JPS60162518A - Pipe rolling controlling method - Google Patents

Pipe rolling controlling method

Info

Publication number
JPS60162518A
JPS60162518A JP59016257A JP1625784A JPS60162518A JP S60162518 A JPS60162518 A JP S60162518A JP 59016257 A JP59016257 A JP 59016257A JP 1625784 A JP1625784 A JP 1625784A JP S60162518 A JPS60162518 A JP S60162518A
Authority
JP
Japan
Prior art keywords
rolling
mandrel
stands
stand
caliber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59016257A
Other languages
Japanese (ja)
Inventor
Takeo Yamada
山田 建夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59016257A priority Critical patent/JPS60162518A/en
Publication of JPS60162518A publication Critical patent/JPS60162518A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/02Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length
    • B21B17/04Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length in a continuous process

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To solve a deviation of a thickness of a blank pipe, and to execute a pipe rolling of a good quality having no partial thickness by controlling a draft position and a revolving speed of a caliber roll of a stand of the last rear for elongating and rolling substantially the blank pipe which has inserted a mandrel through the inside. CONSTITUTION:In a mandrel mill 10 for making a blank pipe 11 through which a mandrel 12 brought to a reciprocating motion by being held by a retainer 13 has been inserted, pass through plural stands 1-8 provided with caliber rolls 1a-8a and elongating and rolling it, rolling reductions DELTAP7, DELTAP6 in two stands of the stand 7 of the last rear for elongating and rolling substantially said pipe and its previous stand 6 are measured by load cells 7c, 6c, and also based on a diameter of the mandrel 12 in this position, a deviation of a thickness of the blank pipe 11 is derived. A draft position required for solving said deviation and a revolving speed of the kaliber rolls 6a, 7a are calculated by an operation control device 20, correcting signals DELTAX6, DELTAX7, DELTAR6 and DELTAR7 are sent to the stands 6, 7, and screw down devices 6b, 7b and a caliber roll driving part are controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマンドレルミル等、素管をこれに心金棒を挿通
した状態でカリバーロールを用いて圧延する延伸圧延機
における管圧延制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a tube rolling control method in a stretching mill such as a mandrel mill, which rolls a blank tube using caliber rolls with a mandrel inserted therein. It is.

〔従来技術〕[Prior art]

近年この種延伸圧延機での素管の圧延における肉厚制御
方法として、従来より板厚制御の分野で広く採用されて
いる自動板厚制御方法(A−G・C法ともいう)の通用
が試みられている。これは板厚制御における両圧延ロー
ルの関係を、両力リバーロールの関係に置換えて適用す
るものであって、圧下量の変化量ΔPを検出して下式で
与えられる圧下位置調節用のシリンダストロークをΔX
だけ制御するようになっている。
In recent years, the automatic plate thickness control method (also referred to as the A-G/C method), which has been widely adopted in the field of plate thickness control, has come into use as a wall thickness control method for rolling blank tubes with this type of elongation rolling mill. is being attempted. This is applied by replacing the relationship between both rolling rolls in plate thickness control with the relationship between double-force river rolls, and detects the change amount ΔP in the rolling reduction amount and adjusts the rolling position adjustment given by the formula below. Stroke by ΔX
It is designed to be controlled only by

ΔX=−C・ΔP/Km ・1/2 ・=+1)但Km
 :ミル剛性係数 C:カリバーロールのフランジ部間隙補正係数 本発明考はこのようなA−G−C法を8スタンドからな
るマンドレルミルにおける実質的な延伸圧延を行・う最
終スタンド、即ら第6,7スタンドにて試みたところ次
の如き不都合を生じた。
ΔX=-C・ΔP/Km ・1/2 ・=+1) However, Km
: Mill rigidity coefficient C: Caliber roll flange gap correction coefficient The present invention proposes to apply the A-G-C method to the final stand, which performs substantial elongation rolling, in a mandrel mill consisting of eight stands. When I tried this at stands 6 and 7, the following problems occurred.

Tl) 素管の外径が管軸方向において変動する。Tl) The outer diameter of the raw tube varies in the tube axis direction.

(2) 第6スタンドで孔底と対向して位置し、所定の
肉厚に圧延された部分は第7スタンドではフランジ部寄
りに位置するため再び肉厚が変化せしめられる。
(2) The portion located opposite the hole bottom in the sixth stand and rolled to a predetermined thickness is located closer to the flange portion in the seventh stand, so that the thickness changes again.

(3)両力リバーロールのロールギャップを制御しても
心金棒の直径にばらつきが存する場合肉厚にばらつきが
生じる。
(3) Even if the roll gap of the double-force river roll is controlled, if there is variation in the diameter of the mandrel, there will be variation in the wall thickness.

前記(1)の原因はカリバーロールと心金棒とにより管
軸方向の肉厚一定制御を施すとき、肉厚圧下量に応じて
管軸方向及び周方向に刻する延びが変化するが、管軸方
向への伸びの変化はスタンド間張力を乱し、カリバーロ
ールのフランジ側の変形が異なって外径を変化させ、ま
た周方向への延びの変化も同様に外径を変化させること
にある。また前記(2)の原因も上記+1)の場合と略
同様である。更に前記(3)の原因は心金棒の製造時に
おける直径のばらつき、軸長方向における摩耗量の相違
、或いは熱負荷のばらつき等が合成されたものである。
The reason for (1) above is that when controlling the wall thickness in the tube axis direction to be constant using the caliber roll and mandrel, the length of the cut in the tube axis direction and circumferential direction changes depending on the amount of wall thickness reduction. The change in elongation in the direction disturbs the tension between the stands, the deformation of the flange side of the caliber roll is different and changes the outer diameter, and the change in elongation in the circumferential direction also changes the outer diameter. Further, the cause of (2) above is almost the same as the case of +1) above. Furthermore, the cause of (3) is a combination of variations in the diameter of the mandrel during manufacture, differences in the amount of wear in the longitudinal direction of the shaft, and variations in heat load.

〔目的〕〔the purpose〕

本発明はかかる事情に鑑みてなされたものであって、そ
の目的とするところは圧下量の変更に伴うスタンド間張
力の変動をカリバーロール回転数の調節によって除去す
る外、これに加えて圧延後の素管の肉厚、外径データに
基づいて圧下位置、カリバーロール回転数をフィードバ
ンク制御することによって管品質の大幅な向上を図り得
るようにした管圧延制御方法を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to eliminate fluctuations in inter-stand tension due to changes in the rolling reduction amount by adjusting the rotation speed of the caliber rolls. An object of the present invention is to provide a tube rolling control method that can significantly improve tube quality by controlling the rolling down position and the rotation speed of caliber rolls in a feedbank based on the wall thickness and outer diameter data of the raw tube.

〔構成〕〔composition〕

本発明に係る管圧延制御方法は内部に心金棒を挿通した
素管を、カリバーロールを備えた複数スタンドに遣して
延伸圧延する過程において、実質的に延伸圧延する最後
部のスタンド及びその前スタンドの2スタンドにおける
各圧下量、これら2スタンドを通過中の部分の心金棒直
径に基づいて素管肉厚の偏差をめ、この偏差を解消する
に必要な圧下位置及びカリバーロール回転数を算出し、
圧下位置及びカリバーロール回転数を調節することを特
徴とする。
The pipe rolling control method according to the present invention includes a process in which a raw pipe having a mandrel inserted therein is sent to a plurality of stands equipped with caliber rolls for elongation rolling, and in a process in which a raw pipe having a mandrel inserted therein is sent to a plurality of stands equipped with caliber rolls for elongation rolling, the last stand to be elongated and the stand before that stand are substantially elongated. Calculate the deviation in the thickness of the raw pipe based on the amount of reduction in each of the two stands and the diameter of the mandrel passing through these two stands, and calculate the reduction position and caliber roll rotation speed required to eliminate this deviation. death,
It is characterized by adjusting the rolling position and the rotation speed of the caliber roll.

〔実施例〕〔Example〕

以下本発明をセミフロート・マンドレルミルに適用した
構成につき具体的に説明する。図面は本発明方法の実施
状態をマンドレルミル及びその制御系統と共に示す模式
図であり、図中1. 2. 3・・・6,7.8はマン
ドレルミル10のロールスタンド、11は素管、12心
金棒、13はリティナを示している。マンドレルミル1
0の各スタンド1〜8は交互に向きを90°変えたカリ
バーロールIa、 2’a、・・・6a、 7a、 8
aを備え、夫々モータによって回転駆動されるようにし
てあり、第1〜7スタンドにおいて実質的な延伸圧延を
、また第8スタンド8においては実質的な減肉圧延を行
なわず、素管11の断面形状を整え、素管11からの心
金棒の抜き出しを容易化する圧延を夫々行うようになっ
ている。リナティ13は図示しない駆動環にてマンドレ
ルミル10における素管11のパスラインに沿って往復
移動されるようにしてあり、先端部側から素管11に挿
通させた心金棒12の基端部を保持してマンドレルミル
10による素管圧延速度と異なる速度で移動しつつ素管
11を心金棒12と各カリバーロール18〜8aにて圧
延する、所謂セミフロート圧延を行なわせるようになっ
ている。なお心金棒12は複数本用意されており循環使
用されるようになっている。
A configuration in which the present invention is applied to a semi-float mandrel mill will be specifically explained below. The drawing is a schematic diagram showing the implementation state of the method of the present invention together with a mandrel mill and its control system. 2. 3...6, 7.8 are the roll stands of the mandrel mill 10, 11 is the blank tube, 12 is the core bar, and 13 is the retina. mandrel mill 1
Each stand 1 to 8 of 0 is a caliber roll Ia, 2'a, ... 6a, 7a, 8 whose direction is alternately changed by 90 degrees.
a, each of which is rotatably driven by a motor, and the first to seventh stands do not carry out substantial elongation rolling, and the eighth stand 8 does not carry out substantial thinning rolling. Rolling is performed to adjust the cross-sectional shape and facilitate extraction of the mandrel from the raw tube 11. The linati 13 is reciprocated by a drive ring (not shown) along the pass line of the raw tube 11 in the mandrel mill 10, and the proximal end of the mandrel 12 inserted into the raw tube 11 from the tip side. The so-called semi-float rolling is performed in which the mother tube 11 is held and moved at a speed different from the speed at which the mother tube is rolled by the mandrel mill 10, and is rolled by the mandrel rod 12 and each of the caliber rolls 18 to 8a. Note that a plurality of mandrel rods 12 are prepared and are used cyclically.

各心金棒12は各圧延が終了する都度循環移送ライン中
において、例えばレーザ式の直径測定器(図示せず)等
により、軸長方向各部の直径を測定され、測定データを
演算制御装置20に入力し記憶させておく。直径を測定
された心金棒12は冷却し、潤滑剤を塗布して次項の使
用に備える。
Each time each rolling is completed, the diameter of each core rod 12 in the axial direction is measured in the circulation transfer line using, for example, a laser diameter measuring device (not shown), and the measured data is sent to the arithmetic and control unit 20. Enter it and save it. The mandrel 12 whose diameter has been measured is cooled and lubricated to prepare it for the next use.

演算制御装置20は各スタンド1〜8の各駆動用モータ
を制御して各カリバーロール1a〜8aに対する回転数
を、また各油圧シリンダを制御して各スタンド1〜8に
おけるカリバーロール1a〜8aのロールギヤツブを夫
々調節する外、実質的な延伸圧延を行うスタンド1〜7
のうち最後の2スタンド、即ち第6.7スタンドにおい
て次の如き制御を行う。
The arithmetic and control unit 20 controls each drive motor of each stand 1 to 8 to control the rotation speed of each caliber roll 1a to 8a, and controls each hydraulic cylinder to control the rotation speed of each caliber roll 1a to 8a of each stand 1 to 8. Stands 1 to 7 that perform substantial stretching and rolling in addition to adjusting the roll gears respectively.
The following control is performed in the last two stands, ie, the 6.7th stand.

先ず延伸圧延中リティナ13の移動速度をこれに付設し
たパルスジェネレータから取り込み、第6゜7スタンド
6.7におけるカリバーロール6a、 6a、7a、 
?aの孔底と対向して位置する部分の心金棒12の先端
又は基端からの位置を経時的にめてその画部分、心金棒
12の平均直径に対する偏差ΔD6゜ΔD7を予め入力
しであるデータから算出し、また第6.7スタンド6.
7の圧下装置6b、 7bに付設しであるロードセル6
c、 7cから圧下型の変化量ΔP6. ΔP7を取り
込み第6.7のミル剛性係数を夫々K m ii h 
K m 7として、前記(11式に基づき、素管11の
肉厚偏差を表わすカリバーロール6a。
First, the moving speed of the retainer 13 during stretching and rolling is taken in from a pulse generator attached thereto, and the caliber rolls 6a, 6a, 7a, in the 6th and 7th stands 6.7 are
? The position of the portion facing the hole bottom of a from the tip or base of the mandrel 12 is determined over time, and the deviation ΔD6° ΔD7 with respect to the average diameter of the mandrel 12 is input in advance. Calculated from the data, and also the 6.7th stand 6.
Load cell 6 attached to the lowering device 6b, 7b of 7
c, change amount ΔP6 of the rolling type from 7c. Taking in ΔP7, the 6.7th mill stiffness coefficient is K m ii h
K m 7 is the caliber roll 6a that represents the wall thickness deviation of the raw tube 11 based on the formula (11).

7a間のロールギャップ変化量 −c・ΔP 6 / Km 6+−C・ΔPt/Km7
を算出し、この肉厚偏差、即ちロールギヤ・ノブ変化量
を解消するに必要な油圧圧下装置6c、 7c比圧下置
修正量八X6+ ΔX7を下記+21. (31式に従
って算出し、油圧圧下装置6c、 7cに信号を出力す
る。
Roll gap change amount between 7a -c・ΔP 6/Km 6+-C・ΔPt/Km7
Calculate the specific pressure lowering correction amount of the hydraulic lowering devices 6c and 7c necessary to eliminate this wall thickness deviation, that is, the amount of change in the roll gear knob, as shown below +21. (Calculated according to Equation 31, and outputs a signal to the hydraulic pressure lowering devices 6c and 7c.

ΔX6−一01 (ΔP6/Km6−ΔD6 ) / 
2’−+21ΔX7 = C2(ΔP7/Kmt−ΔD
 7) / 2−(3)但し、C1、C=2 :係数 またこれと同時に下記+41. (51式に従って油圧
圧下装置6c、 7cの制御に伴って生しる管軸方向、
管周方向の伸びの差による外径のばらつきを解消すべく
カリバーロール6a、 7aの回転数調節値ΔR6゜Δ
R7を算出し、これに相応する制御信号をカリバーロー
ル駆動用の各モータに出力する。
ΔX6-101 (ΔP6/Km6-ΔD6) /
2'-+21ΔX7 = C2(ΔP7/Kmt-ΔD
7) / 2-(3) However, C1, C=2: Coefficient and at the same time, the following +41. (The direction of the pipe axis caused by the control of the hydraulic lowering devices 6c and 7c according to formula 51,
In order to eliminate variations in outer diameter due to differences in elongation in the tube circumferential direction, the rotation speed adjustment value ΔR6゜Δ of the caliber rolls 6a and 7a is adjusted.
R7 is calculated, and a control signal corresponding to this is output to each motor for driving the caliber roll.

ΔR6=C3・ΔX6 ・・・(4) ΔR7=Cs ・ΔX6+C5・ΔX7 ・・・(5)
但し、C3+ C<、+ Cs :係数また演算制御装
置20はマンドレルミル10の出側において素管11の
移動域に臨ませた例えば電磁超音波式の肉厚計14、レ
ーザを用いた外径測定器15の各出力、即ち管軸方向各
部の肉厚、外径データをフィードバックデータとして取
り込み、予め入力されているマンドレルミル10出側の
肉厚、外径の各目標値と比較し、肉厚を目標値に一致さ
せるべ(第6,7スタン6.7の圧下装置6c、 7c
に対する制御量を修正制御し、また外径を目標値に一致
させるべく4G、1スタンド6.7のカリバーロール回
転数の修正制御を行うようにしである。
ΔR6=C3・ΔX6...(4) ΔR7=Cs・ΔX6+C5・ΔX7...(5)
However, C3+ C<, + Cs: coefficient or the arithmetic and control unit 20 measures the outer diameter using an electromagnetic ultrasonic wall thickness gauge 14, for example, which faces the movement range of the raw tube 11 on the exit side of the mandrel mill 10, or a laser. Each output of the measuring device 15, that is, the wall thickness and outer diameter data of each part in the tube axis direction is taken in as feedback data, and compared with the target values of the wall thickness and outer diameter on the exit side of the mandrel mill 10 that have been input in advance. Make the thickness match the target value (rolling devices 6c and 7c of the 6th and 7th stans 6.7)
In order to make the outer diameter match the target value, the rotational speed of the 4G, 6.7 caliber roll per stand is corrected.

次に本発明方法を適用して得た管の肉厚、外径分布につ
いての試験結果を示す。供試材としては普通鋼であって
外径168mm 、肉厚17n+mの素管に直f蚤12
6mmの心金棒を通した状態で7スタンドからなるセミ
フロート・マンドレルミルにて圧延する過程で、実質的
な延伸圧延を行う最終の2スタンド第6.7スタンドに
本発明方法を適用して延伸圧延を行って得た管について
管軸方向の肉厚、外径分布をめた。結果は第2図(イ)
、(ロ)。
Next, test results regarding the wall thickness and outer diameter distribution of tubes obtained by applying the method of the present invention will be shown. The test material was a plain steel tube with an outer diameter of 168 mm and a wall thickness of 17 nm + m, with a straight flea of 12 mm.
In the process of rolling in a semi-float mandrel mill consisting of 7 stands with a 6 mm mandrel passed through, the method of the present invention was applied to the 6.7th stand, the final two stands that perform substantial elongation rolling. The wall thickness and outer diameter distribution in the tube axis direction were determined for the tube obtained by rolling. The results are shown in Figure 2 (a)
,(B).

′ (ハ)に示すとおりである。第2図(イ)、(ロ)
′ As shown in (c). Figure 2 (a), (b)
.

(ハ)はいずれも横軸にトップから管軸方向への距離を
、また縦軸に外径、肉厚をとって示してあり、第2図(
イ)は本発明方法によった場合を、また第2図(ロ)、
(ハ)は夫々参照例であって、このうち第2図(ロ)は
全く制御を加えない場合の、第2図(ハ)は従来方法に
よった場合の各結果を示している。
In each case (c), the horizontal axis shows the distance from the top to the tube axis, and the vertical axis shows the outer diameter and wall thickness.
A) shows the case using the method of the present invention, and FIG. 2(B),
2(C) are reference examples, of which FIG. 2(B) shows the results when no control is applied at all, and FIG. 2(C) shows the results when the conventional method is used.

このグラフから明らかな如く、従来方法は全く制御を行
なわない場合も比較してその外径、肉厚のばらつきが少
なくなっているが、その程度は十分ではない。本発明方
法によった場合には従来方法に比較して、外径、肉厚\
もに略一定しており、管寸法精度が格段に向上している
ことが解る。
As is clear from this graph, the conventional method reduces the variation in the outer diameter and wall thickness compared to the case where no control is performed at all, but the degree of variation is not sufficient. When using the method of the present invention, compared to the conventional method, the outer diameter and wall thickness\
It can be seen that the dimensional accuracy of the pipe is significantly improved.

なお実施例は第6,7スタンドにおいて本発明方法を適
用した構成につき説明したが、何らこれに限るものでは
なく、実質的な延伸圧延を行うスタンドのうち、最後の
連続する2スタンドで行えば十分である。また上述の実
施例はセミフロート・マンドレルミルに本発明を適用し
た構成につきillしたが、フルフロート・マンドレル
ミルにも適用し得ることは勿論である。この場合には各
スタンドのカリバーロール周速配分、ロールギャップ及
びスタンドに噛み込まれている部分の管軸方向の位置を
めて各スタンドに噛み込まれている部分の心金棒立径を
めるか又は該当スタンドにおいて噛み込まれている部分
の軸長方向の経時的位置を実験的にめておき、この測定
データに基づき心金棒の該当部分の直径をめてもよい。
Although the embodiment has been described with respect to a configuration in which the method of the present invention is applied to the sixth and seventh stands, the present invention is not limited to this in any way. It is enough. Furthermore, although the above-described embodiments have been described with reference to the configuration in which the present invention is applied to a semi-float mandrel mill, it goes without saying that the present invention can also be applied to a full-float mandrel mill. In this case, determine the circumferential speed distribution of the caliber roll of each stand, the roll gap, and the position in the tube axis direction of the part that is caught in the stand, and then determine the vertical diameter of the mandrel of the part that is caught in each stand. Alternatively, the position of the biting part in the corresponding stand over time in the axial length direction may be determined experimentally, and the diameter of the corresponding part of the mandrel rod may be determined based on this measurement data.

以上の如く本発明方法にあっては素管の肉厚制御におい
て、従来板厚制御に広く利用されているA −G−C法
を採用するに当り、心金棒立径のばらつきを吸収し、且
つ、圧下型の変化によるロールギャップの変化を解消す
べく圧下装置を制御すると共にカリバーロール回転数を
制御することとしているからA−G−C法による圧下装
置の制御で生ずる管軸方向、管周方向の外径、肉厚変化
を解消し、管品質の大幅な向上を図り得、更に圧延後の
素管の外径、肉厚データに基づいて圧下位置及び/又は
カリバーロール回転数の修正制御を行うから外径、肉厚
の制御精度を一層向上し得るなど本発明は優れた効果を
奏するものである。
As described above, in the method of the present invention, in adopting the A-G-C method, which has been widely used for conventional plate thickness control, in controlling the wall thickness of the blank pipe, variations in the vertical diameter of the mandrel rod are absorbed, In addition, in order to eliminate changes in the roll gap due to changes in the rolling type, the rolling down device is controlled and the rotation speed of the caliber roll is controlled. It is possible to eliminate circumferential outside diameter and wall thickness changes, greatly improving pipe quality, and also correct the rolling position and/or caliber roll rotation speed based on the outside diameter and wall thickness data of the raw pipe after rolling. Since the control is performed, the control accuracy of the outer diameter and wall thickness can be further improved, and the present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す模式図、第2図(
イ)、(ロ)(ハ)は本発明方法によって得た管の外径
、肉厚の比較試験結果を示すグラフである。 1.2〜6,7.8・・・スタンド 6a・・・カリバ
ーロール 6b・・・圧下装置 6c・・・ロードセル
 7a・・・カリバーロール 7b・・・圧下装置 7
c・・・ロードセル11・・・素管 12・・・心金棒
 13・・・リティナ 14・・・肉厚計 15・・・
外径測定器 20・・・演算制御装置時 許 出願人 
住友金属工業株式会社代理人 弁理士 河 野 登 夫
Figure 1 is a schematic diagram showing the implementation state of the method of the present invention, Figure 2 (
A), (B), and (C) are graphs showing comparative test results of the outer diameter and wall thickness of tubes obtained by the method of the present invention. 1.2 to 6, 7.8... Stand 6a... Caliber roll 6b... Rolling down device 6c... Load cell 7a... Calibur roll 7b... Rolling down device 7
c... Load cell 11... Raw tube 12... Mandrel rod 13... Retina 14... Wall thickness gauge 15...
Outer diameter measuring device 20...Arithmetic and control device Applicant
Noboru Kono, Patent Attorney, Representative of Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、 内部に心金棒を挿通した素管を、カリバーロール
を備えた複数スタンドに通して延伸圧延する過程におい
て、実質的に延伸圧延する最後部のスタンド及びその前
スタンドの2スタンドにおける各圧下量及びこれら2ス
タンドを通過中の部分の心金棒直径に基づいて素管肉厚
の偏差をめ、この偏差を解消するに必要な圧下位置及び
カリバーロールの回転数を算出し、圧下装置及びカリバ
ーロール駆動部を制御することを特徴とする管圧延制御
方法。 2、 内部に心金棒を挿通した素管を、カリバーロール
を備えた複数スタンドに通して延伸圧延する過程におい
て、実質的に延伸圧延する最後部のスタンド及びその前
スタンドの2スタンドにおける各圧下量及びこれら2ス
タンドを通過中の部分の心金棒直径に基づいて素管肉厚
の偏差をめ、この偏差を解消するに必要な圧下位置及び
カリバーロール回転数を算出し、圧下位置及びカリバー
ロール駆動部を制御すると共に、圧延後の素管外径、肉
厚データに基づき前記圧下位置及び/又はカリバーロー
ル回転数を修正制御することを特徴とする管圧延制御方
法。
[Scope of Claims] 1. In the process of stretching and rolling a raw pipe with a mandrel inserted therein through a plurality of stands equipped with caliber rolls, the last stand to be stretched and rolled and the stand in front of it are substantially stretched. Determine the deviation in the thickness of the raw pipe based on the amount of reduction in each of the two stands and the diameter of the mandrel passing through these two stands, and calculate the reduction position and number of rotations of the caliber roll necessary to eliminate this deviation. , a tube rolling control method characterized by controlling a rolling device and a caliber roll drive section. 2. In the process of stretching and rolling a raw pipe with a mandrel inserted inside it through multiple stands equipped with caliber rolls, the amount of reduction in each of the two stands, the last stand that is actually stretched and rolled, and the stand in front of it. Based on the diameter of the mandrel passing through these two stands, calculate the deviation in the thickness of the raw tube, calculate the rolling position and caliber roll rotation speed necessary to eliminate this deviation, and calculate the rolling position and caliber roll drive. 1. A tube rolling control method, comprising controlling the rolling position and/or the number of revolutions of a caliber roll based on the outside diameter and wall thickness data of the raw tube after rolling.
JP59016257A 1984-01-31 1984-01-31 Pipe rolling controlling method Pending JPS60162518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59016257A JPS60162518A (en) 1984-01-31 1984-01-31 Pipe rolling controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59016257A JPS60162518A (en) 1984-01-31 1984-01-31 Pipe rolling controlling method

Publications (1)

Publication Number Publication Date
JPS60162518A true JPS60162518A (en) 1985-08-24

Family

ID=11911506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59016257A Pending JPS60162518A (en) 1984-01-31 1984-01-31 Pipe rolling controlling method

Country Status (1)

Country Link
JP (1) JPS60162518A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722809A (en) * 1980-07-11 1982-02-05 Sumitomo Metal Ind Ltd Method for controlling rolling of pipe
JPS5722813A (en) * 1980-07-11 1982-02-05 Sumitomo Metal Ind Ltd Method for controlling rolling of pipe
JPS5725207A (en) * 1980-07-18 1982-02-10 Ishikawajima Harima Heavy Ind Co Ltd Rolling mill for making pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722809A (en) * 1980-07-11 1982-02-05 Sumitomo Metal Ind Ltd Method for controlling rolling of pipe
JPS5722813A (en) * 1980-07-11 1982-02-05 Sumitomo Metal Ind Ltd Method for controlling rolling of pipe
JPS5725207A (en) * 1980-07-18 1982-02-10 Ishikawajima Harima Heavy Ind Co Ltd Rolling mill for making pipe

Similar Documents

Publication Publication Date Title
JP4389869B2 (en) Seamless pipe manufacturing method
US4445354A (en) Procedure and equipment for the manufacture of pipes with external and internal diameters varying in stages
RU2301713C2 (en) Method for producing casing tubes for threading in tube rolling aggregates with pilger mills
JPS60162518A (en) Pipe rolling controlling method
JPH05154524A (en) Method and device for narrowing allowable tolerance regarding shaping and dimensional stability of product rolled into line of steel wires and/or rods
RU2401708C2 (en) Method and rolling mill to produce seamless steel tubes
JP2006272386A (en) Thickness control method of deformed steel plate
JPS63230214A (en) Pipe rolling control method
SU602245A1 (en) Longitudinal rolling method
JP2005193247A (en) Method for manufacturing seamless steel tube and mandrel mill
JPH0819805A (en) Stretch-reduction method for tube
SU741970A1 (en) Tube helical-rolling method
JP3237596B2 (en) Manufacturing method of seamless metal tube by hot extrusion tube method
SU710689A1 (en) Pilgrim-step tube-rolling method
JP2000288616A (en) Manufacture of seamless steel tube
JP2586231B2 (en) Tube cold rolling method
JPH0221324B2 (en)
JPH0576368B2 (en)
JPS59104207A (en) Method for controlling elongation length of steel pipe in mandrel mill
JP3804433B2 (en) Metal tube rolling method and metal tube rolling device
JPS6068110A (en) Method for controlling dimension of hot extruded material
JP2004017066A (en) Thickness control method for tube-rolling mill
JPH04147708A (en) Rolling control method for reeling mill
JP2001071012A (en) Method for controlling number of revolution to minimize squarish internal surface
SU825214A1 (en) Tube die rolling method