JPS60163664A - Living body adaptable composite material - Google Patents

Living body adaptable composite material

Info

Publication number
JPS60163664A
JPS60163664A JP59020380A JP2038084A JPS60163664A JP S60163664 A JPS60163664 A JP S60163664A JP 59020380 A JP59020380 A JP 59020380A JP 2038084 A JP2038084 A JP 2038084A JP S60163664 A JPS60163664 A JP S60163664A
Authority
JP
Japan
Prior art keywords
composite material
fibers
fiber
layer
plastic molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59020380A
Other languages
Japanese (ja)
Other versions
JPH0429394B2 (en
Inventor
高部 礼法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP59020380A priority Critical patent/JPS60163664A/en
Priority to CA000449898A priority patent/CA1235856A/en
Priority to KR1019840001435A priority patent/KR850000230A/en
Priority to EP84301919A priority patent/EP0123426B1/en
Priority to DE8484301919T priority patent/DE3474628D1/en
Publication of JPS60163664A publication Critical patent/JPS60163664A/en
Publication of JPH0429394B2 publication Critical patent/JPH0429394B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、人工臓器用材料等の生体用材料として有用で
ある新規な生体適合性複合材に関する。更に詳しくは、
本発明は、繊維集合体とプラスチック成形体とが接合し
た、前記繊維集合体層と前記プラスチック成形体層との
少なくとも2層よりなる生体適合性に優れる可撓性複合
材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel biocompatible composite material useful as a biological material such as a material for artificial organs. For more details,
The present invention relates to a flexible composite material having excellent biocompatibility and comprising at least two layers, the fiber aggregate layer and the plastic molded body layer, in which a fiber aggregate and a plastic molded body are bonded together.

各種の生体適合性材料が人工臓器技術の発展に大いに貢
献してきたが、近年、各種人工臓器技術の発達に伴い、
既存の生体適合性は料の新、 しい展開、或いは、使用
目的或いは適用部位等に応じた生体適合性をもつ新しい
生体材料の開発が切望されてきた。例えば、可撓性であ
り、しかも、外面が生体組織と良く馴じむ性質(組織適
合性)を有し、内面が血栓を生じ難い性質(血液適合性
)をもつ様な、表裏具なった生体適合性を備えた材料の
開発や、生体適合性に優れるが硬質材料数えに人工骨、
人工歯根等の生体硬組織用材料としてのみに用いられて
いるにすぎない。炭素材料或いはセラミック材料等の、
生体軟組織用材料としての利用等である。
Various biocompatible materials have greatly contributed to the development of artificial organ technology, but in recent years, with the development of various artificial organ technologies,
There has been a strong desire for new developments in existing biocompatible materials, or for the development of new biomaterials that are biocompatible depending on the purpose of use or the site of application. For example, a front and back device that is flexible, has an outer surface that blends well with living tissue (histiocompatibility), and an inner surface that does not easily cause blood clots (blood compatibility). Development of materials with biocompatibility, artificial bone, and hard materials with excellent biocompatibility.
It is only used as a material for biological hard tissues such as artificial tooth roots. carbon materials, ceramic materials, etc.
It can be used as a material for biological soft tissues, etc.

本発明者は、前記情況に鑑み、鋭意研究の結果、生体適
合性耐熱繊維からなる繊維集合体と可撓性プラスチック
成形体とが接合した複合材が、各種人工臓器技術のニー
ズを満足することを見い出し、本発明の完成に至った。
In view of the above circumstances, as a result of intensive research, the present inventor has determined that a composite material in which a fiber aggregate made of biocompatible heat-resistant fibers and a flexible plastic molded body are bonded satisfies the needs of various artificial organ technologies. They discovered this and completed the present invention.

前記知見に基ずく本発明は、繊維集合体層と可撓性プラ
スチック成形体層との少なくとも2層よりなる可撓性複
合材に係る。
The present invention, based on the above findings, relates to a flexible composite material comprising at least two layers: a fiber aggregate layer and a flexible plastic molded body layer.

本発明の特徴の1つは、炭素材料或いはヤラミックス材
料等の硬質材料を、それらの繊維集合体として用いるこ
とによって、生体軟組織用材料への応用を可能にしたこ
とにある。
One of the features of the present invention is that by using a hard material such as a carbon material or a Yaramix material as a fiber aggregate thereof, the present invention can be applied to a material for biological soft tissues.

又、第2の特徴は、複合材が、空隙(見掛けの比表面積
)が大きく又はI開放気孔1が多く、従って生体組繊細
胞の侵入を容易とする繊維集合体層と緻密な生体適合性
プラスチック成形体層とで構成されているところにある
In addition, the second feature is that the composite material has large voids (apparent specific surface area) or many open pores, and therefore has a fiber aggregate layer and dense biocompatibility that facilitate the invasion of biological tissue cells. It consists of a plastic molded body layer.

本発明に係る可撓性複合材は、生体適合性材料として各
種人工臓器技術への適用が可能であり、例えば生体の皮
膚を貫通して物質の出し入れを必要とする経皮的インブ
ラント材例えば人工透析用血管材料、埋込み型人工臓器
駆動用電力動力供給用材料として有用である。
The flexible composite material according to the present invention can be applied to various artificial organ technologies as a biocompatible material, such as a transdermal implant material that requires penetration of the skin of a living body to introduce and remove substances It is useful as a vascular material for artificial dialysis and a power supply material for driving implantable artificial organs.

μ下、本発明を詳述する。The invention will be described in detail below.

本発明に係る繊維集合体は繊維の一次加工品、例えば、
編組品、織物、不織布、フェルト或いは捲き付は糸等を
例示し得る。それら繊維集合体の形態は複合材としての
使用目的、使用部位等に応じ適宜選択すれば良い。
The fiber aggregate according to the present invention is a primary processed product of fibers, for example,
Examples include braided products, woven fabrics, non-woven fabrics, felt, and threads. The form of these fiber aggregates may be appropriately selected depending on the purpose of use as a composite material, the site of use, etc.

繊維集合体は組繊細胞の侵入を容易とするため一般に2
0μ〜1000μの空隙又は開数気孔を有していること
が好ましい。
In order to facilitate the invasion of tissue cells, fiber aggregates generally contain 2
It is preferable to have voids or open pores of 0 μ to 1000 μ.

繊維集合体を構成する(、裁維材料としては、生体適合
性Cけ熱繊維、例えば、炭素繊維、黒鉛繊維、シリカ・
アルミナ・ジルコニア−アパタイト等よりなる無機繊維
或いはステンレス・チタン・ボロン等よりなる金属繊維
等を例示し得る。
The fiber aggregate is made up of biocompatible thermal fibers such as carbon fibers, graphite fibers, silica fibers, etc.
Examples include inorganic fibers made of alumina, zirconia, apatite, etc., and metal fibers made of stainless steel, titanium, boron, etc.

前記繊維は単独で又は複合して用いる。The above fibers may be used alone or in combination.

なお、ILa碓の形態及び太さ等は特に限定されるもの
でなく、形態としては単糸、双糸、撚糸、紡績糸、短繊
維、或いはウィスカー等を例示し得る。
Note that the form and thickness of the ILa fibers are not particularly limited, and examples of the form include single yarn, double yarn, twisted yarn, spun yarn, staple fibers, whiskers, and the like.

愼緯材料はそのまま或いはCV D (Chemica
lVapor ])eposition)法等により炭
素板it、r用いる。特に、前記無機繊維或いは金属繊
維はさらに生体適合性を向上せしめるという硯点から炭
素被覆したものが好ましい。
The processing material can be used as is or by CVD (Chemical).
A carbon plate it,r is used by a method such as lVapor])eposition). In particular, the inorganic fibers or metal fibers are preferably coated with carbon to further improve biocompatibility.

CVI)は、炭化水素例えばメタン、エチレン、プロパ
ン、ブタン、ベンセ゛ン、トルエン等のガスをそのガス
の分解温度以上で分解し、繊維上lこ炭素被覆をするも
のである。その温度は600″C乃至3000℃で好ま
しくは700’C乃至2500℃である。
CVI) decomposes a hydrocarbon gas such as methane, ethylene, propane, butane, benzene, toluene, etc. at a temperature higher than the decomposition temperature of the gas, and coats the fiber with carbon. The temperature is between 600'C and 3000C, preferably between 700'C and 2500C.

第1図はCVD法によって繊維集合体上へ炭素被覆する
際の装置の1例である。図中、14はCVD処理すべき
繊維集合体である。CVD被覆はアルゴン、水素、窒素
等の不活性ガス3をキャリアとして、メタン、ベンゼン
等4を、600〜3000℃好ましくは7oo〜250
0℃の温度に保持した電気炉8の石英管9に導入するこ
とで行なわれ、通常5〜180分で終了させる。図fh
、iはガストラップ、l。
FIG. 1 shows an example of an apparatus for coating fiber aggregates with carbon by the CVD method. In the figure, 14 is a fiber aggregate to be subjected to CVD treatment. For CVD coating, methane, benzene, etc. 4 is used as a carrier using an inert gas 3 such as argon, hydrogen, or nitrogen at a temperature of 600 to 3000°C, preferably 7oo to 250°C.
It is carried out by introducing it into a quartz tube 9 of an electric furnace 8 maintained at a temperature of 0°C, and is usually completed in 5 to 180 minutes. Figure fh
, i is gas trap, l.

は石英ボード、11は予熱部を示す。indicates a quartz board, and 11 indicates a preheating section.

なお、得られたCVD被覆繊維集合体を、必CVD処理
は繊維の状態で行なってもよいが、m組、織物、不織布
、フェルト等に加工してがら行なうことが好ましい。
Note that the CVD treatment may be performed on the obtained CVD-coated fiber aggregate while it is still in the fiber state, but it is preferable to perform the CVD treatment while it is being processed into m-pieces, woven fabrics, nonwoven fabrics, felts, and the like.

本発明に係る可焼性プラスチック成形体は、射出成形、
押出成形、加圧成形、真空成形等の方法による成形品或
いはその加工品であって、中空状、柱状、シート状、フ
ィルム状或いは複雑な三次元構造状等の形態を例示し得
る。前記形朝は複合材としての使用目的、使用部位によ
って適宜選択すれば良いが、チューブ状成形体は後述す
る如く、利用範囲が広い。
The flammable plastic molded article according to the present invention can be produced by injection molding,
It is a molded article or a processed article thereof by a method such as extrusion molding, pressure molding, vacuum forming, etc., and may have a hollow shape, a columnar shape, a sheet shape, a film shape, or a complex three-dimensional structure. The shape may be appropriately selected depending on the intended use of the composite material and the site of use, but the tubular molded product has a wide range of uses, as will be described later.

本発明でいう生体適合性プラスチックはエラストマーも
含むもので、一般の市販の生体適合性プラスチックであ
ればいずれのものであってもよい。
The biocompatible plastic referred to in the present invention includes elastomers, and may be any general commercially available biocompatible plastic.

例えばポリ四弗化エチレン等の弗素系對脂、シリコンゴ
ム等のシリコン樹脂、塩化ビニール樹脂、塩化ビニリデ
ン樹脂、フッ素化シリコンゴム、ポリエチレン、ポリプ
ロピレン、ポリエステル、ポリヒドロキシエチルメタア
クリレート、ポリアクリルアミド、ポリサルフオン、ポ
リ−N−ビニルピロリドン、セグメント化ポリウレタン
等のプラスチックを例示し得る。なお、これらのプラス
チックは後述の接着をよくするためにエツチング、グロ
ー放電処理又は表面処理剤等の塗布等により表面処理す
ることも好ましい。
For example, fluorine-based resins such as polytetrafluoroethylene, silicone resins such as silicone rubber, vinyl chloride resin, vinylidene chloride resin, fluorinated silicone rubber, polyethylene, polypropylene, polyester, polyhydroxyethyl methacrylate, polyacrylamide, polysulfon, Examples include plastics such as poly-N-vinylpyrrolidone and segmented polyurethane. It is also preferable that these plastics be surface treated by etching, glow discharge treatment, or coating with a surface treatment agent to improve adhesion as described below.

又、内部に血液を通すことを目的とする複合材の場合、
必要に応じプラスチック成形体の内面にヘパリン、ウロ
キナーゼ、アルブミン、ストレプトキナーゼ等の凝血防
止剤を被覆することが有効である。
In addition, in the case of composite materials whose purpose is to allow blood to pass through,
It is effective to coat the inner surface of the plastic molded body with an anticoagulant such as heparin, urokinase, albumin, streptokinase, etc., if necessary.

繊維集合体層とプラスチック成形体との接合は、繊維集
合体層の多孔性と可撓性が損なわれない限り、任意の方
法を用いることができる。
Any method can be used to join the fiber aggregate layer and the plastic molded body as long as the porosity and flexibility of the fiber aggregate layer are not impaired.

最も一般的には、プラスチック成形体表面に接着剤を薄
く塗布して、繊維集合体層をこれに圧着する。接着剤を
用いる代りに、プラスチック成形体表面を溶融させ、こ
れに繊維集合体をe7mさせても良い。又、接着剤を塗
布したり、部分溶融させたプラスチック成形体表面に直
接繊維を編付けたり捲き付けたり、或いは植毛する方法
によっても良い。
Most commonly, a thin layer of adhesive is applied to the surface of the plastic molded body, and the fiber aggregate layer is pressed onto it. Instead of using an adhesive, the surface of the plastic molded body may be melted and the fiber aggregate may be attached to it. Alternatively, a method of applying an adhesive, directly knitting or winding fibers onto the surface of a partially melted plastic molded product, or flocking the fibers may also be used.

尚、ここに使用する繊維材料は本来伸縮しない材料であ
るため貼り合せにあたっては、繊維軸方向に力がかから
ないで、繊維の曲げ方向に力がかかるような貼り合せ方
法の配慮が必要である。
Note that since the fiber material used here is originally a non-stretchable material, consideration must be given to a bonding method that does not apply force in the axial direction of the fibers, but rather in the bending direction of the fibers.

前記接合に使用し得る接着剤としては、シリコン系接着
剤、ポリエチレン−酢酸ビニル共重合体、ポリエステル
、ナイロン、ウレタンエラストマー又は、酢酸ビニル、
アクリル樹脂等が挙げられる。
Adhesives that can be used for the bonding include silicone adhesives, polyethylene-vinyl acetate copolymers, polyesters, nylon, urethane elastomers, vinyl acetate,
Examples include acrylic resin.

繊維間の接着されない部分は層全体の可撓性を示す為に
も、又生体細胞が侵入して固定化する上”にも必要であ
る。
The non-adhered portions between the fibers are necessary for the flexibility of the entire layer and for the infiltration and immobilization of biological cells.

V、充分な強度が得られる場合には、プラスチック成形
体に繊維を巻付けたり、繊維を袋編状にして、プラスチ
ック材料にかぶせて固定する等の機械的な力を利用して
もよい。
V. If sufficient strength can be obtained, mechanical force may be used, such as by winding the fibers around a plastic molded body, or forming the fibers into a bag-knitted shape and covering and fixing the fibers over the plastic material.

なお、本発明は繊維集合体層とプラスチック成形体層と
を接合した2層のみならず、プラスチック成形体層を中
間にして両側に生体適合性繊維集合体層を有する3層物
であってもよい。
Note that the present invention applies not only to a two-layer structure in which a fiber aggregate layer and a plastic molded body layer are joined together, but also to a three-layer structure having biocompatible fiber aggregate layers on both sides with a plastic molded body layer in the middle. good.

又、銅線等の導電性材料が内部に組み込まれたプラスチ
ック成形体と前記繊維集合体からなる贋物は生体内の情
報を電気信号として取り出すことが必要な分野に極めて
有効である。
In addition, counterfeits made of a plastic molded body with a conductive material such as a copper wire incorporated therein and the aforementioned fiber aggregate are extremely effective in fields where it is necessary to extract in-vivo information as electrical signals.

この様にして得られる本発明の複合材は、繊維集合体よ
り成る著しく多孔性の生体適合性材料層と、緻密な生体
適合性プラスチック成形体層とより成る可幌性材料であ
り、様々な用途に用いることができる。その−例として
、生体の皮膚を貫通して物質の出し入れを必要とする場
合の皮膚貫通部分への経皮的インブラント材としての利
用がある。
The composite material of the present invention obtained in this manner is a flexible material consisting of a highly porous biocompatible material layer made of fiber aggregates and a dense biocompatible plastic molded layer, and is a flexible material that is made of a variety of materials. It can be used for various purposes. An example of this is its use as a transdermal implant material at the skin-piercing site when it is necessary to penetrate the skin of a living body to deliver a substance.

具体的には、本発明の複合材は、血液透析、血液正流、
血漿交換、血漿p過、腹膜泡流における血液、潜流液等
の出し入れ、体内臓器加重治療における加熱用液の出し
入れ、人工石)藏、人工叶臓等の駆動用電力動力供給用
リード線の導入、生体内局部温度、起電力等の電気信号
等の情報の体外取出し等を目的とする人工臓器技術へ適
用される。これ等の場合側れにおいても、生体の皮膚を
貫通した物質の出し入れが必要であるが物質の出し入れ
と皮膚との接合を共に満足できる材料でなくては皮膚貫
通部の接合が不充分であり感染を起して使用不可となる
。本発明の複合材例えばプラスチックチューブの外側に
炭素繊維編物を被覆した複合材料は皮膚組織が繊維集合
体層に浸入生着し、感染を起すことなく、長期使用が可
能となるものである。その他、本発明の複合材の繊維細
胞の浸入生着かし易い特性を活かし各種細胞組織の培養
基材として利用できる。この場合の形態としてはシート
状或いはフィルム状の複合材が好ましい。
Specifically, the composite material of the present invention can be used for hemodialysis, blood forward flow,
Plasma exchange, plasma membrane filtration, blood and submerged fluid in and out of peritoneal bubble flow, in and out of heating liquid in internal organ stress treatment, introduction of lead wires for power supply to drive artificial stones, artificial kidneys, etc. , applied to artificial organ technology for the purpose of extracting information such as internal internal temperature, electrical signals such as electromotive force, etc., from outside the body. In these cases, it is necessary to take in and out substances that have penetrated the skin of the living body, but unless the material can satisfy both the ingress and ejection of substances and the bonding with the skin, the bonding at the skin-penetrating part will be insufficient. It becomes infected and becomes unusable. The composite material of the present invention, for example, a composite material in which a carbon fiber knitted fabric is coated on the outside of a plastic tube, allows skin tissue to penetrate and engraft into the fiber aggregate layer, and can be used for a long period of time without causing infection. In addition, the composite material of the present invention can be used as a culture substrate for various cell tissues by taking advantage of the property that fiber cells can easily infiltrate and engraft. In this case, the preferred form is a sheet-like or film-like composite material.

以下実施例をもって、本発明を詳述する。The present invention will be explained in detail below with reference to Examples.

実施例1、 内径3.3ma1外径4,6関、長さ30闘のシリコン
ゴムチューブの表面にシリコン系接着剤を01〜0.3
1の厚さに塗布し、この上に袋網状にした炭素繊維集合
体をかぶせた後袋編物を両端に向けて引張りシリコンゴ
ムチューブ上に密着させて接着した。得られた材料は、
柔軟性を保持し、外角は炭素繊維の編物層で覆われたチ
ューブ状複合材料であった。
Example 1: Silicone adhesive was applied to the surface of a silicone rubber tube with an inner diameter of 3.3 mm, an outer diameter of 4.6 mm, and a length of 30 mm.
After coating the carbon fiber aggregate in the form of a bag net, the bag knitted fabric was stretched toward both ends and adhered to the silicone rubber tube in close contact with the silicone rubber tube. The obtained material is
It was a tubular composite material that remained flexible and had its outer corners covered with a knitted layer of carbon fiber.

実験に供するため一端をシリコン接着剤で密封1.、l
O+mの長さに切断した。一方、体重約200gの9レ
ラツトの背中を剪毛し、軽度エーテル麻酔下に切開し、
スチーム滅菌した、前記複合材の密封端を体内側とし、
他端は体外に露出させることにより、皮膚を貫通して植
付(げた。術後1週間で湯口は治癒しチューブ(ま固定
されていた。更に2ケ月后も、植付けたままの状態で維
持し、埋4を部の感染は全く認められなかった。ここで
ト殺し、皮漬と複合体の界面を観察したが繊維層の間に
皮膚細胞が入り込み空隙ヲ埋めているのが認められた。
Seal one end with silicone adhesive for use in experiments1. ,l
It was cut to a length of O+m. On the other hand, the back of a nine-leaf rat weighing approximately 200 g was shaved, and an incision was made under mild ether anesthesia.
The steam-sterilized sealed end of the composite material is the inside of the body;
The other end was exposed outside the body and implanted through the skin. One week after the surgery, the sprue healed and the tube remained in place. The implant remained in place two months later. However, no infection was observed at the burrow 4. At this point, the skin cells were killed and the interface between the skin and the composite was observed, and it was observed that skin cells had entered between the fiber layers and filled the voids. .

比較例 シリコンゴムチューブを炭素繊維層で複合材料にするこ
となくそのまま用いて、埋植した以外は実施例1と全く
同様な実験を実施した。シリコンチューブ埋植部困nの
皮膚は1週1場後をこ発赤し、感染が認められ、チュー
ブは約2週間後に脱落した。
Comparative Example An experiment was carried out in exactly the same manner as in Example 1, except that the silicone rubber tube was used as it was without being made into a composite material with a carbon fiber layer, and was implanted. The skin at the site where the silicone tube was implanted turned red after one week, indicating infection, and the tube fell off about two weeks later.

実施例2゜ 炭素繊維編物の代りに、シリカ繊維、ステンレス繊維%
、@瓜特より成る袋編物にCVD処理を施し、それらを
実施例1に準拠しシリコンゴムチューブを密着させ本発
明の複合材を得た、次いで実施例1と全く同様に生体と
の適合性実験を実施した。結果は、実施例1と同様であ
り、2ケ月後の観察において、皮膚は繊維層内に入り込
み、密着し、感染は認められなかった。
Example 2 Silica fiber and stainless fiber% instead of carbon fiber knitted fabric
The composite material of the present invention was obtained by applying CVD treatment to a bag-knitted fabric made of ,@Utoku, and attaching a silicone rubber tube in accordance with Example 1. An experiment was conducted. The results were the same as in Example 1, and in observation after 2 months, the skin penetrated into the fiber layer and was in close contact with it, and no infection was observed.

実施例3゜ 外径約3藺の軟質塩化ビニル被覆銅線の外側に酢酸ビニ
ル系接着剤を塗布し、CVD処理したシリカ繊維袋編物
をかぶせ両端に引張り密着接着した。実験に供するため
、一端は@線が露出しないよう接着剤層でシールし、1
0謂1の長さに切断してシール部を体内側として実施例
1と同様にラット背部に埋植した。術後約1週間で埋植
部は治癒し、1ケ月後も全く感染は認められず、材料は
皮膚を貫1通して固定されていた。
Example 3 A vinyl acetate adhesive was applied to the outside of a soft vinyl chloride-coated copper wire with an outer diameter of about 3 mm, and a CVD-treated silica fiber bag knitted fabric was covered and both ends were pulled and adhered tightly. In order to use it for experiments, one end was sealed with an adhesive layer to prevent the @ wire from being exposed, and
It was cut into a length of 0.01 mm and implanted into the back of a rat in the same manner as in Example 1, with the sealed portion placed inside the body. The implanted area healed approximately one week after the surgery, and no infection was observed even after one month, and the material was fixed by penetrating the skin.

実施例4゜ 平らな台上に100mxX100間、厚さ1間のポリ塩
化ビニルシートをおき、その四辺ζこセロハンテープを
2 h tこ貼り約1/10 yJ+の段差をつけた。
Example 4 A polyvinyl chloride sheet measuring 100 m x 100 mm and having a thickness of 1 mm was placed on a flat table, and 2 h of cellophane tape was applied to all four sides of the sheet to form a step of about 1/10 yJ+.

その囲みの中にシリコン樹脂接着剤5ILASTI(1
:I■5ilicon TypeAを流し、ガラス俸で
しごいて約1/10+uの厚さの接着剤層を形成し、C
VD処理炭素繊維布を乗せて上から押え、そのまま−昼
夜放置し、ポリ塩化ビニル/CVD処理炭素繊維布複合
材を得た。
Silicone resin adhesive 5ILASTI (1
: Pour I■5ilicon Type A, squeeze with a glass spatula to form an adhesive layer with a thickness of about 1/10+U, and apply C.
A VD-treated carbon fiber cloth was placed on it, pressed down from above, and left as it was day and night to obtain a polyvinyl chloride/CVD-treated carbon fiber cloth composite material.

同様にして、イオンエツチングテフロンシートの試料を
作成した。シリコンゴムシートは四角の中抜きの紙型を
つくり接着剤8流し込み同様にeVD処理炭素繊維布複
合材を作成した。
Similarly, samples of ion-etched Teflon sheets were prepared. A square paper mold with a hollow square was made using the silicone rubber sheet, and adhesive 8 was poured in to create an eVD-treated carbon fiber cloth composite material in the same manner.

これ等の材料はいづれも充分な柔軟性を示した。All of these materials exhibited sufficient flexibility.

接着剤固化后中央部より32朋φの試料4熔づつを切り
出した。
After the adhesive had solidified, four samples each having a diameter of 32 mm were cut out from the center.

次に、生体適合性を知るための実験を行なった。細胞は
株化ヒト歯肉癌由来の上皮性細胞(略号Ca、9.22
)及びラット胎児出社由来の線維芽性細胞(略号RTG
)を用いた。
Next, we conducted an experiment to determine biocompatibility. The cells are epithelial cells derived from established human gingival carcinoma lines (abbreviation Ca, 9.22
) and rat embryonic fibroblast cells (abbreviated as RTG)
) was used.

各試料は直径42π1のガラスシャーレlこ入れガス成
因後2〜5 x 10’個/づの細胞浮遊液5ゴを加え
た。4日間5%炭酸ガス雰囲気下、37℃で培養を行な
った。トリプシン処理により材料表面上に生育した細胞
を剥離し、血球計算板により細胞数を算定した。組織培
養用のLuX社製プラスチックシャーレ上での増殖細胞
数を比較1直とした。各試料上での細胞の増殖性は増i
論率で表わした。
Each sample was placed in a glass Petri dish with a diameter of 42π1, and after gas generation, 2 to 5 x 10 cells/cell suspension was added. Culture was carried out at 37° C. in a 5% carbon dioxide atmosphere for 4 days. Cells grown on the material surface were detached by trypsin treatment, and the number of cells was calculated using a hemocytometer. The number of proliferating cells on a plastic petri dish made by LuX for tissue culture was compared once. The proliferation of cells on each sample increases.
Expressed in terms of argument.

各試料について4回測定し、平均値をめた。Each sample was measured four times and the average value was calculated.

その結果を下記表に示す。The results are shown in the table below.

増殖率 A Ca、9.22 几TG l ポリ塩化ビニル 5% 0% 2 ポリ塩化ビニル十〇VD処理炭素繊維布 75 7
13 テフロン 5350 4 テフロン+CVD処理炭素懺維布 78 755 
シリコンゴム 5550 6 シリコンゴム+CVD処理炭素繊維布 80 78
7 シリコンゴム+炭素鐵維布 75 73CVD処理
炭素繊維布層のある試料は増殖率が増太し、生体適合性
の増加することが示唆される。炭素繊維布層のある試料
も生体適合性の増加することが示された。
Growth rate A Ca, 9.22 TG l Polyvinyl chloride 5% 0% 2 Polyvinyl chloride 10VD treated carbon fiber cloth 75 7
13 Teflon 5350 4 Teflon + CVD treated carbon fiber cloth 78 755
Silicone rubber 5550 6 Silicone rubber + CVD treated carbon fiber cloth 80 78
7 Silicon Rubber + Carbon Steel Fabric 75 73 Samples with a CVD treated carbon fiber fabric layer have an increased growth rate, suggesting increased biocompatibility. Samples with carbon fiber fabric layers also showed increased biocompatibility.

実施例5゜ ガラス繊維布を、平らな台上に10crnX10m、厚
さ1maのポリ塩化ビニルシートをおき、シリコン系接
着剤を塗布した上に乗せ、上から押えポリ塩化ビニル/
ガラス繊維複合材を得た。
Example 5 A glass fiber cloth was placed on a flat table with a polyvinyl chloride sheet of 10 crn x 10 m and 1 ma thick, coated with a silicone adhesive, and pressed from above with a polyvinyl chloride sheet.
A glass fiber composite was obtained.

これを用いて実施例4の条件で上皮性細胞(Ca。This was used to grow epithelial cells (Ca) under the conditions of Example 4.

9.22 )増殖率をめた。結果は65%であった。9.22) Determine the proliferation rate. The result was 65%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明で使用するCVD処理装置の説明図で
ある。 1・・・トラップ、2・・・マントルヒーター、3・・
・不活性ガス、4・・・CVD用ガス、5,6.7・・
・流量計、8・・・電気炉、9・・・石英管、10・・
・石英ボード、11・・・リボンヒーター、12・・・
熱電対、13・・・ピット、14・・・繊維集合体。 代理人弁理士今 村 元
FIG. 1 is an explanatory diagram of a CVD processing apparatus used in the present invention. 1... Trap, 2... Mantle heater, 3...
・Inert gas, 4...CVD gas, 5,6.7...
・Flowmeter, 8...Electric furnace, 9...Quartz tube, 10...
・Quartz board, 11... Ribbon heater, 12...
Thermocouple, 13... pit, 14... fiber aggregate. Representative Patent Attorney Hajime Imamura

Claims (1)

【特許請求の範囲】 (1)戯維真合体層とプラスチック成形体層よりなる可
撓性複合材。 (2)愼維祭合体は繊維の一次加工品である特許請求の
範囲第1項に記載の複合材。 (3)賊維朶合体は生体適合性耐熱繊維よりなる特許請
求の範囲第1項に記載の複合材。 (4)生体適合性耐熱は維が炭素被覆を施したものであ
る特許請求の範囲第3項に記載の複合材(5) プラス
チック成形体は生体適合性プラスチックである特許請求
の範囲第1項に記載の複合材。 (6) プラスチック成形体はその内部に導電性材料が
設置されている特許請求の範囲第1項に記載の複合材。
[Scope of Claims] (1) A flexible composite material comprising a synthetic fiber layer and a plastic molded layer. (2) The composite material according to claim 1, wherein the fiber mat is a primary processed product of fibers. (3) The composite material according to claim 1, wherein the composite fiber is made of biocompatible heat-resistant fibers. (4) The biocompatible heat-resistant composite material according to claim 3, wherein the fibers are coated with carbon. (5) The plastic molded product is a biocompatible plastic. Claim 1: Composite materials described in . (6) The composite material according to claim 1, wherein the plastic molded body has a conductive material installed therein.
JP59020380A 1983-03-23 1984-02-07 Living body adaptable composite material Granted JPS60163664A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59020380A JPS60163664A (en) 1984-02-07 1984-02-07 Living body adaptable composite material
CA000449898A CA1235856A (en) 1983-03-23 1984-03-19 Biocompatible composite material
KR1019840001435A KR850000230A (en) 1983-03-23 1984-03-20 Method of producing biocompatible composition
EP84301919A EP0123426B1 (en) 1983-03-23 1984-03-21 Biocompatible composite material for implants and artificial organs for the human body
DE8484301919T DE3474628D1 (en) 1983-03-23 1984-03-21 Biocompatible composite material for implants and artificial organs for the human body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59020380A JPS60163664A (en) 1984-02-07 1984-02-07 Living body adaptable composite material

Publications (2)

Publication Number Publication Date
JPS60163664A true JPS60163664A (en) 1985-08-26
JPH0429394B2 JPH0429394B2 (en) 1992-05-18

Family

ID=12025431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59020380A Granted JPS60163664A (en) 1983-03-23 1984-02-07 Living body adaptable composite material

Country Status (1)

Country Link
JP (1) JPS60163664A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268267A (en) * 1985-05-23 1986-11-27 呉羽化学工業株式会社 Subcataneous composite material
JPS6253663A (en) * 1985-08-31 1987-03-09 京セラ株式会社 Implant for living body
JP2018095999A (en) * 2016-12-13 2018-06-21 日本バイリーン株式会社 Inorganic fiber sheet, method of producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438439A (en) * 1977-08-30 1979-03-23 Agency Of Ind Science & Technol Fuel injection for pump multiple injection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438439A (en) * 1977-08-30 1979-03-23 Agency Of Ind Science & Technol Fuel injection for pump multiple injection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268267A (en) * 1985-05-23 1986-11-27 呉羽化学工業株式会社 Subcataneous composite material
JPS6253663A (en) * 1985-08-31 1987-03-09 京セラ株式会社 Implant for living body
JP2018095999A (en) * 2016-12-13 2018-06-21 日本バイリーン株式会社 Inorganic fiber sheet, method of producing the same

Also Published As

Publication number Publication date
JPH0429394B2 (en) 1992-05-18

Similar Documents

Publication Publication Date Title
US5733336A (en) Ported tissue implant systems and methods of using same
US3700380A (en) Surface or lining compatible with blood or other tissue
US4804382A (en) Artificial vessel
US7413575B2 (en) Nanofibrous biocomposite prosthetic vascular graft
EP0227955A2 (en) Composite wound dressing
US8114465B2 (en) Process for preparing a substrate coated with a biomolecule
JP2938169B2 (en) Artificial skin
CN101300037A (en) Hemocompatible composite material and its process of manufacture
CN101810882A (en) Scaffold material capable of inducing biological hard tissue or soft tissue
CN103132045A (en) Preparation method for coatings of medical supplies and products thereof
JPS6317458B2 (en)
Hall et al. Development of skin interfacing cannula
US20070293848A1 (en) Medical Instrument
WO1995018583A1 (en) Ported tissue implant systems and methods of using same
JPS60163664A (en) Living body adaptable composite material
EP0123426B1 (en) Biocompatible composite material for implants and artificial organs for the human body
JPH06327757A (en) Bioimplant composite material and bioadaptable composite material
JP2013198437A (en) Transplantation sheet
EP0202917A2 (en) Implant device
US9155820B2 (en) Skin substitute manufacturing method
EP1829567A1 (en) Medical instrument
TW200400811A (en) Tissue engineering scaffold material, artificial vessel, cuff member and coating for implants
Okamoto et al. Histological investigation of the titanium fiber mesh with one side sealed with non-porous material for its application to the artificial heart system
JP2001104346A (en) Artificial skin
JPS6168038A (en) Artificial trachea