JPS60162718A - Production of chromium-containing molten iron by vertical furnace - Google Patents

Production of chromium-containing molten iron by vertical furnace

Info

Publication number
JPS60162718A
JPS60162718A JP59018219A JP1821984A JPS60162718A JP S60162718 A JPS60162718 A JP S60162718A JP 59018219 A JP59018219 A JP 59018219A JP 1821984 A JP1821984 A JP 1821984A JP S60162718 A JPS60162718 A JP S60162718A
Authority
JP
Japan
Prior art keywords
furnace
chromium
ore
tuyere
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59018219A
Other languages
Japanese (ja)
Other versions
JPH0362767B2 (en
Inventor
Tomiya Fukuda
福田 富也
Shigeaki Maruhashi
丸橋 茂昭
Yoshio Kobayashi
小林 芳夫
Katsuhiro Tanaka
勝博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP59018219A priority Critical patent/JPS60162718A/en
Publication of JPS60162718A publication Critical patent/JPS60162718A/en
Publication of JPH0362767B2 publication Critical patent/JPH0362767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To obtain thermoeconomically a Cr-contg. molten iron without using electric energy such as an electric furnace or the like by subjecting Cr ore to melting and reduction in a vertical furnace which has the function approximate to the function of a blast furnace and permits high-temp. blasting. CONSTITUTION:A required amt. of high-carbon Fe-Cr as a Cr source, steel scarp, etc. as an iron source, coke as a carbonaceous material, quicklime fluorite, etc. as a slag forming material are charged into a furnace through a raw material charging port 1 in the upper part of the furnace. Powder Cr ore 15 and powder exothermic material 16 heated to the highest possible temp. are supplied through an upper tuyere 2 and the hot air heated to the highest possible temp. is supplied through a lower tuyere 3 into the furnace. The Fe-Cr and steel scrap from the furnace top are then melted and at the same time the Cr oxide in Cr ore and iron oxide blown through the tuyere 2 are fully reduced. Desired Cr-contg. molten iron 18 is taken out at a high Cr yield from a tap hole 17 in the bottom of the furnace.

Description

【発明の詳細な説明】 本発明は、電気炉等の電気エネルギーを用いることなく
、含クロム溶銑を熱経済的に得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for thermoeconomically obtaining chromium-containing hot metal without using electric energy such as an electric furnace.

クロム鉱石をクロム源の一部または全部として使用して
含クロム溶銑を得る場合に、従来では電気炉の使用が最
も一般的であった0例えば、クロム鉱石を予めロータリ
ーキルン等において固体還元剤のもとで辱還元して半還
元ペレットを作り。
When using chromium ore as part or all of the chromium source to obtain chromium-containing hot metal, the most common method in the past was to use an electric furnace. and make semi-reduced pellets.

この半還元ペレットを還元剤、造滓剤と共に電気炉に装
入して溶解並びに還元して高炭素Fe−Crの溶湯を得
るか、あるいは、これを冷却して得た高炭素Fe−Cr
の冷材を銅屑その他の鉄源材料と共に電気炉に装入して
目標Cr含有量の含クロム溶銑を得るのが一般的であっ
た。従って、クロム含有ステンレス鋼等を製造する場合
に、その製造原価に占める電気炉での電気消費エネルギ
ーの割合は極めて大きく、この電気消費量が製品価格を
大きく左右するものとなっていた。
The semi-reduced pellets are charged into an electric furnace together with a reducing agent and a slag-forming agent, and melted and reduced to obtain a high carbon Fe-Cr molten metal, or the high carbon Fe-Cr obtained by cooling the pellets.
It was common practice to charge chromium-containing hot metal with a target Cr content by charging the cold material into an electric furnace together with copper scraps and other iron source materials. Therefore, when producing chromium-containing stainless steel or the like, the electrical energy consumed in the electric furnace accounts for a very large proportion of the production cost, and this electricity consumption has a large effect on the product price.

本発明は、このような電気エネルギーを消費することな
く、経済的有利に含クロム溶銑を得ることを目的として
なされたものである。これを目的として先に本発明者ら
は、特願昭57−224425号においてキュポラによ
る含クロム溶銑の製造法を提案したが、さらに進んで、
溶鉱炉に近い機能を有する高温送風可能な竪型炉でのク
ロム鉱石の溶解並びに還元を試みた結果、ここに一層有
利な含クロム溶銑の製造法を開発することができた。す
なわち本発明は、炉の上部の原料装入口からクロム源と
鉄源、さらには炭材と造滓材を装入し、炉の下部付近に
上下二段に設けた羽目より熱風を吹込んでクロム源と鉄
源を溶解すると同時に、粉状のクロム鉱石と発熱材を上
段羽目より炉内に供給してこのクロム鉱石を溶融還元す
ることからなる竪型炉による含クロム溶銑の製造法を提
供するものである。
The present invention has been made for the purpose of economically advantageously obtaining chromium-containing hot metal without consuming such electrical energy. For this purpose, the present inventors previously proposed a method for producing chromium-containing hot metal using a cupola in Japanese Patent Application No. 57-224425.
As a result of trying to melt and reduce chromium ore in a vertical furnace capable of blowing high temperature air, which has a function similar to that of a blast furnace, we were able to develop a more advantageous method for producing chromium-containing hot metal. In other words, in the present invention, a chromium source and an iron source, as well as carbon and slag materials are charged from the raw material charging port at the top of the furnace, and hot air is blown into the chromium source through the upper and lower tiers provided near the bottom of the furnace. To provide a method for producing chromium-containing hot metal using a vertical furnace, which comprises melting a metal source and an iron source, and simultaneously supplying powdered chromium ore and a heat-generating material into the furnace from an upper siding, and melting and reducing the chromium ore. It is something.

以下に本発明法を詳述する。The method of the present invention will be explained in detail below.

第1図は本発明法を実施することのできる竪型炉の例を
図解的に示したもので、この竪型炉は全体としては縦長
のシャフトからなっており、この炉の上部には原料装入
口lが、また、下部には上段羽口2と下段羽口3とから
なる二段羽口が設けである。上段羽口2と下段羽口3に
は、熱風炉4から熱風が供給され、この熱風中に酸素を
富化することができるように、酸素源5が熱風管路に接
続されている。そして、上段羽口2に対しては。
Figure 1 schematically shows an example of a vertical furnace in which the method of the present invention can be carried out. A charging inlet 1 is provided, and a two-stage tuyere consisting of an upper tuyere 2 and a lower tuyere 3 is provided at the lower part. Hot air is supplied to the upper tuyere 2 and the lower tuyere 3 from a hot air furnace 4, and an oxygen source 5 is connected to the hot air pipe so that the hot air can be enriched with oxygen. And for the upper tuyere 2.

この熱風と共に粉状体が供給されるようになっている。Powder is supplied together with this hot air.

6および7はこの粉状原料の容器を示しており、この中
の粉状体は流量調節弁を介してキャリアガス8によって
上段羽口2に搬送される。図には示していないが、上段
羽口2に供給される前の粉状原料を必要に応じて予め加
熱する加熱手段を設けておく。
Reference numerals 6 and 7 indicate containers for this powdered raw material, and the powdered material therein is conveyed to the upper tuyere 2 by a carrier gas 8 via a flow rate control valve. Although not shown in the figure, a heating means is provided to preheat the powdered raw material before being supplied to the upper tuyere 2 as necessary.

このような竪型炉を用いることによって本発明法を好適
に実施でき番が、その好ましい態様について述べると、
まず原料装入口1からは、クロム源として高炭素Fe4
r *鉄源として鋼屑等、炭材としてコークス、造滓材
として石灰石や螢石等を必要量装入する。クロム源とし
てのFe−Crは塊状のものを使用するのがよい、第1
図において、 10〜12はこのような炉頂装入原料を
示しており、これらは計量器13によって所定量に秤量
されたうえ原料装入口lに投入される。
The method of the present invention can be suitably carried out by using such a vertical furnace.
First, from raw material charging port 1, high carbon Fe4 is used as a chromium source.
r *Required amounts of steel scrap, etc. as an iron source, coke as a carbon material, and limestone, fluorite, etc. as a slag material are charged. It is best to use bulk Fe-Cr as a chromium source.
In the figure, numerals 10 to 12 indicate such raw materials charged at the top of the furnace, which are weighed to a predetermined amount by a measuring device 13 and then charged into the raw material charging port l.

上段羽口2からは出来るだけ高温に加熱された熱風と共
に粉状クロム鉱石15と粉状の発熱材16とを炉内に供
給し、下段羽口3からは出来るだけ高温に加熱さた熱風
を供給する。そのさい、#′8風中の酸素濃度を適宜調
節すると共に、粉状クロム鉱石や発熱材の供給量も適宜
調節し、場合によってはこれら粉状原料を予め加熱して
から供給する。
Powdered chromium ore 15 and powdered exothermic material 16 are supplied into the furnace along with hot air heated to the highest possible temperature from the upper tuyere 2, and hot air heated to the highest possible temperature is supplied from the lower tuyere 3. supply At this time, the oxygen concentration in the #'8 air is adjusted as appropriate, and the amount of powdered chromium ore and heat generating material supplied is also adjusted, and in some cases, these powdered raw materials are heated beforehand before being supplied.

粉状の発熱材としては、フェロアロイ粉例えば高炭素F
e−Cr粉やFe−3i粉、さらには5i−CやCaC
などの酸素と反応して発熱する物質を使用する。高炭素
Fe−Cr粉を使用する場合には、原料装入口lに装入
する塊状の高炭素F e −’Crに随伴する粉状物を
篩分けて採取し、これを2III11以下程度に整粒し
て使用するとよい。
As a powdered heat generating material, ferroalloy powder such as high carbon F
e-Cr powder, Fe-3i powder, even 5i-C and CaC
Use a substance that generates heat by reacting with oxygen, such as When using high carbon Fe-Cr powder, the powder accompanying the lumpy high carbon Fe-'Cr charged into the raw material charging port 1 is collected by sieving, and the powder is sized to about 2III11 or less. It is best to use it in granules.

これによって、炉頂からのFe−Crや鉄屑は溶解する
と同時に、上段羽目から吹き込まれたクロム鉱石中の酸
化クロムや酸化鉄の実質上全てが還元でき、炉底部の出
銑口17から所望の含クロム溶銑1Bを高いクロム収率
のもとで取り出すことができる0本発明法による炉内の
実際の挙動は不明な点もあるが、およそっぎのように考
えることができる。
As a result, Fe-Cr and iron scraps from the top of the furnace are melted, and at the same time, substantially all of the chromium oxide and iron oxide in the chromium ore injected from the upper layer can be reduced, and the desired amount can be removed from the tap hole 17 at the bottom of the furnace. Chromium-containing hot metal 1B can be extracted with a high chromium yield.Although the actual behavior in the furnace according to the method of the present invention is unclear, it can be roughly considered.

原料装入口から炉内に投入された原料は、炉内の下方か
ら上昇する高温ガスによって加熱されながら降下し、や
がてその途中で溶融して金属滴となって下方に滴下して
行く。一方上段別口から炉内に供給されたクロム鉱石は
9羽口先のレースウェイ領域で溶融し、上方がら下降し
てくる金属とともに赤熱されたコークス中を滴下する。
The raw material charged into the furnace from the raw material charging port descends while being heated by high-temperature gas rising from the bottom of the furnace, and eventually melts midway through the process, becoming metal droplets that drip downward. On the other hand, the chromium ore fed into the furnace from the upper separate port melts in the raceway area nine tuyeres ahead, and drips into the red-hot coke along with the metal descending from above.

そしてこのコークス層中の炭素或いは金属滴中の炭素と
反応して還元反応が進行し、酸化クロムや酸化鉄は金属
に還元される。この還元反応は吸熱反応であるが、下段
羽口と上段羽目とからなる上下段羽目構造によって安定
した高温度帯域がこの近傍に形成されることになり、こ
の還元反応が効果的に進行す杭すなわち、下段羽目から
高温空気あるいは酸素富化高温空気を吹込みながら、上
段羽口から高温空気あるいは酸素富化高温空気を発熱材
と共に吹込むことによって、上段羽目のレースウェイ領
域では下方からの高温ガスの供給を受けながらさらに高
温空気中の酸素による発熱材の酸化反応が急速に進行し
、この領域では安定した高温領域が形成される。従って
、この部分に粉状のクロム鉱石が投入されると、こ゛こ
で溶融し、上方から下降する金属分とともに含クロム物
質の液滴が形成され、これが下段羽口レベルまで下降す
るまでの間に、赤熱コークス中または液中の炭素との反
応による還元が効果的に進行し、下段羽目レベルに達す
るときには、酸化クロムや酸化鉄は実質上完全に還元さ
れてしまうことになる。
Then, a reduction reaction progresses by reacting with carbon in the coke layer or carbon in the metal droplets, and the chromium oxide and iron oxide are reduced to metal. This reduction reaction is an endothermic reaction, but due to the upper and lower tuyere structure consisting of the lower tuyere and upper tuyere, a stable high-temperature zone is formed in the vicinity of the tuyere, allowing this reduction reaction to proceed effectively. In other words, by blowing high-temperature air or high-temperature oxygen-enriched air from the lower tuyere and blowing high-temperature air or oxygen-enriched air together with a heat-generating material from the upper tuyere, the raceway area of the upper tuyere is heated from below. While being supplied with gas, the oxidation reaction of the exothermic material by oxygen in the high-temperature air rapidly progresses, and a stable high-temperature region is formed in this region. Therefore, when powdered chromium ore is introduced into this area, it melts here and forms droplets of chromium-containing material along with the metal that descends from above, until it descends to the lower tuyere level. In addition, when the reduction by reaction with carbon in the red hot coke or liquid progresses effectively and reaches the lower grain level, the chromium oxide and iron oxide are substantially completely reduced.

従って、二段羽口構造を採用してその上段羽目よりクロ
ム鉱石を炉内に導入することがその還元を有利に進行さ
せるうえで非密に有益な効果を発揮することになり、さ
らに、このクロム鉱石のほかに高炭素Fe−Cr粉、さ
らにはFe−5i粉、 5i−CやCaCなどの発熱材
を上段羽口から供給することがその還元温度を維持する
うえで重要な働きをすることになると考えられる。そし
て、導入するクロム鉱石の予熱、熱風温度の高温維持、
さらには熱風中の酸素濃度の富化などによって、炉内で
の熔解に必要な熱量の確保とと還元温度の維持がより一
層有利に達成されることになり、上段羽口がら供給する
粉状クロム鉱石の量を一層増大することができることに
なる。
Therefore, adopting a two-stage tuyere structure and introducing chromium ore into the furnace through the upper tuyere has a secretly beneficial effect on promoting the reduction. In addition to chromium ore, feeding heat generating materials such as high carbon Fe-Cr powder, Fe-5i powder, 5i-C, and CaC from the upper tuyere plays an important role in maintaining the reduction temperature. It is thought that this will happen. Then, preheating the chromium ore to be introduced, maintaining the hot air temperature at a high temperature,
Furthermore, by enriching the oxygen concentration in the hot air, it becomes even more advantageous to secure the amount of heat necessary for melting in the furnace and maintain the reduction temperature. This means that the amount of chromium ore can be further increased.

なお1発熱材として粉状の高炭素Fe−Crを使用する
場合には、炉頂から供給するクロム源の一部の代替えが
できることになり、塊状高炭素Fe−Crの節減ができ
ると共に、上段羽口のレースウェイ領域で自ずから完全
溶融するので、これが含クロム溶銑のクロム源として完
全利用できることになり、−石二鳥の効果がある。
Note 1: When using powdered high carbon Fe-Cr as the heat generating material, it is possible to partially replace the chromium source supplied from the top of the furnace, reducing the amount of bulk high carbon Fe-Cr and Since it is completely melted by itself in the raceway region of the tuyere, it can be completely used as a chromium source for chromium-containing hot metal, which has the effect of killing two birds.

また炉頂の原料装入口からの装入原料として。Also, as raw material charged from the raw material charging port at the top of the furnace.

さらにニッケル源例えば高炭素Fe−Niやニッケルオ
キサイドシンターなどブリケットを配合して実施すると
含クロム・ニッケル溶銑の製造もできるので2本発明法
はクロム・ニッケル系ステンレス鋼製造用の含クロム・
ニッケル溶銑の製造にも好適である。
Furthermore, if a nickel source such as high carbon Fe-Ni or nickel oxide sinter is mixed with briquettes, chromium-containing nickel hot metal can be produced.
It is also suitable for producing nickel hot metal.

このようにして1本発明法によれば、目標とする含クロ
ム溶銑中のかなりの割合のクロム分を。
In this way, according to the method of the present invention, a considerable proportion of chromium in the target chromium-containing hot metal can be reduced.

全く電気炉を経ずしてクロム鉱石から直接的に溶銑中に
含有させることができ、しかもその装入原料全体からの
クロムの回収は、はぼ100%に近い収率のもとで溶銑
中に移行させることが可能である。そして、高炭素Fe
−Crや鋼屑の如き冷材を電気炉の場合に比べて格段に
廉価な熱エネルギーのもとで熔解ができると共に、クロ
ム鉱石からの還元処理が効率よ〈実施できる。従って、
既述の本発明の目的が効果的に達成され、従来よりこの
分野で多量に消費されていた電気エネルギーの節約に大
きく貢献できる。
Chromium can be directly contained in hot metal from chromium ore without going through an electric furnace, and moreover, chromium can be recovered from the entire charging material into hot metal with a yield close to 100%. It is possible to move to And high carbon Fe
- Cold materials such as Cr and steel scraps can be melted using much cheaper thermal energy than in the case of an electric furnace, and reduction treatment from chromium ore can be carried out efficiently. Therefore,
The above-mentioned objects of the present invention are effectively achieved, and it can greatly contribute to the saving of electrical energy, which has conventionally been consumed in large quantities in this field.

以下に試験炉による本発明法の実施結果を実施例として
挙げる。
The results of implementing the method of the present invention using a test furnace are listed below as examples.

実施例1 第1図に示すのと同様の内径0.6amの竪型炉を用い
て、炉上部の原料装入口から第1表の原料を表示の量で
装入し、上段羽目からは、温度890℃で酸素富化率1
.5%の空気と共に、第2表に示す量の粉クロム鉱石と
高炭素フェロクロム(JIS 5号)粉末との混合物を
6.5kg/分づづ吹込み、下段別口からは、温度91
0℃で酸素富化率3.5%の空気を送風した。
Example 1 Using a vertical furnace with an inner diameter of 0.6 am similar to that shown in Figure 1, the raw materials listed in Table 1 were charged in the indicated amounts from the raw material charging port in the upper part of the furnace, and from the upper row, Oxygen enrichment rate is 1 at a temperature of 890℃
.. A mixture of powdered chromium ore and high carbon ferrochrome (JIS No. 5) powder in the amount shown in Table 2 was injected at a rate of 6.5 kg/min together with 5% air, and a temperature of 91
Air with an oxygen enrichment rate of 3.5% was blown at 0°C.

その結果、第3表に示す化学成分値(重量%)の含クロ
ム溶銑が出銑温度1560 ’Cで排銑口から取り出す
ことができた。
As a result, chromium-containing hot metal having the chemical composition values (wt%) shown in Table 3 could be taken out from the exhaust port at a tapping temperature of 1560'C.

クロムの収率は98.4%であった。The yield of chromium was 98.4%.

第1表(炉頂装入原料) 第2表(上段羽口吹込物質) 第3表(出銑組成二重量%) 実施例2 実施例1と同じ竪型炉を用いて、炉上部の原料装入口か
ら第4表の原料を表示の量で装入し、上段羽口からは、
温度900℃で酸素富化なしの空気と共に、第5表に示
す量の粉クロム鉱石とカルシウムカーバイド粉末との混
合物を5.3kg/分づづ吹込み、下段羽口からは、温
度920℃で酸素富化率5.0%の空気を送風した。
Table 1 (Materials charged at the top of the furnace) Table 2 (Materials injected into the upper tuyere) Table 3 (Tackle composition double weight%) Example 2 Using the same vertical furnace as in Example 1, the raw materials in the upper part of the furnace were Charge the raw materials listed in Table 4 in the indicated amounts from the charging port, and from the upper tuyere,
At a temperature of 900°C, a mixture of powdered chromium ore and calcium carbide powder in the amount shown in Table 5 is blown at a rate of 5.3 kg/min with air without oxygen enrichment, and from the lower tuyere, oxygen is blown at a temperature of 920°C. Air with an enrichment rate of 5.0% was blown.

その結果、第6表に示す化学成分値(重量%)の合りロ
ム熔銑が出銑温度1545℃で出銑口から取り出すこと
ができた。
As a result, the molten pig iron having the chemical composition values (wt%) shown in Table 6 could be taken out from the taphole at a tapping temperature of 1545°C.

クロムの収率は98.0%であった。The yield of chromium was 98.0%.

第4表(炉頂装入原料) 第5表(上段羽口吹込物質) 第6表(出銑組成二重量%)Table 4 (Furnace top charging raw materials) Table 5 (Upper tuyere injection material) Table 6 (Tackle composition double amount%)

Claims (3)

【特許請求の範囲】[Claims] (1)、炉の上部の原料装入口からクロム源と鉄源。 さらには炭材と造滓材を装入し、炉の下部付近に上下二
段に設けた羽目より熱風を吹込んでクロム源と鉄源を熔
解すると同時に、粉状のクロム鉱石と発熱材を上段羽目
より炉内に供給してこのクロム鉱石を溶融還元すること
からなる竪型炉による含クロム溶銑の製造法。
(1) Chromium source and iron source from the raw material charging port at the top of the furnace. Furthermore, carbonaceous material and slag material are charged, and hot air is blown into the upper and lower stages near the bottom of the furnace to melt the chromium source and iron source, and at the same time powdered chromium ore and heat-generating material are poured into the upper stage. A method for producing chromium-containing hot metal using a vertical furnace, which involves feeding the chromium ore into the furnace from the ground and melting and reducing it.
(2)、クロム源は塊状の高炭素Fe−Cr 、発熱材
は粉状の高炭素Pe−Crである特許請求の範囲第1項
記載の竪型炉による含クロム溶銑の製造法。
(2) A method for producing chromium-containing hot metal using a vertical furnace according to claim 1, wherein the chromium source is blocky high carbon Fe-Cr and the exothermic material is powdery high carbon Pe-Cr.
(3)、熱風は酸素富化空気である特許請求の範囲第1
項または第2項記載の竪型炉による含クロム溶銑の製造
法。 (化クロム鉱石と発熱材は、予熱されてから炉内に供給
される特許請求の範囲第1項、第2項または第3項記載
の竪型炉によ含クロム溶銑の製造法。
(3) The hot air is oxygen-enriched air. Claim 1
A method for producing chromium-containing hot metal using a vertical furnace according to item 1 or 2. (The method for producing chromium-containing hot metal using a vertical furnace according to claim 1, 2, or 3, wherein the chromium ore and the exothermic material are preheated before being fed into the furnace.
JP59018219A 1984-02-06 1984-02-06 Production of chromium-containing molten iron by vertical furnace Granted JPS60162718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018219A JPS60162718A (en) 1984-02-06 1984-02-06 Production of chromium-containing molten iron by vertical furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018219A JPS60162718A (en) 1984-02-06 1984-02-06 Production of chromium-containing molten iron by vertical furnace

Publications (2)

Publication Number Publication Date
JPS60162718A true JPS60162718A (en) 1985-08-24
JPH0362767B2 JPH0362767B2 (en) 1991-09-27

Family

ID=11965528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018219A Granted JPS60162718A (en) 1984-02-06 1984-02-06 Production of chromium-containing molten iron by vertical furnace

Country Status (1)

Country Link
JP (1) JPS60162718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254007A (en) * 1985-09-01 1987-03-09 Nisshin Steel Co Ltd Production of molten chromium iron
JPS6256537A (en) * 1985-09-04 1987-03-12 Kawasaki Steel Corp Manufacture of molten metal from powdery ore containing metal oxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198205A (en) * 1981-04-28 1982-12-04 Kawasaki Steel Corp Production of molten metal from powder and granular ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198205A (en) * 1981-04-28 1982-12-04 Kawasaki Steel Corp Production of molten metal from powder and granular ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254007A (en) * 1985-09-01 1987-03-09 Nisshin Steel Co Ltd Production of molten chromium iron
JPH0453922B2 (en) * 1985-09-01 1992-08-28 Nisshin Steel Co Ltd
JPS6256537A (en) * 1985-09-04 1987-03-12 Kawasaki Steel Corp Manufacture of molten metal from powdery ore containing metal oxide

Also Published As

Publication number Publication date
JPH0362767B2 (en) 1991-09-27

Similar Documents

Publication Publication Date Title
US4089677A (en) Metal refining method and apparatus
SK2952000A3 (en) Method of making iron and steel
JPH08337827A (en) Method for reducing metal oxide in rotary hearth furnace heated with oxidizing flame
KR850001211B1 (en) Method of manufacturing chromium steel
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
US4244732A (en) Manufacture of steel from ores containing high phosphorous and other undesirable constituents
US4753677A (en) Process and apparatus for producing steel from scrap
JPS6023182B2 (en) Melting method for medium carbon high chromium molten metal
US4076954A (en) Method and an electrically heated device for producing molten metal from powders or lumps of metal oxides
US3615351A (en) Direct gaseous reduction of iron oxide
RU2005126707A (en) IMPROVED METHOD OF Smelting for iron production
US5810905A (en) Process for making pig iron
JPS60162718A (en) Production of chromium-containing molten iron by vertical furnace
JPH04107206A (en) Production process of chromium-incorporated molten steel
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JPS62224619A (en) Method for supplying carbon material to melting reduction furnace
JPS59501670A (en) Oxygen-blown converter steel manufacturing method
US3295955A (en) Smelting method and device
JPS609815A (en) Production of high chromium alloy by melt production
RU2756057C2 (en) Method for obtaining vanadium cast iron from iron-vanadium raw materials
CN116949236A (en) Method and system for producing steel by reducing non-blast furnace step by step
US3640701A (en) Direct reduction of oxides
JPS62167808A (en) Production of molten chromium iron
AU768628B2 (en) A direct smelting process
JPS62230924A (en) Manufacture of smelted and reduced iron