JPS60163408A - Metallic oxide magnetic material and magnetic film - Google Patents

Metallic oxide magnetic material and magnetic film

Info

Publication number
JPS60163408A
JPS60163408A JP1923984A JP1923984A JPS60163408A JP S60163408 A JPS60163408 A JP S60163408A JP 1923984 A JP1923984 A JP 1923984A JP 1923984 A JP1923984 A JP 1923984A JP S60163408 A JPS60163408 A JP S60163408A
Authority
JP
Japan
Prior art keywords
magnetic
film
magnetic film
metallic oxide
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1923984A
Other languages
Japanese (ja)
Inventor
Fumiya Omi
文也 近江
Motoharu Tanaka
元治 田中
Hitoshi Nakamura
均 中村
Atsuyuki Watada
篤行 和多田
Hajime Machida
元 町田
Nobuyuki Koinuma
鯉沼 宜之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1923984A priority Critical patent/JPS60163408A/en
Publication of JPS60163408A publication Critical patent/JPS60163408A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the recording and reproduction by semiconductor laser beam by reducing Curie temperature while maintaining properly high coersive force required for memory by substituting a part of Fe atoms in metallic oxide of MeO[Fe2O3] with Mn and Sn atoms. CONSTITUTION:By using metallic oxide magnetic material expressed by the formula I ; (wherein Me=Ba or Sr, 0>x<=0.7, 0<y<=0.5, 5<=n<=6), for a target, the material is spread on a substrate 1 to the thickness of about 0.1-10mum by vacuum vapor deposition, spattering or ion plating with 500-700 deg.C of the substrate temperature to obtain a photomagnetic recording medium comprising a magnetic film 2 vertically magnetized. Because Curie temperature of the metallic oxide magnetic substance or the magnetic film 2 are low, not only the recording sensitivity is high, but also resistance to corrosion from oxidation and light-transmitting property are provided. As the embodiments of metallic oxide magnetic materials, BaO6[Mn0.5Sn0.3Fe1.1O3], BaO5.7[Mn0.3Sn0.18Fe1.46O3] and etc. are available.

Description

【発明の詳細な説明】 弦亙没! 本発明は新規な金属酸化物磁性体及びそれよりなる磁性
膜に関する。
[Detailed description of the invention] The death of the string! The present invention relates to a novel metal oxide magnetic material and a magnetic film made of the same.

盗1五亙 近年、半導体レーザー光により磁気記録を行なう光磁気
記録媒体が高密度記録用として研究開発されている。従
来、光磁気記録媒体に用いられる磁性体としては希土類
金属と遷移金属との非晶質合金からなるものが多い。こ
のような非晶質合金磁性体を用いて光磁気記録媒体を作
るには′一般にガラス板のような基板上に前記磁性体、
例えばTb−Fe合金を真空蒸若、スパッタリング等の
方法で厚さ0.1〜1μm程度に付着させて磁性膜を形
成している。こうして得られる光磁気記録媒体への記録
、再生は次のようにして行なわれる。即ち記録は磁性膜
のキュリ一温度又は補償温度近傍における温度変化に対
応した保磁力の急激な変化特性を利用して2値信号で変
調されたレーザー光を磁性膜に照射加熱して磁化の向き
を反転させることにより行なわれる。また再生はこうし
て反転記録された磁性膜の磁気光学効果の差を利用して
読出すことにより行なわれる。前述のような非晶質合金
磁性体を用いた光磁気記録媒体は記録感度が高いため、
半導体レーザー光によって高速度(周波数1MHzにお
いて)で記録できるという利点はあるが4非晶質合金磁
性体、特に遷移金属成分は酸化腐食を受け易いので、経
時と共に磁性膜の磁気光学特性が劣化するという大きな
欠点がある。
In recent years, magneto-optical recording media that perform magnetic recording using semiconductor laser light have been researched and developed for high-density recording. Conventionally, magnetic materials used in magneto-optical recording media are often made of amorphous alloys of rare earth metals and transition metals. To make a magneto-optical recording medium using such an amorphous alloy magnetic material, the magnetic material is generally placed on a substrate such as a glass plate.
For example, a magnetic film is formed by depositing a Tb--Fe alloy to a thickness of about 0.1 to 1 μm using a method such as vacuum evaporation or sputtering. Recording and reproduction on the magneto-optical recording medium thus obtained are performed as follows. That is, recording is performed by heating the magnetic film by irradiating laser light modulated with a binary signal to change the direction of magnetization, taking advantage of the property of rapid changes in coercive force corresponding to temperature changes near the Curie temperature or compensation temperature of the magnetic film. This is done by reversing the . Further, reproduction is performed by reading out using the difference in the magneto-optical effect of the magnetic film recorded in this way. Magneto-optical recording media using amorphous alloy magnetic materials as mentioned above have high recording sensitivity, so
Although it has the advantage of being able to record at high speed (at a frequency of 1 MHz) using semiconductor laser light, the magneto-optical properties of the magnetic film deteriorate over time because the 4 amorphous alloy magnetic material, especially the transition metal component, is susceptible to oxidative corrosion. There is a big drawback.

これを防止するため、非晶質磁性膜上にSin。To prevent this, a layer of Sin is applied on the amorphous magnetic film.

SiO2等の保護膜を設ける(形成法は磁性膜の場合と
同様、真空蒸着、スパッタリング等による)ことも知ら
れているが、磁性膜或いは保護膜の形成時、真空中に残
存する02、基板面に吸着された02..820等及び
合金磁性体のターゲット中に含まわる02,820等に
より経時と共に磁性膜が酸化腐食される上、記録時の光
及び熱により更にこの酸化腐食は促進される。また非結
晶質磁性体は熱によって結晶化され易く、そのために磁
気特性の劣化を来たし易いという欠点を有する。更に再
生出力を向上するための再生方式として磁性膜をできる
だけ厚くし、その上にCu + A fl + P t
 + A u + A g等の反射膜を設け、レーザー
光を磁性膜に照射透過させた後、反射膜で反射させ、こ
の反射光を検出する反射型ファラデ一方式は高S/Hの
信号が得られるという点で有利であるが、従来の非晶質
磁性膜は透光性に欠けるため、この方式に用いることが
できないものであった。
It is also known to provide a protective film such as SiO2 (forming method is by vacuum evaporation, sputtering, etc. as in the case of a magnetic film), but when forming a magnetic film or a protective film, 02 remaining in vacuum, the substrate 02. adsorbed on the surface. .. The magnetic film is oxidized and corroded over time by 02, 820, etc. contained in the target of 820, etc. and alloy magnetic material, and this oxidative corrosion is further accelerated by light and heat during recording. In addition, amorphous magnetic materials have the disadvantage that they are easily crystallized by heat, which tends to cause deterioration of their magnetic properties. Furthermore, as a reproduction method to improve reproduction output, the magnetic film is made as thick as possible, and Cu + A fl + P t
+ A u + A g etc. is provided, the laser beam is irradiated onto the magnetic film, transmitted through it, reflected by the reflective film, and the reflected light is detected.The reflective Farade type detects a high S/H signal. Although it is advantageous in that it can be obtained, conventional amorphous magnetic films cannot be used in this method because they lack light transmission.

目 的 本発明の目的は記録感度が高く、しかも耐酸化腐食性及
び透光性に優れた、光磁気記録媒体用材料として特に好
適な新規な金属酸化物磁性体及びこの金属酸化物磁性体
よりなる磁性膜を提供することである。
Purpose The purpose of the present invention is to provide a novel metal oxide magnetic material that has high recording sensitivity, excellent oxidation corrosion resistance and light transmission properties, and is particularly suitable as a material for magneto-optical recording media, and a novel metal oxide magnetic material that is particularly suitable as a material for magneto-optical recording media. The purpose of the present invention is to provide a magnetic film having the following properties.

構 成 本発明の金属酸化物磁性体は一般式(1)%式%) ) で示されるものであり、また磁性膜は前記一般式の金属
化物磁性体よりなるものである。
Structure The metal oxide magnetic material of the present invention is represented by the general formula (1) (% formula %), and the magnetic film is made of the metal oxide magnetic material of the general formula.

光磁気記録媒体に用いられる磁性体又は磁性膜には半導
体レーザー光によって記録、再生可能な磁気光学特性(
適正なキュリ一温度、保磁力等)を備えていなければな
らないが、特に高い記録感度を得るためにキュリ一温度
Tcが低いこと及び記録したメモリーを安定に維持する
ために保磁力Heが適度に高いことが必要である。一般
にこのTc及びH,cの適正範囲はTcについては10
0〜350℃、Heについては′360〜6000エル
ステッドと考えられる。これはTcが100°C以下で
は記録したメモリーが再生時のレーザー光によって不安
定になって再生特性の劣化原因となり、また、350°
C以上では半導体レーザー光による記録が困難であり、
一方、I−1cが300エルステツド以下ではメモリー
が不安定となって消失する可能性があり、また6000
工ルステツド以上では記録時の磁化反転に必要なレーザ
ー出力や外部磁界が大きくなり、好ましくないからであ
る。
The magnetic material or magnetic film used in magneto-optical recording media has magneto-optical properties (
In particular, in order to obtain high recording sensitivity, the Curie temperature Tc must be low, and in order to maintain the recorded memory stably, the coercive force He must be moderate. It needs to be high. Generally, the appropriate range for Tc, H, and c is 10 for Tc.
It is considered to be 0 to 350°C, and '360 to 6000 oersteds for He. This is because when Tc is below 100°C, the recorded memory becomes unstable due to the laser beam during playback, causing deterioration of playback characteristics.
Above C, it is difficult to record with semiconductor laser light,
On the other hand, if I-1c is less than 300 oersteds, the memory may become unstable and disappear;
This is because the laser output and external magnetic field necessary for magnetization reversal during recording become large when the magnetic field exceeds Ehrsted, which is undesirable.

一方、従来より磁気バブル材料として金属酸化物磁性体
が研究されている。このうち六方晶系のものでは例えば 一般式(2) %式% (但しMe、nは一般式(1)に同じ)で示されるもの
が知られている。本発明者らはこの種の磁性体がそれ自
体、酸化物であるため、酸fヒ劣化の恐れがなく、しか
も膜厚10μとしても透光性を備えていることに注目し
た。しかしこれらはキュリ一温度Tcが450℃以」二
と高いため、前述のように半導体レーザー光による記録
は困難であり、そのままでは光磁気記録媒体用材料とし
て適用できない。そこで本発明者らは種々検討したとこ
ろ、一般式(2)の中のFe原子の一部をMn又はS 
n M子で置換すると、Mn置換、Sn[換のいずれの
場合もTcが低下することを見出した。同時にHeにつ
いてはMn置換の場合は増大するが、Sn[換の場合は
低下することを見出した。例えばMn又はSn百換検体
 a F B 12−17.MZ o、、 (MばMn
又はSn、ZはMn又はSnの置換数を表わし、PはM
のイオン価数を表わす。)はTcについては第1図のよ
うな傾向を示し、またHeについては第2図のような傾
向を示した。そこで本発明者らはこのようなMn及びS
nの置換効果に着目し、更に光磁気記録媒体用の磁性体
又は磁性膜に要求されるTc及びHcの前記適正範囲を
考慮して一般式(2)のFeの一部をMn及びSnの2
種の金属で種々の割合で置換した結果、一般式(1)の
金属酸化物磁性体が光磁気記録媒体として優れた特性を
与えることを見出し、本発明に到達した。
On the other hand, metal oxide magnetic materials have been studied as magnetic bubble materials. Among these hexagonal crystals, for example, those represented by the general formula (2) (where Me and n are the same as in the general formula (1)) are known. The inventors of the present invention have noted that since this type of magnetic material is itself an oxide, there is no fear of deterioration due to acid f or arsenic, and moreover, it has translucency even with a film thickness of 10 μm. However, since the Curie temperature Tc of these materials is as high as 450.degree. C. or higher, recording with semiconductor laser light is difficult as described above, and they cannot be used as is as a material for magneto-optical recording media. Therefore, the present inventors conducted various studies and found that some of the Fe atoms in general formula (2) were replaced with Mn or S.
It has been found that when substituted with nM molecules, Tc decreases in both cases of Mn substitution and Sn [substitution. At the same time, it was found that He increases in the case of Mn substitution, but decreases in the case of Sn substitution. For example, Mn or Sn 100% specimen a F B 12-17. MZ o,, (MbaMn
Or Sn, Z represents the number of substitutions of Mn or Sn, P is M
represents the ion valence of ) showed a tendency as shown in FIG. 1 for Tc, and a tendency as shown in FIG. 2 for He. Therefore, the present inventors have discovered that such Mn and S
Focusing on the substitution effect of n, and further considering the above-mentioned appropriate ranges of Tc and Hc required for magnetic materials or magnetic films for magneto-optical recording media, a part of Fe in general formula (2) is replaced by Mn and Sn. 2
As a result of substituting different metals in various ratios, it was discovered that the metal oxide magnetic material of general formula (1) provides excellent characteristics as a magneto-optical recording medium, and the present invention was achieved.

このように本発明は、特にキュリ一温度が高いため、光
磁気記録媒体用材料として顧みられなかった一般式(2
)の金属酸化物中のFe原子の一部をMn及びSn原子
で置換することによって、メモリーに要求される適度に
高い保磁力を維持しながら、キュリ一温度を低下せしめ
て半導体レーザー光による記録、再生を可能にし、こう
して光磁気記録媒体用材料として適用できるようにした
ものである。
In this way, the present invention solves the problem of the general formula (2
) By substituting some of the Fe atoms in the metal oxide with Mn and Sn atoms, the Curie temperature can be lowered while maintaining the moderately high coercive force required for memory, making it possible to record using semiconductor laser light. , reproduction is possible, and thus it can be applied as a material for magneto-optical recording media.

以上の説明から判るように本発明の金属酸化物磁性体は
光磁気記録媒体用材料として要求される適正キュリ一温
度範囲及び適正保磁力範囲を満足するものである。
As can be seen from the above description, the metal oxide magnetic material of the present invention satisfies the appropriate Curie temperature range and appropriate coercive force range required as a material for magneto-optical recording media.

例えばBaMnx’ Sny’ Fe、−t x’ +
)y’ 、019(但しX′はM n [検数、Y′は
Sn[検数)ではTcは第3図に示すように、Mnの置
換数X′ が3.0で、且つSnの置換数Y′ が1.
3の時、250℃であり、またHeは第4図に示すよう
に、Mnの置換数X′が3.0で、且つSnの置換数Y
′が1.3の時、約1.2にエルステッドである。
For example, BaMnx'Sny' Fe, -t x' +
) y', 019 (where X' is M n [tally, Y' is Sn [tally], and Tc is, as shown in Figure 3, when the number of substitutions X' for Mn is 3.0 and for Sn The number of substitutions Y' is 1.
3, the temperature is 250°C, and as shown in FIG.
When ' is 1.3, the Oersted is approximately 1.2.

これらのTc及びHe特性により本発明の金属酸化物磁
性体又は磁性膜は半導体レーザー光により記録、再生を
行なう光磁気記録媒体用材料として適用できることは勿
論、キュリ一温度が低いため、記録感度が高い上、耐酸
化腐食5性及び透光性を備えている等の特長を持ってい
る。
Due to these Tc and He properties, the metal oxide magnetic material or magnetic film of the present invention can be applied as a material for magneto-optical recording media that performs recording and reproduction using semiconductor laser light. In addition to being expensive, it has features such as oxidation corrosion resistance and transparency.

本発明の金属酸化物磁性体を作るには夫々所定量のBa
CO3又は5rCO,とFe2O。
To make the metal oxide magnetic material of the present invention, a predetermined amount of Ba is required.
CO3 or 5rCO, and Fe2O.

とM n O2とSnO2とを混合粉砕し、これを適当
な形状の金型に入れて成型後、1200〜1400℃の
温度で焼結すtばよい。
, M n O2 and SnO2 are mixed and pulverized, placed in a mold of an appropriate shape, molded, and then sintered at a temperature of 1200 to 1400°C.

以上のようにして得られる本発明の金属酸化物磁性体の
具体例としては Ba06 (Mn、’、Sn、、、Fe、、O,)。
A specific example of the metal oxide magnetic material of the present invention obtained as described above is Ba06 (Mn,',Sn,,,Fe,,O,).

B :r 05.61:Mn、、S n、、、 F e
、、、 O,) 。
B:r 05.61:Mn,,Sn,,,Fe
,,,O,).

5r06 (Mn、、Snt+f Fe、、、03)。5r06 (Mn,,Snt+fFe,,03).

BeO6CM na、S n、、、、 F e、、、 
O,) 。
BeO6CM na, S n, ..., Fe, ...
O,).

B a 05.8 CMn&4S n、、、 F B、
、 O,) ISr○5.6 (M na* S na
zlFetll○3〕。
B a 05.8 CMn&4S n,,, F B,
, O,) ISr○5.6 (M na* S na
zlFetll○3].

B a O6(M najS nall F er、*
x 03 ) rB a Q5.7 [Mna、S n
、、、 F B、、、 O,) 1等が挙げられる。
B a O6(M najS nall F er, *
x 03 ) rB a Q5.7 [Mna, S n
,,, F B,,, O,) 1 etc. are mentioned.

なお本発明の金属酸化物磁性体にはファラデー回転角を
更に増大して磁気光学特性を改善するためにCo、B 
i、V+ La+ Y+ Yb+ Sm。
The metal oxide magnetic material of the present invention may contain Co, B, etc. in order to further increase the Faraday rotation angle and improve the magneto-optical properties.
i, V+ La+ Y+ Yb+ Sm.

Tb、Dy、Gd等の金属を添加することができる。Metals such as Tb, Dy, and Gd can be added.

本発明の金属酸化物磁性体を用いて磁性膜を作るには、
基板の種類にもよるが、一般に基板上にこの磁性体をタ
ーゲットとして基板温度500〜700℃で真空蒸着、
スパッタリング、イオンブレーティング等の方法で膜厚
0,1〜10μm程度に付着させればよい。こうして第
5図に示すように基板1上に、垂直磁化された磁性膜2
を有する光磁気記録媒体が得られる。なお場合によって
は磁性膜の形成は基板温度500°C未満で行なうこと
もできる。但しこの場合は磁性膜形成後、これに500
〜800℃の熱処理を、場合により磁界を印加しながら
、行なって垂直磁化させる必要がある。ここで基板の材
料としては一般にアルミニウムのような耐熱性金属;石
英ガラス;GGG;サファイヤ;リチウムタンタレート
;結晶化透明ガラス;パイレックスガラス;バイコール
ガラス;表面を酸化処理し又は処理しない単結J、シI
J:+ン; AQ20.+ AQ20.’Mg○+Mg
○・LiF、Y、○、・LiF。
To make a magnetic film using the metal oxide magnetic material of the present invention,
Although it depends on the type of substrate, generally this magnetic material is vacuum evaporated onto the substrate at a substrate temperature of 500 to 700°C.
The film may be deposited to a thickness of about 0.1 to 10 μm using a method such as sputtering or ion blasting. In this way, as shown in FIG. 5, a perpendicularly magnetized magnetic film 2 is placed on the substrate 1.
A magneto-optical recording medium having the following properties is obtained. In some cases, the magnetic film may be formed at a substrate temperature of less than 500°C. However, in this case, after forming the magnetic film, 500
It is necessary to perform perpendicular magnetization by heat treatment at ~800° C. while applying a magnetic field if necessary. Here, the substrate materials are generally heat-resistant metals such as aluminum; quartz glass; GGG; sapphire; lithium tantalate; crystallized transparent glass; Pyrex glass; Vycor glass; Si I
J:+n; AQ20. +AQ20. 'Mg○+Mg
○・LiF, Y, ○,・LiF.

BeO,ZrO2・Y、O,、The2 ・CaO等の
透明セラミック材;無機シリコン材(例えば東芝シリコ
ン社製トスガード、住友化学社製スミセラムP)等の無
機材料が使用できる。
Transparent ceramic materials such as BeO, ZrO2.Y, O, The2.CaO, etc.; inorganic materials such as inorganic silicon materials (for example, Toshiba Silicon Co., Ltd. Toss Guard, Sumitomo Chemical Co., Ltd. Sumiceram P) can be used.

本発明の磁性膜は第5図のような単層型光磁気記録媒体
に限らず、従来公知のすべての多層型光磁気記録媒体に
適用できる。この種の多層型の例としては第6〜9図に
示すような構成のものが挙げられる。図中、1′はガイ
ドトラック付き基板、3は反射膜、4は透明誘電層、5
はガイドトラック層、6は保護膜、7は透明接着層、8
は耐熱層である。ここでガイドトラック付き基板1′は
前述のような有機材料を射出成型、押出成型、フォトエ
ツチング法等により加工して作られる。なお基板のガイ
ドトラックは記録、再生時のレーザー光を案内するもの
である。反射膜3はCu + A (i + A g 
+ A u +P t + T e Ox 、 T e
 C、S e A s 、 T e A s 。
The magnetic film of the present invention is applicable not only to a single-layer magneto-optical recording medium as shown in FIG. 5, but also to all conventionally known multilayer magneto-optical recording media. Examples of this type of multilayer type include structures shown in FIGS. 6 to 9. In the figure, 1' is a substrate with a guide track, 3 is a reflective film, 4 is a transparent dielectric layer, and 5 is a substrate with a guide track.
is a guide track layer, 6 is a protective film, 7 is a transparent adhesive layer, 8
is a heat-resistant layer. Here, the guide track-equipped substrate 1' is manufactured by processing the above-mentioned organic material by injection molding, extrusion molding, photoetching, or the like. Note that the guide track on the substrate guides the laser beam during recording and reproduction. The reflective film 3 is Cu + A (i + A g
+ A u + P t + T e Ox , T e
C, S e As, T e As.

TiN、TaN、CrN、シアニン染料、フタロシアニ
ン染料等を真空蒸着、スパッタリング、イオンブレーテ
ィング等の方法で対象面に膜厚500〜10000人程
度に付着させることにより形成される。なおこの反射膜
は、磁性膜を透過したレーザー光を反射し、再び磁性膜
を透過することによるファラデー効果を増大させる目的
で設けられる。透明誘電層4は5in3.Sio。
It is formed by depositing TiN, TaN, CrN, cyanine dye, phthalocyanine dye, etc. on the target surface to a thickness of about 500 to 10,000 layers using methods such as vacuum evaporation, sputtering, and ion blasting. Note that this reflective film is provided for the purpose of increasing the Faraday effect by reflecting the laser light that has passed through the magnetic film and transmitting it through the magnetic film again. The transparent dielectric layer 4 is 5in3. Sio.

”rto、、Ti○+ Ce2O,HfO2,B eO
”rto,, Ti○+ Ce2O, HfO2, BeO
.

The、、S i、N、等を前記と同様な方法で対象面
に膜厚約0.05〜0.5μm程度に付着させることに
より形成される。なおこの透明誘電層はファラデー回転
角を増大させて再生出力を向上する目的で設けられる。
It is formed by depositing The, Si, N, etc. on the target surface to a thickness of approximately 0.05 to 0.5 μm using the same method as described above. Note that this transparent dielectric layer is provided for the purpose of increasing the Faraday rotation angle and improving the reproduction output.

ガイドトラック層5は対象面に紫外線硬化性樹脂を塗布
した後、ガ、イド溝を有する金型を圧着しながら、紫外
線を照射して前記樹脂を硬化させることにより形成され
る。保護膜6はアクリル樹脂、ポリウレタン樹脂、ポリ
カーボネー1−樹脂、ポリエーテルスルホン樹脂、ポリ
アミド樹脂、エポキシ樹脂、TiN、S t、Na 、
TaN、S io、、S i。
The guide track layer 5 is formed by applying an ultraviolet curable resin to the target surface, and then irradiating ultraviolet rays to cure the resin while pressing a mold having guide grooves thereon. The protective film 6 is made of acrylic resin, polyurethane resin, polycarbonate resin, polyethersulfone resin, polyamide resin, epoxy resin, TiN, St, Na,
TaN, S io,, S i.

等を樹脂の場合は塗布法で、その他の場合は真空蒸着、
スパッタリング、イオンブレーティング等の方法で対象
面に膜厚約0.1〜10μm程度に付着させることによ
り形成される。なおこの保護膜は反射膜3を保護する目
的で設けられる。
etc., in the case of resin, by coating method, in other cases, vacuum evaporation,
It is formed by depositing the film on the target surface to a thickness of approximately 0.1 to 10 μm using a method such as sputtering or ion blasting. Note that this protective film is provided for the purpose of protecting the reflective film 3.

透明接着層7は、反射膜3を設けたガイドトラック付き
基板]′の反射膜と磁性膜2を設けた耐熱M!8(この
層は前記無機材料よりなるので、「磁性膜を設けた耐熱
層」とは前記単層型光磁気記録材料のことである。)の
磁性膜とをエポキシ樹脂、ポリウレタン、ポリアミド等
の樹脂で約2〜100μm厚程度に接着することにより
形成される。即ちこの透明接着層は単に基板1′上の反
射膜3と単層型光磁気記録材料の磁性膜2とを接合する
ための層である。なお耐熱層8は前述のような無機材料
よりなるので、基板1に相当するが、ここでは磁性膜2
の耐熱性向上の目的で設けられる。厚さは約10〜50
0μm程度が適当である。
The transparent adhesive layer 7 is a heat-resistant M! substrate with a guide track provided with a reflective film 3 and a magnetic film 2. 8 (this layer is made of the above-mentioned inorganic material, so the "heat-resistant layer provided with a magnetic film" refers to the above-mentioned single-layer type magneto-optical recording material) and the magnetic film made of epoxy resin, polyurethane, polyamide, etc. It is formed by adhering with resin to a thickness of approximately 2 to 100 μm. That is, this transparent adhesive layer is simply a layer for bonding the reflective film 3 on the substrate 1' and the magnetic film 2 of the single-layer magneto-optical recording material. Note that since the heat-resistant layer 8 is made of the above-mentioned inorganic material, it corresponds to the substrate 1, but here, it is the magnetic film 2.
Provided for the purpose of improving heat resistance. Thickness is about 10~50
Approximately 0 μm is appropriate.

本発明の磁性膜を用いた以上のような光磁気記録媒体へ
の記録、再生は従来と同じく磁性膜又は基板側から変調
又は偏向されたレーザー光を照射して行なわれる。
Recording and reproduction on the above-described magneto-optical recording medium using the magnetic film of the present invention is carried out by irradiating modulated or deflected laser light from the magnetic film or substrate side, as in the prior art.

羞−一員 本発明の金属酸化物磁性体又は磁性膜は光磁気記録媒体
用材料として適正なTc及びHcを有し、記録感度が高
いにも拘わらず、従来品にはなかった耐酸化腐食性及び
透明性を備えているので、磁気光学特性の経時劣化がな
く、且つ再生時に透過光も利用でき、このため再生出力
の高いファラデー回転角を利用して再生することができ
る。
Although the metal oxide magnetic material or magnetic film of the present invention has appropriate Tc and Hc as a material for magneto-optical recording media and has high recording sensitivity, it has oxidation corrosion resistance that conventional products did not have. Since the material is transparent and magneto-optical properties do not deteriorate over time, transmitted light can also be used during reproduction, and therefore reproduction can be performed using a Faraday rotation angle with a high reproduction output.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例1〜8 下記表に示した組成のターゲットを各々用いて、石英基
板上に膜厚500AのA gを蒸着し。
Examples 1 to 8 Ag was deposited to a thickness of 500 Å on a quartz substrate using each target having the composition shown in the table below.

この上にスパッタリング法にて膜厚1000人の5in
2を被着した上にA「分圧2.0+nmTorr、0、
分圧0.3mmT o r r、放電々力0.35KW
On top of this, a 5-inch film with a thickness of 1,000 was applied by sputtering.
2 was coated with A'partial pressure 2.0+nmTorr, 0,
Partial pressure 0.3mmT o r r, discharge power 0.35KW
.

基板温度520〜700℃の条件で2時間スパッタリン
グして0.2μ厚の磁性膜を形成した。これら磁性膜の
キュリ一温度Tc及び保磁力Heを測定した結果を下表
に示す。
Sputtering was performed for 2 hours at a substrate temperature of 520 to 700° C. to form a magnetic film with a thickness of 0.2 μm. The results of measuring the Curie temperature Tc and coercive force He of these magnetic films are shown in the table below.

次に以上のようにして得られた各光磁気記録媒体を一方
向に磁化させ、この磁化の方向とは逆の0,5エルステ
ツドの磁界を印加しながら、出力20mvの半導体レー
ザー光を記録媒体表面での強度110ll1及び周波数
IMHzのパルスで照射して磁気反転せしめ、記録した
ところ、いずれもビット径約1.5μmの記録ビットが
形成された。
Next, each magneto-optical recording medium obtained as described above is magnetized in one direction, and while applying a magnetic field of 0.5 oersted opposite to the direction of magnetization, a semiconductor laser beam with an output of 20 mv is applied to the recording medium. When recording was performed by irradiating the surface with a pulse having an intensity of 110ll1 and a frequency of IMHz to cause magnetic reversal, recording bits with a bit diameter of about 1.5 μm were formed in each case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々、金属酸化物磁性体B a F
 e 12− L z Mz Olg (MはMn又は
Sn、2はMn又はSnの置換数、pはMのイオン価数
)におけるMn又はSnの置換数2と、キュリ一温度T
c及び保磁力Hcとの関係図、第3図及び第4図は夫々
、金属酸化物磁性体BaMnX’Sny’Fe、2−t
x’ 今、’、O,,(X’1丁 はMnの置換数、Y′はSnの置換数)におけるSnの
置換数Y′と、Tc及びHeとの関係図、第5〜9図は
夫々本発明の磁性体又は磁性膜を用いた光磁気記録媒体
の一例の構成図である。 1・・・基 板 1′・・・ガイドトラック付き基板 2・・・磁性膜 3・・・反射膜 4・・・透明誘電層 5・・・ガイドトラック層6・・
・保 護 膜 7・・・透明接着層8・・・耐熱層 り 吊4図 沁6図 第8図
Figures 1 and 2 show metal oxide magnetic material B a F, respectively.
e 12- L z Mz Olg (M is Mn or Sn, 2 is the number of Mn or Sn substitutions, p is the ion valence of M) and the Curie temperature T
Figures 3 and 4 show the relationship between c and coercive force Hc, respectively, for metal oxide magnetic materials BaMnX'Sny'Fe, 2-t
Relationship diagram between the number of Sn substitutions Y' and Tc and He in x' now, O, (X'1 is the number of Mn substitutions, Y' is the number of Sn substitutions), Figures 5 to 9 1A and 1B are configuration diagrams of examples of magneto-optical recording media using the magnetic material or magnetic film of the present invention, respectively. 1... Substrate 1'... Substrate with guide track 2... Magnetic film 3... Reflective film 4... Transparent dielectric layer 5... Guide track layer 6...
・Protective film 7...Transparent adhesive layer 8...Heat-resistant layer suspension Figure 4 Figure 6 Figure 8

Claims (1)

【特許請求の範囲】 り、 一般式 %式%] ) で示される金属酸化物磁性体。 2、一般式 %式%) ) で示される金属酸化物磁性体よりなる磁性膜。[Claims] ri, general formula %formula%] ) A metal oxide magnetic material represented by . 2. General formula %formula%) ) A magnetic film made of a metal oxide magnetic material represented by
JP1923984A 1984-02-03 1984-02-03 Metallic oxide magnetic material and magnetic film Pending JPS60163408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1923984A JPS60163408A (en) 1984-02-03 1984-02-03 Metallic oxide magnetic material and magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1923984A JPS60163408A (en) 1984-02-03 1984-02-03 Metallic oxide magnetic material and magnetic film

Publications (1)

Publication Number Publication Date
JPS60163408A true JPS60163408A (en) 1985-08-26

Family

ID=11993839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1923984A Pending JPS60163408A (en) 1984-02-03 1984-02-03 Metallic oxide magnetic material and magnetic film

Country Status (1)

Country Link
JP (1) JPS60163408A (en)

Similar Documents

Publication Publication Date Title
JPS60124901A (en) Metal oxide magnetic material and magnetic film
JPS6189607A (en) Metal oxide magnetic substance and magnetic film
JPS60163408A (en) Metallic oxide magnetic material and magnetic film
JPH0576763B2 (en)
JPS60164302A (en) Magnetic material and magnetic film of metal oxide
JPS60158604A (en) Metal oxide magnetic substance and magnetic film
JPS60231304A (en) Metallic oxide magnetic material and magnetic film
JPS60164303A (en) Magnetic material and magnetic film of metal oxide
JPS60180920A (en) Metallic oxide magnetic body and magnetic film
JPS60182108A (en) Metal oxide magnetic body and magnetic film
JPS60120503A (en) Metallic oxide magnetic material and magnetic film
JPS60178607A (en) Metallic-oxide magnetic material and magnetic film
JPS60163406A (en) Metallic oxide magnetic material and magnetic film
JPS60133705A (en) Metallic oxide magnetic material and magnetic film
JPS60220909A (en) Metal oxide magnetic body and magnetic film
JPS60163407A (en) Metallic oxide magnetic material and magnetic film
JPS60240106A (en) Metal oxide magnetic material and magnetic film
JPS6189604A (en) Metal oxide magnetic substance and magnetic film
JPS60211903A (en) Magnetic substance and magnetic film for photomagnetic recording medium
JPS60226105A (en) Metal oxide magnetic material and magnetic film
JPS60151222A (en) Magnetic body of metallic oxide and magnetic film
JPS60121705A (en) Metal oxide magnetic substance and magnetic film
JPS60211904A (en) Magnetic substance and magnetic film of metal oxide
JPS60201603A (en) Magnetic material and magnetic film of metal oxide
JPS60226106A (en) Metal oxide magnetic material and magnetic film