60q0以上の乾燥条件下においた際に機械
的強度の低下が顕著となり、しかも乾燥収縮による寸法
変化が著しく大きくなり亀裂発生の原因となっていた。
又従来の加熱硬化型セメント組成物から得られた成形物
を建築物の内外壁に使用した際に防火性能上要求される
耐爆裂性が著しく低いものとなる欠点があった。
However, in conventional heat-curing cement compositions, the amount of boltland cement in the composition is small and the amount of alumina cement is large. When the molded product was subjected to drying conditions of 60q0 or more again, the mechanical strength decreased significantly, and the dimensional change due to drying shrinkage became significantly large, causing cracks to occur.
Furthermore, when molded products obtained from conventional heat-curing cement compositions are used for the interior and exterior walls of buildings, there is a drawback that the explosion resistance required for fire protection performance is extremely low.

本発明者は、ボルトランドセメント80〜9亀重量部、
アルミナセメント10〜2.5重量部、無水石管又は(
及び)半水石膏5〜1.5重量部、石灰5〜0重量部の
混合セメントを形物して成形物の高温乾燥時の機械的強
度、乾燥収縮による寸法変化、耐爆裂性を改善し、この
混合セメント10の重量部当り、0.4〜2.5重量部
のりん酸のアルカリ金属塩を混合することにより成形物
の加熱硬化直後の機械的強度を良好にすることを解明し
た。
The present inventor has prepared 80 to 9 parts by weight of Boltland cement,
10 to 2.5 parts by weight of alumina cement, anhydrite tube or (
and) A mixed cement containing 5 to 1.5 parts by weight of gypsum hemihydrate and 5 to 0 parts by weight of lime is molded to improve the mechanical strength of the molded product during high temperature drying, dimensional change due to drying shrinkage, and explosion resistance. It has been found that by mixing 0.4 to 2.5 parts by weight of an alkali metal salt of phosphoric acid per part by weight of this mixed cement 10, the mechanical strength of the molded product immediately after heat hardening can be improved.

本発明は上記従来の加熱硬化型セメント組成物の有する
欠点を解消し、熱硬化により得られた成形物を高温に保
持して乾燥した際の機械的強度の低下を防ぎ乾燥収縮に
よる寸法変化、耐爆裂性を改善すると共に、熱硬化した
成形物の機械的強度を向上させ成形物を脱型した際に形
崩れを生ずるのを防ぐことができる、加熱硬化型セメン
ト組成物を提供することを目的とする。
The present invention eliminates the drawbacks of the conventional heat-curing cement compositions, prevents a decrease in mechanical strength when a molded product obtained by heat-curing is dried by maintaining it at a high temperature, and prevents dimensional changes due to drying shrinkage. It is an object of the present invention to provide a heat-curable cement composition that can improve explosion resistance, improve the mechanical strength of a heat-cured molded product, and prevent the molded product from deforming when removed from the mold. purpose.

次に本発明加熱硬化型セメント組成物について更に詳細
に説明する。混合セメントとは、セメント、石膏、石灰
等を混合して得られる材料であり、本発明における混合
セメントは、ボルトランドセメント80乃至96重量部
、アルミナセメント10〜2.5重量部、無水石膏又は
(及び)半水石膏5〜1.5重量部、石灰5〜0重量部
からなる。ボルトランドセメントとしては、例えば普通
ボルトランドセメント、早強ボルトランドセメント、超
早強ボルトランドセメント、中庸熱ボルトランドセメン
ト、低熱ボルトランドセメント、白色ボルトランドセメ
ント、高酸化型ボルトランドセメント等が存する。本発
明においては、混合セメント100重量部中にボルトラ
ンドセメントが80〜9母重量部使用される。
Next, the heat-curable cement composition of the present invention will be explained in more detail. Mixed cement is a material obtained by mixing cement, gypsum, lime, etc. The mixed cement in the present invention includes 80 to 96 parts by weight of Boltland cement, 10 to 2.5 parts by weight of alumina cement, anhydrite or (and) 5 to 1.5 parts by weight of gypsum hemihydrate and 5 to 0 parts by weight of lime. Examples of boltland cement include ordinary boltland cement, early-strength boltland cement, ultra-early strength boltland cement, medium-heat boltland cement, low-heat boltland cement, white boltland cement, and highly oxidized boltland cement. . In the present invention, 80 to 9 parts by weight of Bortland cement are used in 100 parts by weight of mixed cement.

ボルトランドセメントの量が80〜9母重量部にされる
のは、本発明加熱硬化型セメント組成物を使用し水分の
存在下で加熱硬化して得られた成形物を加熱硬化後、長
期間を経過後における機械的強度の維持を図り、600
0以上に再加熱して乾燥した際に機械的強度が低下する
のを防ぎ、又乾燥収縮により寸法変化を生ずるのを防ぎ
、更に耐熱裂性を改善するためである。しかしてボルト
ランドセメントの量が8の重量部よりも少量の場合には
、前記成形物の乾燥時の機械的強度の低下、、乾燥収縮
による寸法変化が著しく、耐爆裂性が得難いものとなり
、又9亀重量部よりも多量になるとアルミナセメント、
石膏、石灰の各成分の割合が少量になりすぎて水分の存
在下で加熱硬化させた際の成形物の機械的強度が充分に
得られないものとなる。アルミナセメントは、カルシウ
ムアルミネートを主成分とするセメントであり、本発明
加熱硬化型セメント組成物を使用し水分の存在下で加熱
硬化して得られる成形物の機械的強度の発現に寄与する
カルシウムスルホアルミネート水和物を生成させる役割
を有するものである。
The reason why the amount of Bortland cement is set to 80 to 9 parts by weight is that the heat-curable cement composition of the present invention is heat-cured in the presence of moisture, and the molded product obtained is heat-cured and then cured for a long period of time. In order to maintain mechanical strength after 600
This is to prevent the mechanical strength from decreasing when the material is reheated to a temperature of 0 or higher and then dried, to prevent dimensional changes from occurring due to drying shrinkage, and to further improve heat tear resistance. However, when the amount of Boltland cement is less than 8 parts by weight, the mechanical strength of the molded product decreases when drying, and the dimensional change due to drying shrinkage becomes significant, making it difficult to obtain explosion resistance. Also, if the amount exceeds 9 parts by weight, alumina cement,
If the proportions of each component of gypsum and lime are too small, the molded product will not have sufficient mechanical strength when heated and hardened in the presence of moisture. Alumina cement is a cement whose main component is calcium aluminate, and calcium contributes to the development of mechanical strength of molded products obtained by heat-curing the heat-curing cement composition of the present invention in the presence of moisture. It has the role of producing sulfoaluminate hydrate.

アルミナセメントは混合セメント10の重量部中に10
〜2.5重量部使用される。そしてアルミナセメントが
2.5重量部よりも少量では、加熱硬化させた際にカル
シウムスルホアルミネート水和物の生成量が少なくなり
、成形物を熱硬化させた際の成形物の機械的強度の発現
が困難になり、またアルミナセメントが1の重量部より
も多量の場合には、混合セメント中のボルトランドセメ
ントの使用量が少なくならざるを得ないから、熱硬化後
長期間経過後の機械的強度の低下をきたし、乾燥時の機
械的強度の低下、収縮による寸法変化を生じ、耐爆裂性
の低下等をきたしやすいものとなる。無水石膏、半水石
膏単独あるいは混合しては混合セメント10の重量部中
に5〜1.5重量部使用される。
Alumina cement contains 10 parts by weight of mixed cement.
~2.5 parts by weight are used. If the amount of alumina cement is less than 2.5 parts by weight, the amount of calcium sulfoaluminate hydrate produced during heat curing will decrease, and the mechanical strength of the molded product will decrease when the molded product is heat cured. If the amount of alumina cement is more than 1 part by weight, the amount of boltland cement used in the mixed cement must be reduced, so This results in a decrease in physical strength, a decrease in mechanical strength during drying, dimensional changes due to shrinkage, and a decrease in explosion resistance. Anhydrous gypsum and hemihydrate gypsum alone or in combination are used in an amount of 5 to 1.5 parts by weight per 10 parts by weight of mixed cement.

又石灰は混合セメント10の重量部中に5〜0重量部使
用される。無水石膏、半水石管は、本発明加熱硬化型セ
メント組成物を使用し水分の存在下で加熱硬化させた際
に生ずるカルシウムスルホアルミネート水和物の硫黄源
、カルシウム源となる。石灰は無水石膏、半水石膏と共
にカルシウムスルホアルミネート水和物のカルシウム源
となるものであるが、石灰と無水石膏、半水石膏が合算
されてカルシウム分が多くなると、セメント硬化物表面
に白化現象の発生が起こり、石灰が0部あるいはそれに
近似してカルシウム分が少なくなるとカルシウムスルホ
アルミネート水和物の生成が不充分となり、セメント硬
化物の初期強度が不充分になることがある。前記の混合
セメントにおいては、従来の加熱硬化型セメントにおけ
る短所であった、成形物の高温乾燥時の機械的強度、乾
燥収縮による寸法変化、耐爆裂性を顕著に改善できるの
である。
Also, lime is used in an amount of 5 to 0 parts by weight per part by weight of the mixed cement 10. Anhydrite and hemihydrate pipes serve as the sulfur source and calcium source for calcium sulfoaluminate hydrate produced when the heat-curing cement composition of the present invention is heat-cured in the presence of moisture. Lime, together with anhydrite and hemihydrate, is a source of calcium for calcium sulfoaluminate hydrate, but when lime, anhydrite, and hemihydrate are combined and the calcium content increases, whitening occurs on the surface of the hardened cement. If this phenomenon occurs and the calcium content is reduced to 0 parts or close to it, the formation of calcium sulfoaluminate hydrate may become insufficient and the initial strength of the cured cement may become insufficient. The above-mentioned mixed cement can significantly improve mechanical strength during high temperature drying of molded products, dimensional change due to drying shrinkage, and explosion resistance, which were disadvantages of conventional heat-curing cements.

しかしながら混合セメントにおいては、加熱硬化した直
後(本発明においては加熱硬化開始後1時間以内をいう
)の成形物の機械的強度が著しく向上する領域において
前記諸性質の改善が充分に発現されず、逆に前記諸性質
の改善が顕著である領域においては加熱硬化した直後の
成形物の機械的強度の向上の程度が必ずしも充分にはな
らないのである。ことに本発明におけるようにボルトラ
ンドセメントの量が、混合セメント10の重量部中に8
0重量部以上になると加熱硬化させた際のカルシウムス
ルホアルミネートの生成量が減少し、加熱硬化した直後
の成形物の機械的強度が低くなる。従って養生、高温乾
燥を行なうために成形物を脱型させる際に成形物の型崩
れを生ずるようなことになりやすいのである。そこで本
発明においては、前記の混合セメント10の重量部当り
、0.4〜2.5重量部のりん酸のアルカリ金属塩を混
合し、加熱硬化した直後であっても成形物の機械的強度
が良好となり、成形物を脱型させる際に形崩れを生じた
りすることがないようにしたものである。
However, in mixed cement, the improvements in the various properties described above are not sufficiently realized in the region where the mechanical strength of the molded product is significantly improved immediately after heat curing (in the present invention, within 1 hour after the start of heat curing). On the other hand, in areas where the improvements in the above-mentioned properties are remarkable, the degree of improvement in the mechanical strength of the molded product immediately after heat curing is not necessarily sufficient. In particular, as in the present invention, the amount of Boltland cement is 8 parts by weight of the mixed cement.
If it exceeds 0 part by weight, the amount of calcium sulfoaluminate produced during heat curing will decrease, and the mechanical strength of the molded product immediately after heat curing will decrease. Therefore, when the molded product is removed from the mold for curing and high-temperature drying, the molded product is likely to lose its shape. Therefore, in the present invention, 0.4 to 2.5 parts by weight of an alkali metal salt of phosphoric acid is mixed per 10 parts by weight of the above-mentioned mixed cement to improve the mechanical strength of the molded product even immediately after heating and hardening. The molded product has good properties and does not lose its shape when demolding the molded product.

りん酸のアルカリ金属塩としては、例えばピロりん酸、
ヘキサメタりん酸、トリポリん酸等のナトリウム塩、カ
リウム塩が存する。
Examples of alkali metal salts of phosphoric acid include pyrophosphoric acid,
There are sodium salts and potassium salts of hexametaphosphoric acid, tripolyphosphoric acid, etc.

りん酸のアルカリ金属塩は加熱により混合セメントの硬
化を促進させる働きを有するものであり、か)る硬化促
進作用によって成形物を加熱硬化させた直後における機
械的強度を向上させることができるのである。
The alkali metal salt of phosphoric acid has the function of accelerating the hardening of the mixed cement by heating, and this hardening accelerating effect can improve the mechanical strength of the molded product immediately after it is heated and hardened. .

そして前託りん酸のアルカリ金属塩は、脱型後における
高温乾燥時の機械的強度、乾燥収縮による寸法変化、耐
爆裂性の改善を阻害することがない。しかしながらりん
酸のアルカリ金属塩の使用量が前記混合セメント100
重量部当り0.4重量部よりも少量であると加熱された
際の混合セメントの硬化促進作用が充分にならないし、
又2.5重量部よりも多量であると加熱硬化された成形
物の脱型不良を生じやすくなる。本発明においてりん酸
のアルカリ金属塩の混合は、予じめ混合セメントを準備
し、この混合セメントに対しなされてもよいが、混合セ
メントのいずれか1又は2以上の成分に対し混合し、混
合セメントの残存成分を更に加えて混合することにより
、最終的に混合セメントに対し前記りん酸のアルカリ金
属塩が混合されておればよい。本発明加熱硬化型セメン
ト組成物においては、砂、砂利等の各種骨材、天然繊維
、合成繊維、金属繊維、鉱物繊維等の補強材、各種高分
子物質、例えば防水性を改良するためのゴムラテックス
等を必要に応じて含有させてよもよい。
Furthermore, the alkali metal salt of phosphoric acid does not impair mechanical strength during high temperature drying after demolding, dimensional change due to drying shrinkage, and improvement in explosion resistance. However, the amount of alkali metal salt of phosphoric acid used is 100% of the mixed cement.
If the amount is less than 0.4 parts by weight, the effect of accelerating the hardening of the mixed cement when heated will not be sufficient;
Further, if the amount is more than 2.5 parts by weight, demolding failure of the heat-cured molded product is likely to occur. In the present invention, the alkali metal salt of phosphoric acid may be mixed with a mixed cement prepared in advance and mixed with this mixed cement. By further adding and mixing the remaining components of the cement, the alkali metal salt of phosphoric acid may be finally mixed into the mixed cement. In the heat-curing cement composition of the present invention, various aggregates such as sand and gravel, reinforcing materials such as natural fibers, synthetic fibers, metal fibers, and mineral fibers, various polymeric substances, such as rubber to improve waterproofness are used. Latex or the like may be included if necessary.

本発明加熱硬化型セメント組成物を加熱硬化させる場合
の温度は6000乃至10000が好適であり、600
0よりも低温では硬化速度が遅く、又100ooよりも
高温では加熱硬化して得られた成形物は機械的強度の低
いものとなりやすい。
The temperature when heat-curing the heat-curing cement composition of the present invention is preferably from 6,000 to 10,000;
At a temperature lower than 0, the curing speed is slow, and at a temperature higher than 100 oo, the molded product obtained by heating and curing tends to have low mechanical strength.

本発明加熱硬化型セメント組成物によれば、従来の加熱
硬化型セメント組成物における欠点であった、成形物を
一旦熱硬化させた後、再び60o0以上に加熱して乾燥
させた際の機械的強度、亀裂発生の原因となる乾燥収縮
による寸法変化、建築物の防火性能上必要となる加熱時
における耐爆裂性を改善することができ、又熱硬化直後
の成形物に機械的強度の付与し脱型した際の形崩れを防
ぐことができ、成形物を量産するに適したものとなる。
以下に本発明の実施例を記す。
According to the heat-curing cement composition of the present invention, the mechanical damage caused when the molded product is once heat-cured and then heated again to 60o0 or higher and dried, which was a drawback in conventional heat-curable cement compositions. It can improve strength, dimensional change due to drying shrinkage that causes cracks, and explosion resistance during heating, which is necessary for fire protection performance of buildings, and also imparts mechanical strength to molded products immediately after thermosetting. This prevents the mold from deforming when removed from the mold, making it suitable for mass production of molded products.
Examples of the present invention are described below.

実施例 1 超早強ボルトランドセメント81.の重量部、アルミナ
セメント9.4重量部、焼石費4.9重量部、消石灰4
.り重量部からなる混合セメント10の重量部あたり、
ヘキサメタりん酸ナトリウム1.a重量部混合し、更に
水/セメント比が0.6ふ混和剤として砂を砂/セメン
ト比が2.0となるように水及び砂を混合し、型内に入
れて40×40×16仇h/mの寸法の角柱体を成形し
た。
Example 1 Ultra-early strength boltland cement 81. parts by weight, alumina cement 9.4 parts by weight, baked stone cost 4.9 parts by weight, slaked lime 4 parts by weight
.. per part by weight of mixed cement 10 consisting of parts by weight,
Sodium hexametaphosphate 1. Mix water and sand so that the sand/cement ratio is 2.0, and put it in a mold of 40 x 40 x 16. A prismatic body with a dimension of 2 h/m was molded.

かくして得られた成形物を80℃に昇温ごせて加熱硬化
を急速に行なわせた後、脱型したが、脱型時には成形物
の形崩れを生じなかった。更に成形物の加熱硬化を30
分間継続した後、常温で1週間をかけて養生した。養生
開始から1週間経過後の成形物の圧縮強度を測定した。
養生後10000の陣温槽中に成形物を保持し、乾燥を
行なった。又乾燥開始から1日、3日、1週間、4週間
経過後の圧縮強度の測定結果を第1表の実施例1の欄に
示す。又養生後100ooの垣温槽中に成形物を保持し
1日、1週間、4週間を経過後の寸法変化を測定した。
これらの測定結果は、第2表の実施例1の欄に示す通り
であった。実施例 2超早強ボルトランドセメント88
.の重量部、アルミナセメント6.り重量部、焼石菅2
.2重量部、消石灰3.1重量部からなる混合セメント
10の重量部当り、ヘキサメタりん酸ナトリウム1.の
重量部を混合し、以下実施例1と同様にして水、砂を混
合し、成形、加熱硬化を行ない脱型後、常温で養生を行
なった。
The thus obtained molded product was heated to 80° C. to rapidly heat cure and then demolded, and the molded product did not lose its shape upon demolding. Furthermore, heat harden the molded product for 30 minutes.
After continuing for a few minutes, it was cured at room temperature for one week. The compressive strength of the molded product was measured one week after the start of curing.
After curing, the molded product was kept in a temperature bath for 10,000 hours and dried. The measurement results of compressive strength after 1 day, 3 days, 1 week, and 4 weeks from the start of drying are shown in the column of Example 1 in Table 1. After curing, the molded product was kept in a 100 oo warm bath, and dimensional changes were measured after 1 day, 1 week, and 4 weeks.
These measurement results were as shown in the column of Example 1 in Table 2. Example 2 Ultra early strength bolt land cement 88
.. Part by weight of alumina cement6. Weight part, baked stone pipe 2
.. 1.2 parts by weight of sodium hexametaphosphate per 10 parts by weight of mixed cement consisting of 3.1 parts by weight of slaked lime and 3.1 parts by weight of slaked lime. Water and sand were mixed in the same manner as in Example 1, molded, heated and hardened, demolded, and then cured at room temperature.

養生開始から1週間を経過した後の成形物の圧縮強度を
測定した。養生後100℃の陣温槽中に成形物を保持し
乾燥させた。
The compressive strength of the molded product was measured one week after the start of curing. After curing, the molded product was kept in a temperature bath at 100° C. and dried.

乾燥開始から1週間経過後の圧縮強度、及び1日、3日
、1週間、4週間経過後の圧縮強度の測定結果を第1表
の実施例2の欄に示す。又養生後100午Cの陣温槽中
に成形物を保持し、1日、1週間、4週間を経過後の寸
法変化を測定した。これらの測定結果を第2表の実施例
2の欄に示す。第1表 第2表 実施例 3 超早強ボルトランドセメント磯&の重量部、アルミナセ
メント6.り重量部、焼石骨2.2重量部、消石灰3.
1重量部からなる混合セメント10の重量部当りトIJ
ポリりん酸ナトリウム1.6重量部を混合し、砂(2m
/mメッシュ筋通後)/セメント比が2.ふ水/セメン
ト比が0.5となるように、砂及び水を加えて混合し、
型内に入れ40×40×16仇h′mの寸法の角柱体を
成形した。
The measurement results of the compressive strength one week after the start of drying, and the compressive strength after one day, three days, one week, and four weeks are shown in the column of Example 2 in Table 1. Further, the molded product was kept in a temperature bath at 100 pm after curing, and dimensional changes were measured after 1 day, 1 week, and 4 weeks. These measurement results are shown in the Example 2 column of Table 2. Table 1 Table 2 Example 3 Part by weight of ultra-early strength boltland cement Iso&, alumina cement 6. 2.2 parts by weight of burnt stone bone, 3 parts by weight of slaked lime.
IJ per part by weight of mixed cement 10 consisting of 1 part by weight
Mix 1.6 parts by weight of sodium polyphosphate and add sand (2 m
/m mesh reinforcement)/cement ratio is 2. Add sand and water and mix so that the water/cement ratio is 0.5.
The mixture was placed in a mold to form a prismatic body with dimensions of 40 x 40 x 16 m.

かくして得られた成形物を8000に昇温ごせて3び分
間保持し加熱硬化を急速に行なわせた後脱型し、常温で
養生した。養生開始から30分を経過した時点での成形
物の曲げ強度は24.5k9/仇、圧縮強度は82.5
k9/仇であった。比較例 1 実施例3においてトリポリりん酸ナトリウムの使用量を
0.15重量部とした以外は実施例3と同様にして成形
物の成形、加熱硬化、養生を行なった。
The molded product thus obtained was heated to 8,000 ℃ and held for 3 minutes to rapidly heat cure, then removed from the mold and cured at room temperature. The bending strength of the molded product after 30 minutes from the start of curing was 24.5k9/2, and the compressive strength was 82.5.
It was k9/enemy. Comparative Example 1 A molded product was molded, heated and cured in the same manner as in Example 3, except that the amount of sodium tripolyphosphate used was 0.15 parts by weight.

養生開始から30分を経過した時点での成形物の曲げ強
度は0.9k9/仇、圧縮強度は3.0k9/めであっ
た。実施例 4 超早強ボルトランドセメント82.の重量部、アルミナ
セメント9.の重量部、焼石管2.5重量部、無水石膏
2.5重量部、消石灰4.の重量部からなる混合セメン
ト10の重量部当りへキサメタりん酸ナトリウム1.2
重量部を混合し、砂(2m/mメッシュ筋通過)/セメ
ント比が2.5水/セメント比が0.3、減水剤/セメ
ント比が0.01となるように、砂、水及び減水剤を加
えて混合し、型内に入れて40×40×16仇h/mの
寸法の角柱体を形成した。
When 30 minutes had passed from the start of curing, the molded product had a bending strength of 0.9 k9/m and a compressive strength of 3.0 k9/m. Example 4 Ultra-early strength boltland cement 82. Part by weight of alumina cement9. parts by weight, 2.5 parts by weight of calcined stone pipe, 2.5 parts by weight of anhydrite, 4 parts by weight of slaked lime. Sodium hexametaphosphate per 10 parts by weight of mixed cement consisting of 1.2 parts by weight of
Mix the weight parts and add sand, water and water reducer so that the sand (passing through 2m/m mesh)/cement ratio is 2.5, the water/cement ratio is 0.3, and the water reducer/cement ratio is 0.01. The mixture was added and mixed and placed in a mold to form a prismatic body with dimensions of 40 x 40 x 16 h/m.

かくして得られた成形物を7030に昇温ごせて30分
間保持し加熱硬化を急速に行なわせた後脱型し、常温で
養生した。養生開始から30分を経過した時点での成形
物の曲げ強度は42.5k9/地、圧縮強度162k9
/めであった。又この成形物から平板状試料を切出し、
室温で4週間放置後、JISAI301による2段加熱
曲線に従い、小型防火性能試験装置を用いて加熱試験を
行なった。
The thus obtained molded product was heated to 7030°C and held for 30 minutes to rapidly heat cure, then removed from the mold and cured at room temperature. The bending strength of the molded product after 30 minutes from the start of curing was 42.5k9/ground, and the compressive strength was 162k9.
/ It was me. Also, cut out a flat sample from this molded product,
After being left at room temperature for 4 weeks, a heating test was conducted using a small fireproof performance testing device according to a two-stage heating curve according to JISAI301.

その結果成形物に爆裂を生じなかった。実施例 5〜8 表3の各実施例の欄に示す成分からなる組成物を準備し
「 これに水/セメント比が0.65砂/セメント比が
2.0となるように水、砂を混合し、型内に入れて40
×40×160h′mの寸法の角柱体を成形した。
As a result, no explosion occurred in the molded product. Examples 5 to 8 A composition consisting of the components shown in the column of each example in Table 3 was prepared, and water and sand were added to it so that the water/cement ratio was 0.65 and the sand/cement ratio was 2.0. Mix and put in the mold for 40 minutes.
A prismatic body with dimensions of x40 x 160 h'm was molded.

かくして得られた成形物を80qoに昇温させて3び分
間保持し、加熱硬化を急速に行なわせた後脱型した。脱
型の際の成形物の形崩れは生じなかった。
The temperature of the thus obtained molded product was raised to 80 qo and held for 3 minutes to rapidly cure the molded product by heating, and then the mold was demolded. The molded product did not lose its shape during demolding.

次いで常温で養生した。養生開始から3船ごを経過した
時点での曲げ強度及び圧縮強度の測定結果を表3の各実
施例の欄に記す。比較例 2〜9 表3の各比較例の欄に示す成分からなる組成物を準備し
、これに水/セメント比が0.6ふ砂/セメント比が2
.0となるように水、砂を混合し、型内に入れて40×
40×16■h/mの寸法の角柱体を成形した。
Then, it was cured at room temperature. The measurement results of bending strength and compressive strength after three ships have passed since the start of curing are listed in the column of each example in Table 3. Comparative Examples 2 to 9 A composition consisting of the components shown in the column of each comparative example in Table 3 was prepared, and a water/cement ratio of 0.6 and a sand/cement ratio of 2 were prepared.
.. Mix water and sand so that it is 0, put it in a mold and
A prismatic body with dimensions of 40×16 h/m was molded.

かくして得られた成形物を80q Cに昇塩ごせて加熱
硬化を急速に行なわせた。比較例2〜5では30分間経
過後の成形物の脱型は不良であったので50分間経過後
に脱型を行なった。次いで常温で養生した。養生開始か
ら3戊分を経過した時点での曲げ強度及び圧縮強度の測
定結果を第3表の比較例2〜5の欄に記す。尚、比較例
6〜9では成形物が形崩れしてしまい脱型できなかった
。従って比較例6〜9では曲げ強度、圧縮強度の測定は
不能であった。第 3 表
The molded product thus obtained was heated to 80 q C to rapidly heat cure it. In Comparative Examples 2 to 5, demolding of the molded products after 30 minutes was poor, so demolding was performed after 50 minutes. Then, it was cured at room temperature. The measurement results of bending strength and compressive strength after 3 minutes from the start of curing are shown in the columns of Comparative Examples 2 to 5 in Table 3. In addition, in Comparative Examples 6 to 9, the molded products lost their shape and could not be demolded. Therefore, in Comparative Examples 6 to 9, it was impossible to measure bending strength and compressive strength. Table 3

Claims (1)

【特許請求の範囲】 1 ポルトランドセメント80〜96重量部、アルミナ
セメント10〜2.5重量部、無水石膏又は(及び)半
水石膏5〜1.5重量部、石灰5〜0重量部からなる混
合セメント100重量部当り、りん酸のアルカリ金属塩
を0.4〜2.5重量部混合していることを特徴とする
加熱硬化型セメント組成物。 2 りん酸がピロりん酸である特許請求の範囲第1項記
載の加熱硬化型セメント組成物。 3 りん酸がヘキサメタりん酸である特許請求の範囲第
1項記載の加熱硬化型セメント組成物。 4 りん酸がトリポリりん酸である特許請求の範囲第1
項記載の加熱硬化型セメント組成物。 5 アルカリ金属塩がナトリウム塩である特許請求の範
囲第1項から第4項のいずれか1項に記載の加熱硬化型
セメント組成物。 6 アルカリ金属塩がカリウム塩である特許請求の範囲
第1項から第4項のいずれか1項に記載の加熱硬化型セ
メント組成物。
[Scope of Claims] 1 Consists of 80 to 96 parts by weight of Portland cement, 10 to 2.5 parts by weight of alumina cement, 5 to 1.5 parts by weight of anhydrite or (and) gypsum hemihydrate, and 5 to 0 parts by weight of lime. A heat-curing cement composition characterized in that 0.4 to 2.5 parts by weight of an alkali metal salt of phosphoric acid is mixed per 100 parts by weight of mixed cement. 2. The heat-curable cement composition according to claim 1, wherein the phosphoric acid is pyrophosphoric acid. 3. The heat-curable cement composition according to claim 1, wherein the phosphoric acid is hexametaphosphoric acid. 4 Claim 1 in which the phosphoric acid is tripolyphosphoric acid
The heat-curing cement composition described in 2. 5. The heat-curable cement composition according to any one of claims 1 to 4, wherein the alkali metal salt is a sodium salt. 6. The heat-curable cement composition according to any one of claims 1 to 4, wherein the alkali metal salt is a potassium salt.
JP54141828A 1979-10-31 1979-10-31 Heat-curing cement composition Expired JPS6016382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54141828A JPS6016382B2 (en) 1979-10-31 1979-10-31 Heat-curing cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54141828A JPS6016382B2 (en) 1979-10-31 1979-10-31 Heat-curing cement composition

Publications (2)

Publication Number Publication Date
JPS5669249A JPS5669249A (en) 1981-06-10
JPS6016382B2 true JPS6016382B2 (en) 1985-04-25

Family

ID=15301065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54141828A Expired JPS6016382B2 (en) 1979-10-31 1979-10-31 Heat-curing cement composition

Country Status (1)

Country Link
JP (1) JPS6016382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470714B2 (en) * 1985-02-20 1992-11-11 Tokyo Shibaura Electric Co

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488909A (en) * 1983-11-25 1984-12-18 United States Gypsum Company Non-expansive, rapid setting cement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492823A (en) * 1972-04-21 1974-01-11
JPS497331A (en) * 1972-05-11 1974-01-23
JPS49112923A (en) * 1973-03-01 1974-10-28

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492823A (en) * 1972-04-21 1974-01-11
JPS497331A (en) * 1972-05-11 1974-01-23
JPS49112923A (en) * 1973-03-01 1974-10-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470714B2 (en) * 1985-02-20 1992-11-11 Tokyo Shibaura Electric Co

Also Published As

Publication number Publication date
JPS5669249A (en) 1981-06-10

Similar Documents

Publication Publication Date Title
US3427175A (en) Accelerator for portland cement
JPS5869759A (en) Method of accelerating congelation and cure of hydraulic binder
JPS61500726A (en) Non-expanding, high-curing cement
ES2319075A1 (en) Low embodied energy wallboards and methods of making same
JPS5844622B2 (en) portland type cement
JPH11505204A (en) Method for delaying setting speed of magnesium phosphate cement
US4930428A (en) Cement composition comprising sodium tripolyphosphate and process for forming shaped articles therefrom
JPS5951504B2 (en) Heat-curing cement composition
JPS6016382B2 (en) Heat-curing cement composition
US3373048A (en) Hardening accelerated portland cement
JP2001294460A (en) Ultra high-early-strength expansive admixture for concrete and production process of concrete product using the same
JPS6016381B2 (en) Heat-curing cement composition
JPS59466B2 (en) Water resistant high strength gypsum composition
JPS6250428B2 (en)
JP7312385B1 (en) Method for producing concrete composition and method for producing concrete
RU2341481C1 (en) Method of gypsum-concrete mix production
JPS6319469B2 (en)
JPS5858305B2 (en) Fluorite gypsum composition
US1604577A (en) Quick-setting lime and process of making same
JP4948724B2 (en) Non-fired cement cured body and method for producing the same
JPS5814384B2 (en) Anhydrite composition
JPH01500107A (en) Volume stable curing hydraulic cement
JPS5943432B2 (en) Method for manufacturing fiber-reinforced plaster-based cured product
JPH02293362A (en) Coal ash sand composition
JPS5815052A (en) Mortar concrete admixing agent for enhancing watertightness and having rust preventive effect