JPS60163384A - High temperature battery - Google Patents

High temperature battery

Info

Publication number
JPS60163384A
JPS60163384A JP59018705A JP1870584A JPS60163384A JP S60163384 A JPS60163384 A JP S60163384A JP 59018705 A JP59018705 A JP 59018705A JP 1870584 A JP1870584 A JP 1870584A JP S60163384 A JPS60163384 A JP S60163384A
Authority
JP
Japan
Prior art keywords
separator
battery
particles
magnesia
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59018705A
Other languages
Japanese (ja)
Inventor
Yasutoshi Shimizu
清水 康利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP59018705A priority Critical patent/JPS60163384A/en
Publication of JPS60163384A publication Critical patent/JPS60163384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve performance and increase life of a battery by arranging inorganic secondary particles prepared by coagulating particles in a porous form between electrodes to form a separator. CONSTITUTION:Material resistant to a corrosive environment within a battery such as magnesia, yttria, or aluminium nitride is coagulated in a porous form to manufacture secondary particles, and the secondary particles obtained is used as a separator. A separator having large pores corresponding to gaps between particles and smaller pores corresponding to pores in the inside of particles is prepared so as to have two peak pore distributions. Since two opposite factors of porosity increase and compression resistance of the separator are satisfied, battery performance is improved and life is increased.

Description

【発明の詳細な説明】 本発明は、電気自動車用あるいは電力貯蔵用電源に使用
できる高温型電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-temperature battery that can be used as a power source for electric vehicles or power storage.

高温型電池とは、電池を常温以上に加熱し、例えば、電
解質の融点以上に加熱して作動させる電池で、電極、隔
壁に種々の物質を用いたものが報告されている。現在ま
で開発されている高温型電池で最も期待されているのは
、負極にアルカリ金属−i 11. +t 114−栢
仝開フ【十7ガ^の岳全左沃伽質とL7て用い、正極に
金属酸化物あるいは金属硫化物を活物質として用いる系
である。
A high-temperature battery is a battery operated by heating the battery above room temperature, for example, above the melting point of an electrolyte, and batteries using various materials for electrodes and partition walls have been reported. The most promising high-temperature batteries that have been developed to date are alkali metal-i 11. +t 114-栢仝斯ふ [17Gaᄒのtakezenleftiocyan material and L7 are used, and it is a system in which a metal oxide or metal sulfide is used as an active material in the positive electrode.

これらの溶融塩を用いる高温型の電池においては、電池
の作動温度、電池内の腐蝕環境等の要因から、セパレー
タ材料が限定され、窒化ホウ素。
In high-temperature batteries using these molten salts, the separator material is limited due to factors such as the operating temperature of the battery and the corrosive environment inside the battery, and boron nitride is used.

マグネシア、窒化アルミニウム、イツトリア等が使用可
能であることが報告されている。
It has been reported that magnesia, aluminum nitride, ittria, etc. can be used.

電池のセパレータに要求される特性は、電池内での化学
的安定性の他に電池の内部抵抗を小さくし、高いエネル
ギー特性を引き出すため、セパレータの多孔度は大きい
ことが必要である。また、電池の長寿命化をはかるため
、セパレータは長時間運転後の極板の変形等を抑制する
のに充分な圧縮強度を有している必要がある。セパレー
タの価格もまた、セパレータを選択する上での大きな因
子となる。
The characteristics required of a battery separator include chemical stability within the battery, as well as low internal resistance of the battery and high energy characteristics, so the separator must have a large porosity. Furthermore, in order to extend the life of the battery, the separator needs to have sufficient compressive strength to suppress deformation of the electrode plates after long-term operation. Separator price is also a major factor in separator selection.

従来の電池においては、窒化ホウ素をセパレータ材料と
し、窒化ホウ素を#MIm化した後、フェル、ト状にし
たものが用いられてきた。この窒化ホウ素フェルトセパ
レータは、90%前後の多孔度を右し、セパレータ重量
もきわめて小さいため、電池に用いた場合、高いエネル
ギー特性を示す電池が得られている。しかし、窒化ホウ
素は溶融塩に濡れないためセパレータを電池に組込む前
に、熱分解によりマグネシアを生成する硝酸マグネシウ
ムなどを用いてフェル]へにマグネシアを添加し、濡れ
性を改善づる工程を必要とする。また窒化ホウ素フェル
トセパレータは圧縮力により容易に変形してしまうため
、電池の長寿命化がはかれないという問題を有しており
、さらに、セパレータを多孔質とづるためのフェルト化
の価格が非常に高価であるという欠点がある。そのIこ
め、溶融塩への濡れが良好なマグネシア等を粉末の形で
セパレータに用いる試みがなされている。
In conventional batteries, boron nitride has been used as a separator material, and after the boron nitride has been converted into #MIm, it has been made into a felt or sheet shape. This boron nitride felt separator has a porosity of about 90% and the weight of the separator is extremely small, so when used in a battery, a battery exhibiting high energy characteristics can be obtained. However, boron nitride does not wet with molten salt, so before incorporating the separator into the battery, a process is required to improve wettability by adding magnesia to the fer using magnesium nitrate, which produces magnesia through thermal decomposition. do. In addition, boron nitride felt separators are easily deformed by compressive force, making it difficult to extend battery life.Furthermore, the cost of making felt to make the separator porous is extremely high. The disadvantage is that it is expensive. In response to this, attempts have been made to use magnesia or the like, which has good wettability with molten salt, in the form of powder for separators.

このセパレータに粉末を用いる方法は、量産効果が高く
電池の組立τが容易で、セパレータの価格も繊維化の工
程を要しないため安価である。また、粉末を充填したセ
パレータ層は十分な圧縮強度を持つことが報告されてい
る。そのため、高価な窒化ホウ素フェルトセパレータに
代るセパレータとして期待されているものの、粉末の充
填層をセパレータとして用いるため、多孔度が50%前
後と小さく、電池のエネルギー特性が低い値にとどまり
、用途が電力貯蔵用等の低率放電で使用される電源用に
限定されている。 、。
This method of using powder for the separator has a high mass production effect, facilitates battery assembly τ, and is inexpensive because the separator does not require a fiberization process. It has also been reported that a separator layer filled with powder has sufficient compressive strength. Therefore, although it is expected to be used as a separator to replace the expensive boron nitride felt separator, since a packed layer of powder is used as a separator, the porosity is small at around 50%, and the energy characteristics of the battery remain at a low value, making it difficult to use. It is limited to power supplies used for low rate discharge such as power storage. ,.

本発明は、これらの欠点を改良し、安価で溶融塩への濡
れも良く、充分な多孔度を右する上、高い圧縮強度を有
するセパレータを用いた電池を提供するしので、本発明
による電池は、高価な窒化ホウ素フェルトセパレータを
用いてのみ達成できる高いエネルギー特性を、安価なレ
ラミックを原料としたセパレータを用いることで達成し
、また、本発明によるレバレータの耐j土縮性が良好な
ことから窒化ホウ素フェルトゼパレータによる電池より
長寿命化が期待できるきわめて1ぐれた溶融塩二次電池
である。
The present invention improves these drawbacks and provides a battery using a separator that is inexpensive, has good wettability to molten salt, has sufficient porosity, and has high compressive strength. The present invention achieves high energy characteristics that can only be achieved using an expensive boron nitride felt separator by using a separator made from inexpensive Relamic, and also shows that the lever according to the present invention has good soil shrinkage resistance. This is an extremely superior molten salt secondary battery that can be expected to have a longer lifespan than batteries using boron nitride felt separators.

以下セパレータ月料どしてマグネシアを例にとりその実
施例について詳述する。
Hereinafter, an example of magnesia as a separator will be described in detail.

セパレータ重量料に安価なマグネシアを用いて、平均細
孔径0.1μmの開孔を有する多孔質のマグネシア粒子
を製造し、この粒子の充1iyt層をセパレータとした
Using inexpensive magnesia as a separator weight material, porous magnesia particles having openings with an average pore diameter of 0.1 μm were produced, and a full layer of these particles was used as a separator.

多孔質のマグネシア粒子は、平均粒径0.3μmの重質
マグネシアを硝酸マグネシウムをバインダーとして多孔
質に焼結させることにより製造した。
Porous magnesia particles were produced by sintering heavy magnesia having an average particle size of 0.3 μm into a porous state using magnesium nitrate as a binder.

まず重質マグネシアに対して、硝酸マグネシウム水溶液
をマグネシアに換紳して2重量%添加し、押し出し造粒
法により約200μmの顆粒状とした後、この顆粒を6
00℃で仮焼し、硝酸マグネシウムを熱分解させ、つい
で1000℃で焼結して、多孔質でかつ充分な強度を有
する粒子を得た。
First, 2% by weight of an aqueous magnesium nitrate solution was added to heavy magnesia in exchange for magnesia, and the extrusion granulation method was used to form granules of approximately 200 μm.
The particles were calcined at 00°C to thermally decompose magnesium nitrate, and then sintered at 1000°C to obtain porous particles with sufficient strength.

次にこの多孔質粒子の100〜150μの粒度のものを
用いて、第1図に示すような本発明になるリヂウムー硫
化鉄電池を組み、放電試験を行った。
Next, a lithium iron sulfide battery according to the present invention as shown in FIG. 1 was assembled using these porous particles having a particle size of 100 to 150 microns, and a discharge test was conducted.

図において(1)は硫化鉄を活物質どする正極で、硫化
鉄の粉末の50μから300μの粒度のものに、電解質
の塩化リチウム−塩化カリウムの50μから150μの
粒度のものを15重間%添加し、ハニカム形状の集電体
に充填した後、室温にて100MPaでha圧成形し、
板状としたものである。なお、極板表面には活物質保持
のための325メツシユのステンレス鋼製の網を有する
。(2)は本発明による多孔質のマグネシア粒子を極間
に充填することにより形成したセパレータで、(3)は
リチウム−アルミニウム合金を活物質とする負極である
。負極も正極と同様に、ハニカム形状の集電体中に、5
0μから300μまでの粒度のリヂウムーアルミニウム
合金粉末と50μから 100μまでの粒度の電解質粉
末15重量%を充填し、室温にて100M Paで加圧
成形した板状体である。負極においても活物質保持のた
めの325メツシユのステンレス鋼製の網を有する。電
解質には54重量%jn化リチウムー塩化カリウムの溶
融塩を用いた。電池の作動温度は470℃とした。なお
、正極の容量は25Ahとし、負極容量は正極の1.3
倍とした。
In the figure, (1) is a positive electrode that uses iron sulfide as the active material, with 15% by weight of iron sulfide powder with a particle size of 50μ to 300μ and electrolyte lithium chloride-potassium chloride with a particle size of 50μ to 150μ. After adding it and filling it into a honeycomb-shaped current collector, it was pressure-molded at 100 MPa at room temperature,
It is plate-shaped. The surface of the electrode plate has a 325-mesh stainless steel net for holding the active material. (2) is a separator formed by filling porous magnesia particles according to the present invention between electrodes, and (3) is a negative electrode using a lithium-aluminum alloy as an active material. Similar to the positive electrode, the negative electrode also has 5
It is a plate-shaped body filled with 15% by weight of lithium aluminum alloy powder with a particle size of 0μ to 300μ and electrolyte powder with a particle size of 50μ to 100μ, and press-formed at room temperature at 100MPa. The negative electrode also has a 325 mesh stainless steel net for holding the active material. A 54% by weight lithium chloride-potassium chloride molten salt was used as the electrolyte. The operating temperature of the battery was 470°C. The capacity of the positive electrode is 25Ah, and the capacity of the negative electrode is 1.3Ah.
It was doubled.

本発明による多孔質のマグネシア粒子を極間に流し込む
ことにより形成したセパレータの多孔度は84%と、窒
化ホウ素フェルトセパレータの89%と同等の高い値を
示した。本発明による電池で使用するセパ1ノータAの
特徴はその細孔分布にあり、第2図に従来のBNフェル
トセパレータB、マグネシアセパレータCの測定結果と
共に示寸。高い多孔度を示づ窒化ホ・り素フェルトしパ
レータBは、その細孔のほとんどが25μm前後にあり
、窒化ホウ素フェルトの代換えとしで考え出されたマグ
ネシア粉末セパレータCの細孔分布も25μm前後のみ
だが、その多孔度は54%ときわめて低い値にとどまっ
ている。本実施例による多孔質マグネシアセパレータA
では、多孔質な粒子の粒子間の空隙に対応する20μm
と、粒子内部の空隙に対応プる0、1μmにそれぞれピ
ークを持つ細孔分布となっている。ところで電池のセパ
レータの役割として、正・負極活物質の極板からの離散
を防ぐことがあげられる。極板1.s +ら電気伝導性
の粒子等がセパレータ層内部にまで拡散してしまうと、
電池の充放電効率が低下づるからである。この活物質の
保持性に関して本発明による電池のセパレータと従来の
セパレータを比較すると、本発明による電池の〔パレー
タは0.1μmと20μmにそれぞれピークを持つ細孔
分布を示すため活物質の保持で問題となる大ぎな径の細
孔の割合は、同等の多孔度を右するBNNフェル−に比
べてはるかに少ない。Li −△l / Fe S電池
では活物質を保持する1、−めにはセパレータの開孔径
は20μm以下でないとならないことが報告されでいる
が、窒化ホウ素フェルトは、その開孔の70%が20μ
m以上であるのに対し、本実施例の、多孔質のマグネシ
ア粒子を用いたセパレータは同等の多孔度を右するにも
かかわらず、20μm以上の開孔は[3Nフェルトの1
/2以下と少なく、以上の結果より本発明による電池は
、従来の窒化ホウ素フェルトセパレータを用いた電池よ
り高い充放電効率で、かつ多孔度の小さい粉末レバレー
タでは達成できなかった高エネルギー特性で運転できる
ことが期待される。
The porosity of the separator formed by pouring porous magnesia particles according to the present invention between the electrodes was 84%, which is as high as 89% of the boron nitride felt separator. The feature of the separator 1 node A used in the battery of the present invention is its pore distribution, and its dimensions are shown in Figure 2 along with the measurement results of the conventional BN felt separator B and magnesia separator C. Most of the pores of Parator B made of boron nitride felt, which exhibits high porosity, are around 25 μm, and the pore distribution of Magnesia powder separator C, which was devised as an alternative to boron nitride felt, is also 25 μm. Although it is only the front and back, the porosity remains at an extremely low value of 54%. Porous magnesia separator A according to this example
In this case, the diameter is 20 μm, which corresponds to the voids between the porous particles.
The pore distribution has peaks at 0 and 1 μm, which correspond to the voids inside the particles. By the way, the role of a battery separator is to prevent the positive and negative electrode active materials from separating from the electrode plates. Pole plate 1. If electrically conductive particles from s+ diffuse into the separator layer,
This is because the charging and discharging efficiency of the battery decreases. Comparing the separator of the battery according to the present invention with a conventional separator in terms of retention of the active material, it is found that the separator of the battery according to the present invention has a pore distribution with peaks at 0.1 μm and 20 μm, so it is difficult to retain the active material. The proportion of problematic large pores is much lower than in BNN ferrites of comparable porosity. It has been reported that in Li-△l/FeS batteries, the pore diameter of the separator must be 20 μm or less in order to retain the active material, but in boron nitride felt, 70% of the pores are 20μ
In contrast, the separator using porous magnesia particles in this example has an equivalent porosity, but the openings are 20 μm or more [1 of 3N felt].
/2 or less, and from the above results, the battery according to the present invention can be operated with higher charge/discharge efficiency than batteries using conventional boron nitride felt separators, and with high energy characteristics that could not be achieved with powder lever regulators with small porosity. It is hoped that this will be possible.

電池試験においては、本発明による電池は、2.5Δ充
放電時の正極活物質利用率が83%と高い値を示した。
In the battery test, the battery according to the present invention showed a high utilization rate of the positive electrode active material at 2.5Δ charging/discharging of 83%.

同様の椙成で多孔度54%のマグネシア粉末セパレータ
を用いた電池では、活物質利用率は70%にとどまり、
多孔度89%の窒化ホウ素フェルトセパレータを用いた
ものも85%と、本発明によるセパレータと同等の値と
なった。
In a battery using a similar magnesia powder separator with a porosity of 54%, the active material utilization rate was only 70%.
The porosity of a boron nitride felt separator with a porosity of 89% was 85%, which is the same value as the separator according to the present invention.

本実施例ではセパレータ原料にマグネシアを用いたが、
マグネシア以外にイツトリアや窒化アルミニウム等の電
池内の腐蝕環境に耐える物質を原料として、これらの物
質を多孔質に凝集させた二次粒子を作り、この二次粒子
層をセパレータに用いることで、本実施例の第2図に示
すごとく、粒子間の空隙に対応する大きな径の気孔と、
粒子内部の空隙に対応づる前者J:り小さな細孔をそれ
ぞれ有づるセパレータを作ることが可能である。
In this example, magnesia was used as the separator raw material, but
In addition to magnesia, materials such as ittria and aluminum nitride that can withstand the corrosive environment inside the battery are used as raw materials to create secondary particles by agglomerating these materials into a porous structure, and by using this secondary particle layer as a separator, this technology can be improved. As shown in FIG. 2 of the example, pores with a large diameter corresponding to the voids between the particles,
It is possible to produce separators each having small pores corresponding to the voids inside the particles.

本発明は、廿パレータに二つのピークを右する細孔分布
を取ら1!′ることにより、セパレータの多孔性と耐圧
縮性という相反する因子を同時に満足させることで、従
来の電池の欠点を改良し、高い電池特性でかつ長寿命の
電池を提供づるものである。
The present invention takes the pore distribution that has two peaks into the second parator and one! By doing so, the contradictory factors of separator porosity and compression resistance are simultaneously satisfied, thereby improving the drawbacks of conventional batteries and providing a battery with high battery characteristics and long life.

本発明による電池の組立ては、電槽内に正、負極板を挿
入した後、極間に多孔質の粒子を流し込むという簡単な
工程で行えるという利点も併せて有する。
The battery according to the present invention also has the advantage that it can be assembled by a simple process of inserting the positive and negative electrode plates into the battery case and then pouring porous particles between the electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる電池の一実施例を示す断面図、第
2図は水銀圧入法により測定した本発明による多孔質の
マグネシア粒子を用いたセパレータA及び従来の窒化小
つ累フェルトセパレータB、マグネシア粉末セパレータ
Cの細孔分布図である。 1・・・・・・正極、2・・・・・・多孔質のマグネシ
ア粒子を用いたセパレータ、3・・・・・・負極 オ 1 因 w続歳哄葦繋 似)
FIG. 1 is a cross-sectional view showing an embodiment of a battery according to the present invention, and FIG. 2 is a separator A using porous magnesia particles according to the present invention and a conventional nitrided felt separator measured by mercury porosimetry. B is a pore distribution diagram of magnesia powder separator C. 1...Positive electrode, 2...Separator using porous magnesia particles, 3...Negative electrode 1)

Claims (1)

【特許請求の範囲】[Claims] 1、負極にアルカリ金属、アルカリ土類金属又はこれら
の合金を、正極に金属酸化物又は金属硫化物を用い、電
解質としてアルカリ金属やアルカリ土類金属のイオンを
含む溶融塩を用いる高温型電池において、粒子を多孔質
に凝集させてなる無機物の二次粒子を極間に介在させる
ことを特徴とする高温型電池。
1. In high-temperature batteries that use alkali metals, alkaline earth metals, or alloys thereof for the negative electrode, metal oxides or metal sulfides for the positive electrode, and molten salt containing alkali metal or alkaline earth metal ions as the electrolyte. , a high-temperature battery characterized in that secondary particles of an inorganic material formed by agglomerating porous particles are interposed between electrodes.
JP59018705A 1984-02-03 1984-02-03 High temperature battery Pending JPS60163384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018705A JPS60163384A (en) 1984-02-03 1984-02-03 High temperature battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018705A JPS60163384A (en) 1984-02-03 1984-02-03 High temperature battery

Publications (1)

Publication Number Publication Date
JPS60163384A true JPS60163384A (en) 1985-08-26

Family

ID=11979057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018705A Pending JPS60163384A (en) 1984-02-03 1984-02-03 High temperature battery

Country Status (1)

Country Link
JP (1) JPS60163384A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210574A (en) * 1981-03-05 1982-12-24 Us Government Electrochemical battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210574A (en) * 1981-03-05 1982-12-24 Us Government Electrochemical battery

Similar Documents

Publication Publication Date Title
US5342709A (en) Battery utilizing ceramic membranes
US3287166A (en) Battery electrode and battery, and process for preparing said electrode
US3287164A (en) Electrode and battery
SE465543B (en) PROCEDURE FOR PREPARING A CATHOD FOR AN ELECTRICAL CHEMISTRY WITH SMALL ELECTROLYT, CATHOD PREPARED ACCORDING TO THE PROCEDURE, AND CELL PROVIDED WITH THE CATHOD
KR20140005976A (en) Battery electrode and battery
EP0021735A1 (en) Zinc electrode for secondary electrochemical cells and electrochemical cells including said electrode
WO2019009072A1 (en) Negative electrode for all-solid-state batteries and all-solid-state battery provided with same
US4792505A (en) Electrodes made from mixed silver-silver oxides
JP3468492B2 (en) Plate for lead-acid battery
CN111180730A (en) Rapid charging and discharging graphene power lithium battery and preparation method thereof
JPS5868879A (en) Improved electrochemical generator and method of producing same
KR20160028748A (en) Na based Secondary Battery
JPS60163384A (en) High temperature battery
JPS59169075A (en) High temperature type battery
JPS6137733B2 (en)
US3161545A (en) Rechargeable cell and electrode therefor
CN220604716U (en) Lithium ion secondary battery
CN210326018U (en) Lithium ion battery and electric automobile
CN113113569B (en) High-rate long-cycle lithium ion battery
JPS60172173A (en) High temperature type battery
JPS60163383A (en) High temperature battery
JPS59169080A (en) High temperature type battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JPS5931835B2 (en) Manufacturing method of battery current collector
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode