JPS60163786A - Tension leg platform - Google Patents

Tension leg platform

Info

Publication number
JPS60163786A
JPS60163786A JP1699284A JP1699284A JPS60163786A JP S60163786 A JPS60163786 A JP S60163786A JP 1699284 A JP1699284 A JP 1699284A JP 1699284 A JP1699284 A JP 1699284A JP S60163786 A JPS60163786 A JP S60163786A
Authority
JP
Japan
Prior art keywords
tension
mooring cable
lower hull
gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1699284A
Other languages
Japanese (ja)
Inventor
Masahiko Ozaki
雅彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1699284A priority Critical patent/JPS60163786A/en
Publication of JPS60163786A publication Critical patent/JPS60163786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Jib Cranes (AREA)

Abstract

PURPOSE:To reduce a load to a mooring cable and attenuate the oscillation by fitting an expandable, airtight film to a lower hull, detecting the tension change of the mooring cable, and feeding the gas to the film so as to offset the tension. CONSTITUTION:An expandable, airtight film 12 is arranged on the lower hull 6 of a tension leg platform having an upper deck, a column, and the lower hull and connected to an anchor on the sea bottom via a mooring cable with excess buoyancy. The tension change of the mooring cable 2 is detected by a load cell 7 detecting the tension occurring on the mooring cable 2, a control unit 8 controlling the gas feed quantity to the film 12 is operated by receiving the output signal, and the gas is fed into the film 12 from a gas feed unit 9. Accordingly, a load to the mooring cable can be reduced, the oscillation of the platform can be attenuated, and the safe and low-cost tension leg platform can be obtained.

Description

【発明の詳細な説明】 本発明はテンションレグプラットフォームに関する。[Detailed description of the invention] The present invention relates to tension leg platforms.

従来知られているテンションレグゲラブトフオームにお
いては、第1図側面図に示すように、海面上にあって作
業するためのデツキ4と、浮力を確保するためのロワー
ハル6と・これらを連結しデツキ4を支持するコラム5
などから成り、この上部横す、鋼管もしくはワイヤロー
プなと係留部材2を介して海底に設置されたアンカー3
に接続され、上部構造の自重と浮力が釣合う吃水状態よ
りもさらに下方へ引込まれ、その余剰浮力と釣合う初期
張力が係留部材内に生じている。
As shown in the side view of Fig. 1, the conventionally known tension legger butt form has a deck 4 for working on the sea surface and a lower hull 6 for securing buoyancy, which are connected to each other. Column 5 supporting Detsuki 4
An anchor 3 installed on the seabed via a mooring member 2, such as a steel pipe or wire rope,
The mooring member is connected to the mooring member, and is pulled further downward than the swamping state in which the weight of the upper structure and the buoyancy balance, and an initial tension is generated in the mooring member to balance the excess buoyancy.

は係留部材2によってきびしく抑制されるとともに、水
平変位も撃ぎとめられ、苛酷な海象の下で良い作業性お
よび高い稼動率が得られるところにこの種のプラットフ
ォームの利点がある。
The advantage of this type of platform is that it is strictly suppressed by the mooring member 2, horizontal displacement is also prevented, and good workability and high operating rates can be obtained under severe sea conditions.

さて、テンションレグプラットフォームの設計上、最も
注意しなければならない点は係留部材の強度であり、上
部構造に作用する上下方向の波力はほとんどすべて係留
部材の張力変動で受持たれるので、係留部材が弛緩しな
いためには十分な初期張力が必要とされるが、一方、大
きな初期張力は大きな余剰浮力部材の安全な設計のため
には、予想される最大張力変動の少なくとも2倍の荷重
によっても降伏応力圧達せず、かつ大きな平均応力にも
かかわらず十分な疲労強度を有するものを考える必要が
あり、設置海域の海象が荒くなるほど、係留部材および
接続機構は犬がかりになってしまう。
Now, when designing a tension leg platform, the most important thing to pay attention to is the strength of the mooring members.Almost all of the vertical wave force that acts on the superstructure is absorbed by tension fluctuations in the mooring members, so the mooring members Sufficient initial tension is required so that the It is necessary to consider something that does not reach the yield stress and has sufficient fatigue strength despite a large average stress, and the rougher the sea conditions in the installation area, the more difficult the mooring members and connection mechanism will be.

本発明はこのような事情に鑑みて提案されたもので、係
留部材の負荷条件を軽減することにより安全かつ低コス
トのテン7ヨンレグプラツトフオームを提供することを
目的とする。
The present invention was proposed in view of the above circumstances, and an object of the present invention is to provide a safe and low-cost tensile leg platform by reducing the load conditions on the mooring member.

そのために本発明は、海面上方のデツキと海中に浸漬さ
れたロワーハルとこれらを連結するコラム等よりなる上
部構造を余剰浮力を有する状態で係留部材を介して海底
のアンカーに接続してなるテンションレグプラットフォ
ームにおいて、上記ロワーハルに付設された膨張可能の
気密性膜体と、上記膜体内に気体を供給する気体供給装
置と、前記係留部材に生ずる張力を検出するロードセル
と、上記ロードセルの出力信号を受けて上記膜体への気
体供給量を制御する制御装置とを具えたことを特徴とす
る。
To this end, the present invention proposes a tension leg structure in which a deck above the sea surface, a lower hull immersed in the sea, and a superstructure including a column connecting these are connected to an anchor on the seabed via a mooring member with excess buoyancy. In the platform, an inflatable airtight membrane attached to the lower hull, a gas supply device that supplies gas into the membrane, a load cell that detects tension generated in the mooring member, and a load cell that receives an output signal of the load cell. and a control device for controlling the amount of gas supplied to the membrane body.

本発明の一実施例を図面について説明すると、第2図は
その側面図、第3図(5)は波周期とそのエネルギ分布
との関係を示す線図、同図(13)は第2図のテン7ヨ
ンレグプラツトフオームにおける波周期と単位波高あた
りの上下方向力との関係を示す線図である。
To explain one embodiment of the present invention with reference to the drawings, Fig. 2 is a side view thereof, Fig. 3 (5) is a diagram showing the relationship between the wave period and its energy distribution, and Fig. 3 (13) is Fig. 2 FIG. 3 is a diagram showing the relationship between the wave period and the vertical force per unit wave height in the tensile leg platform of the present invention.

上図において、第1図と同一の記号はそれぞれ同図と同
一の部材を示し、本発明においてば、すべてのロワーハ
ル6の側壁には伸縮自在の膜体12が設けられ、ロワー
ハル6と側壁との間に形成された気密区画11に空気ポ
ンプなどの圧力源9がら空気管IOを通して高圧空気が
供給されるようになっており、これにより膜体12kt
、点線で示づ−ように、膨張する。
In the above figure, the same symbols as in FIG. High pressure air is supplied from a pressure source 9 such as an air pump to the airtight compartment 11 formed between the air pipes IO through the air pipe IO.
, expands as shown by the dotted line.

7は係留部材2の張力を測定するロードセル、8は制御
装置で、ロートセルフからの検出信号を受けて気密区画
11へ供給する空気量又は空気圧を制御するようになっ
ている。
7 is a load cell that measures the tension of the mooring member 2, and 8 is a control device that controls the amount of air or air pressure supplied to the airtight compartment 11 in response to a detection signal from the rotor self.

このようなテン7ヨンレグプラツトフオームの作用・効
果を述べる前に、まず上下揺の波無周期の概念および設
定の仕方について述べる。
Before describing the functions and effects of such a tensile leg platform, the concept of the waveless period of up-and-down motion and how to set it up will be described first.

ロワーハル付コラムに働く波による上下方向力は、主と
して波面の変動に基づ(変動浮力と、ロワー・・ルまわ
りの流体粒子の加速度に比例する力すなわち付加質量力
に支配され、この変動浮力と付加質量力は瞬時瞬時にお
いて方向が互いに逆である(位相が180°ずれている
)ので、大きさが等しくなって相殺し合う波周期が存在
し、この波周期を波無(ナミナシ)周期とい匁、波無周
期より長い波周期では変動浮力が、短い波周期では付加
質量力が、それぞれ大きい。
The vertical force due to waves acting on the column with the lower hull is mainly based on fluctuations in the wave front (controlled by the fluctuating buoyancy force and the additional mass force, which is a force proportional to the acceleration of fluid particles around the lower hull). Since the directions of the added mass forces are instantaneously opposite to each other (the phases are shifted by 180°), there is a wave period in which the magnitudes are equal and cancel each other out, and this wave period is called a waveless period. The fluctuating buoyancy force is large for wave periods longer than the momme and waveless periods, and the added mass force is large for shorter wave periods.

そこで、ロワーハル部の排水量が異なる2つのロワーハ
ル付コラムの場合を比較すると、ロワー・・ル部の大き
な方は付加質量力が太きいからより長い波周期のところ
に波無周期が存在することになる。
Therefore, when comparing the cases of two columns with lower hulls that have different displacements in the lower hull section, we find that the one with a larger lower hull section has a larger additional mass force, so a waveless period exists at a longer wave period. Become.

一方、波のエネルギー分布は海象によって異なり、通常
のあまり厳しくない海象時には、第3図(5)の破線で
示すように、比較的短い波周期を中心とした領域で広帯
域に分布するが、苛酷な海象においては、同図実線で示
イように、エネルギー分布はある波周期を中心にして狭
帯域に集中し、平均波高が増大するほどすなわち海象が
荒くなるほどその波周期は長くなる傾向がある。
On the other hand, wave energy distribution differs depending on the sea state. During normal sea conditions, which are not very severe, the energy distribution of waves is distributed over a wide band in a region centered on a relatively short wave period, as shown by the broken line in Figure 3 (5); Under normal sea conditions, the energy distribution concentrates in a narrow band around a certain wave period, as shown by the solid line in the figure, and the wave period tends to become longer as the average wave height increases, that is, as the sea conditions become rougher. .

したがって、上部構造に働く上下方向力を軽減させるに
は、波無周期と、エネルギーの集中する波周期を一致さ
せればよ(、従来は、予想される最も厳しい海象状態に
おけるエネルギー卓越周期を基準にコラムの排水量とロ
ワー・・ルの排水量の比を決定して波無周期を設定する
場合が多い。
Therefore, in order to reduce the vertical force acting on the superstructure, it is necessary to match the wave-free period with the wave period where energy is concentrated. In many cases, the waveless period is set by determining the ratio of the displacement of the column to the displacement of the lower le.

そこで、本発明では、第2図に示すように、通常のあま
り厳しくない海象時には気密区画11は収縮しており、
この時係留部材2の初期張力は、過度に太き(はなく、
またロワーハルの排水量は比較的小さいので、上下揺の
波無周期はあまり長くなく、第3図破線に示すように、
短い周期を中心とした領域におけろ張力変動ケ抑えてい
る。
Therefore, in the present invention, as shown in FIG. 2, the airtight compartment 11 is contracted during normal sea conditions that are not very severe.
At this time, the initial tension of the mooring member 2 is not excessively large.
Also, since the displacement of the lower hull is relatively small, the waveless period of up-and-down motion is not very long, as shown by the broken line in Figure 3.
Tension fluctuations are suppressed even in the region centered on short cycles.

次に苛酷な海象に遭遇した場合、気密区画11に高圧空
気を供給して膨張させロワーハル部の排水量を増大させ
る。
Next, when severe sea conditions are encountered, high pressure air is supplied to the airtight compartment 11 to expand it and increase the displacement of the lower hull.

そうすると、上部構造の余剰浮力が増え、係留部材の初
期張力が太き(なり、大波浪による変動に対して弛緩を
防ぐことができる。
This increases the surplus buoyancy of the superstructure, increases the initial tension of the mooring members, and prevents them from loosening against fluctuations caused by large waves.

また、ロワーハル部の排水量がコラムの排水量に比して
大きくなるので、上下揺の波無周期は長い側ヘシフトす
るから、そのシフト量をエネルギーが集中する波周期に
一致するようにすることにより、第8図(13)の実線
に示づ−ように、張力変動を大巾に低減させることがで
きる。
In addition, since the displacement of the lower hull section is larger than that of the column, the waveless period of up and down shifts to the longer side, so by making the amount of shift match the wave period where energy is concentrated, As shown by the solid line in FIG. 8 (13), the tension fluctuation can be greatly reduced.

すなわち、本発明では、海象に応じて波無周期を制御し
、係留部材の張力変動を抑制するとともに、発現頻度の
高いあまり厳しくない海象時には係留部材の初期張力を
過度に大きくはしないで平均応力を抑え、疲労強度の低
下を防ぐことができろ。
In other words, in the present invention, the waveless period is controlled according to the sea conditions to suppress tension fluctuations in the mooring members, and during less severe sea conditions that occur frequently, the initial tension of the mooring members is not excessively increased and the average stress is reduced. and prevent a decrease in fatigue strength.

以上の操作は手作業でも操作可能であるが、本発明では
ロードセル7により測定した張力変動を制御装置8へ送
り、その値に基づいてエネルギーの大きくなる波周期を
算定し、その波周期に波無周期が一致するように気密区
画110体積をすなわち供給空気量を制御することによ
って、より信頼性の高い安全性を有ツールテンションレ
グプラットフォームを得ることができる。
The above operations can be performed manually, but in the present invention, the tension fluctuation measured by the load cell 7 is sent to the control device 8, the wave period at which the energy increases is calculated based on the value, and the wave period is By controlling the volume of the airtight compartment 110, ie, the amount of air supplied, so that the non-periods match, a tool tension leg platform with higher reliability and safety can be obtained.

上記の実施例においては、ロワーハル型の上部構造にお
いて述べたが、フーティング型でも同一要領で係留部材
の負荷を軽減することができる。
In the above embodiment, a lower hull type superstructure was described, but the load on the mooring member can be reduced in the same manner with a footing type.

気密区画には高圧空気を供給する代わりに、窒素、炭酸
ガスなどの気体を供給してもよく、また液体でもよい。
Instead of supplying high-pressure air to the airtight compartment, a gas such as nitrogen or carbon dioxide may be supplied, or a liquid may be supplied.

初期張力の増減については上部構造へのバラストの注排
水によっても可能であり、したかってこれを併用するこ
とが可能である。
It is also possible to increase or decrease the initial tension by injecting ballast into the superstructure, and therefore it is possible to use this together.

エネルギーの増大する波周期を決定1−るの 4、わ に係留部材の張力変動を用いる代かりに波高計な用いて
もよい。
4. Instead of using the tension fluctuation of the crocodile mooring member, a wave height meter may be used.

気密区画をロワーハルの側面に取付ける代わりに、これ
をその下面に設けることも可能である。
Instead of attaching the gas-tight compartment to the side of the lower hull, it is also possible to provide it on its underside.

要するに本発明によれば、海面上方のデツキと海中に浸
漬されたロワーハルとこれらを連結するコラム等よりな
る上部構造を余剰浮力を有する状態で係留部材を介して
海底のアンカーに接続してなるテンションレグプラット
フォームにおいて、上記ロワーハルに付設された膨張可
能の気密性膜体と、上記膜体内に気体を供給する気体供
給装置と、前記係留部材に生ずる張力を検出するa−ド
セルと、上記ロードセルの出力信号を受けて上記膜体へ
の気体供給量を制御する制御装置とを具えたことにより
、安全かつ低コストのテンションレグプラットフォーム
を得るから、本発明は産業上極めて有益なものである。
In short, according to the present invention, a tension system is constructed by connecting a deck above the sea surface, a lower hull immersed in the sea, and a superstructure including a column connecting these to an anchor on the seabed via a mooring member with excess buoyancy. In the leg platform, an inflatable airtight membrane attached to the lower hull, a gas supply device for supplying gas into the membrane, an a-docell for detecting tension generated in the mooring member, and an output of the load cell. The present invention is industrially extremely useful because it provides a safe and low-cost tension leg platform by including a control device that receives a signal and controls the amount of gas supplied to the membrane body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知のテンションレグプラットフォームを示す
側面図、第2図は本発明の一実施例を示す側面図、第8
図(5)は波周期とそのエネル各分布との関係を示す線
図、同図0は第2図のテンションレグプラットフォーム
における波周期と単位波高あたりの上下方向力との関係
を示す線図である。 2・・・係留部材、3・・・アンカー、4・・・デツキ
、5・・・コラム、6・・・ロワーハル、7・・・ロー
ドセル、8・・・制御装置、9・・圧力源、lO・・・
空気管、11・・・気密区画 復代理人 弁理士 塚 本 正 文 箱1図 第2図 第3図 (A) 蹄 や 、1 ヤ 縁 柘 上丁II液轍肩期
FIG. 1 is a side view showing a known tension leg platform, FIG. 2 is a side view showing an embodiment of the present invention, and FIG.
Figure (5) is a diagram showing the relationship between the wave period and its energy distribution, and Figure 0 is a diagram showing the relationship between the wave period and the vertical force per unit wave height on the tension leg platform in Figure 2. be. 2... Mooring member, 3... Anchor, 4... Deck, 5... Column, 6... Lower hull, 7... Load cell, 8... Control device, 9... Pressure source, lO...
Air pipe, 11...Airtight compartment Sub-agent Patent attorney Masaru Tsukamoto Text Box 1 Figure 2 Figure 3 (A) Hoof, 1 Yaen Tsuge Kamicho II Liquid rut shoulder stage

Claims (1)

【特許請求の範囲】[Claims] 海面上方のデツキと海中に浸漬されたロワーハルとこれ
らを連結するコラム等よりなる上部構造を余剰浮力を有
する状態で係留部材を介して海底のアンカーに接続して
なるテンションレグプラットフォームにおいて、上記ロ
ワーハルに付設された膨張1J能の気密性膜体と、上記
膜体内に気体を供給する気体供給装置と、前記係留部材
に生ずる張力を検出するロードセルと、上記ロードセル
の出力信号を受けて上記膜体への気体供給量を制御する
制御装置とを具えたことを特徴とするテンションレグゲ
ラブトフオーム。
In a tension leg platform, a superstructure consisting of a deck above the sea surface, a lower hull immersed in the sea, and a column connecting these is connected to an anchor on the seabed via a mooring member with excess buoyancy. an attached airtight membrane body with an expansion capacity of 1 J, a gas supply device that supplies gas into the membrane body, a load cell that detects the tension generated in the mooring member, and an output signal of the load cell that is sent to the membrane body. and a control device for controlling the amount of gas supplied.
JP1699284A 1984-02-03 1984-02-03 Tension leg platform Pending JPS60163786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1699284A JPS60163786A (en) 1984-02-03 1984-02-03 Tension leg platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1699284A JPS60163786A (en) 1984-02-03 1984-02-03 Tension leg platform

Publications (1)

Publication Number Publication Date
JPS60163786A true JPS60163786A (en) 1985-08-26

Family

ID=11931515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1699284A Pending JPS60163786A (en) 1984-02-03 1984-02-03 Tension leg platform

Country Status (1)

Country Link
JP (1) JPS60163786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234980A (en) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd Fixing bottom sitting member, tension mooring floating body system and installation method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234980A (en) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd Fixing bottom sitting member, tension mooring floating body system and installation method therefor

Similar Documents

Publication Publication Date Title
JP5264593B2 (en) Fixing bottom member, tension mooring float system and installation method thereof
US4121806A (en) Apparatus for compensating variations of distance
US3986471A (en) Semi-submersible vessels
US2986889A (en) Anchoring systems
US5097786A (en) Method and apparatus for erecting and removing offshore structures
JP5190329B2 (en) Support floating body for tension mooring floating body, and towing method and installation method of tension mooring floating body using the same
CN113879474A (en) Semi-submersible offshore wind power generation platform and active floating state adjusting method thereof
US8579547B2 (en) Vessel comprising transverse skirts
US3407766A (en) Stabilized floating structure
US5054415A (en) Mooring/support system for marine structures
JPS60163786A (en) Tension leg platform
US3369511A (en) Marine floating structure
EP0122273A1 (en) Floating, semi-submersible structure
Mangiavacchi et al. Design Criteria Of Apile Founded Guyed Tower.
GB2118904A (en) Offshore structure
US20030095839A1 (en) Floating platform for offshore drilling or production of hydrocarbons
CN210942162U (en) Ocean FPSO upper portion module combination bearing structure
CN113879475A (en) Dynamic ballast adjusting device and method for offshore wind power generation platform
OA11462A (en) Floating system with tensioned lines and method for sizing the lines.
US5884576A (en) Mooring arrangement
CN216443759U (en) Dynamic ballast adjusting device of offshore wind power generation platform
CN117646451B (en) Open caisson floating transportation anti-rolling device and control method thereof
WO2023244121A1 (en) A heave compensated marine vessel, a method of operating the vessel, and a semi-submersible platform
JPS5911021B2 (en) Cell transport method and device
JP2902147B2 (en) Freestanding conduit system